Department Mathematik



Vorlesung: Partielle Differentialgleichungen (PDG1) (WiSe 2019/20)

News: RE-EXAM POSTPONED / NACHKLAUSUR VERSCHOBEN: The re-exam (on April 16th) is cancelled/postponed, due to the present situation (Corona). It will be re-scheduled at a later time, when circumstances will allow.

News: Exam / Wiederholungsklausur:
The re-exam will be on Thursday April 16th 2020.
Only students who fail the exam on February 08 (apart from the ones with a medical attest that they were sick) will be offered a re-exam.
Information on sign-up in due time (please check back).

Lecture (Vorlesung):
Tue 14-16 (in B 006) & Wed 10-12 (in B 004).   LSF

Exercises (Übungen):
See separate webpage (uni2work).   LSF

Tutorials (Tutorien):
See separate webpage (uni2work).

Synopsis (Kurzbeschreibung):
This course gives an introduction to Partial Differential Equations (PDEs), a vast area within Analysis. PDE's play an important rôle in applications of Mathematics to other sciences (most prominently in Physics and Engineering, but also in Biology and Financial Sciences), as well as in Pure Mathematics (Analysis, Geometry, Stochastics; Algebra less).
Among other things, we will study: the method of characteristics for (non-linear) first-order PDEs, the classification of linear 2nd order PDEs in elliptic, parabolic, and hyperbolic equations, explicit classical solutions for the most prominent such equations (Laplace and Poisson equations, heat equation, wave equation), including boundary value problems and Cauchy problems.

(Die Vorlesung führt in die Theorie der partiellen Differentialgleichungen ein. PDG'en spielen eine zentrale Rolle sowohl in vielen Anwendungsgebieten der Mathematik, als auch in der reinen Mathematik. Behandelt werden, unter anderem, die Charakteristikenmethode, die Typeneinteilung in elliptische, hyperbolische und parabolische Differentialgleichungen, explizite Lösungsmethoden für die wichtigsten Typen linearer PDG'en zweiter Ordnung (Laplacegleichung, Poissongleichung, Wellengleichung und Wärmeleitungsgleichung), Randwert-Probleme, Cauchy-Probleme.)

Audience (Hörerkreis):
Bachelor students of Mathematics (WP16), Master students of Mathematics (WP2), Master students of 'Finanz- und Versicherungsmathematik' (WP49), TMP Master.

9 (6+3) ECTS.

Prerequisites (Vorkenntnisse):
Analysis I-III, Lineare Algebra I-II. You find a handout with the needed facts (without proofs, and to be updated!) in uni2work.

Language (Sprache):

Exam (Prüfung):
There will be a written exam (Es wird eine schriftliche Klausur geben): 08.02.2020 (9.00-11.30)
There will be a written re-exam (Es wird eine schriftliche NachKlausur geben): 16.04.2020 (9.00-11.30)
See separate webpage.

Content (Inhalt):
  1. Introduction and motivation

  2. Transport equations

  3. The Laplace Equation

  4. The Heat Equation

  5. The Wave Equation

  6. Method of Characteristics

  7. Fourier transform and PDE

Literature: In uni2work you will find a copy of the notes from the lecture (to be updated as we go along).
Above you will find a short description of the content of the lecture (to be updated as we go along).
The lecture will mainly follow the books by Evans, and Arendt & Urban mentioned below.

(Auf uni2work wird es ein Mitschrift aus der Vorlesung geben. Hier wird laufend eine Kurzübersicht der Vorlesung erstellt. Die Vorlesung wird sich größtenteils auf folgenden zwei Büchern (von denen mehrere Exemplare in der Bibliothek vorhanden sind) basieren:)
Supplementary literatur (Ergänzende Literatur): Here a longer liste.

Office hours (Sprechstunde):
Thursday 10:15-11:00 (Room B 408) or by appointment via email.


Letzte Änderung: 11 February 2020.

Thomas Østergaard Sørensen