Introduction to the Calculus of Variations Exercise sheet 4

CONTENTS

I. Warm up

II. Exercises

I. WARM UP

Ex. 4.1 (Countability)

We say a set I is (at most) countable if there exists an injective function $\varphi: I \to \mathbb{N}$.

- 1. Show that if I_1 and I_2 are countable, then $I_1 \cup I_2$ is also countable. Deduce that \mathbb{Z} is countable.
- 2. Show that if I_1 and I_2 are countable, then $I_1 \times I_2$ is also countable. Deduce that \mathbb{Q} is countable. *Hint: The decomposition* $2^{n_1}3^{n_3}$ *is unique for* $n_1, n_2 \in \mathbb{N}$.
- 3. Show that if I_k , $k \ge 1$ are countable then $\bigcup_{k>1} I_k$ is countable.
- 4. Show that [0,1] is not countable. *Hint:* By contradiction, if it were so, one could write $[0,1] = \{x_n\}_{n \in \mathbb{N}}$ and one can use the decimal decomposition $x_n = 0, x_n^{(1)} x_n^{(2)} \dots$ where $x_n^{(k)} \in [|0,9|]$. Then one could construct $x \in [0,1]$ that does not belong to $\{x_n\}_{n \in \mathbb{N}}$ by choosing $x^{(n)}$ different from $x_n^{(n)}$.
- 5. Show that if I_k , $k \ge 1$ are countable then $\prod_{k>1} I_k$ may not be countable.

Ex. 4.2 (Approximation by step functions)

Denote

$$\mathcal{E}(\mathbb{R}^n) = \left\{ \sum_{k=1}^N \alpha_k \mathbb{1}_{A_k}, A_k = \{ a_i^{(k)} \le x_i \le b_i^{(k)} \}, a_i^{(k)} < b_i^{(k)} \in \mathbb{R}, \alpha_k \in \mathbb{C}, N \ge 1 \right\}.$$

We assume to know that $\mathcal{E}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. Show that for $1 \leq p < \infty$, the following assertions are equivalent

- $u_N \rightharpoonup u$ weakly in $L^p(\mathbb{R}^n)$
- $\{u_N\}_N$ is bounded in L^p and $\int_A u_N \xrightarrow[N \to \infty]{} \int_A u_N \forall A = \{a_i \le x_i \le b_i\}, a_i < b_i \in \mathbb{R}.$

12

Ex. 4.3 (Approximation by C_c^{∞} functions)

Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$ and let $\chi \in C_c^{\infty}(\mathbb{R}^3)$. For $\varepsilon > 0$, define $\chi_{\varepsilon}(x) = \varepsilon^{-d}\chi(x/\varepsilon)$. We assume to know that $\mathcal{E}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.

- 1. Show that $f_N = \mathbb{1}_{|x| \leq N} \mathbb{1}_{|f| \leq N} f$ converges to f in $L^p(\mathbb{R}^n)$ as $N \to \infty$.
- 2. Show that $f_N * \chi_{\varepsilon}$ is in $C_c^{\infty}(\mathbb{R}^n)$.
- 3. Show that $f_N * \chi_{\varepsilon}$ converges to f_N as $\varepsilon \to 0$. *Hint: One could approximate* f_N *by a a step function.*
- 4. Conclude.
- **Ex. 4.4** (Lack of compactness) Let $\varphi \in L^p(\mathbb{R}^n)$, $1 , <math>k \in \mathbb{R}^n$ and define

$$\varphi_N^{(1)}(x) = N^{-d/p} \varphi(N^{-1}x), \qquad \qquad \varphi_N^{(2)}(x) = N^{d/p} \varphi(N^1x)$$

$$\varphi_N^{(3)}(x) = \varphi(x - kN), \qquad \qquad \varphi_N^{(4)}(x) = e^{ik \cdot xN} \varphi(x).$$

Show that these functions converge weakly to 0 in $L^p(\mathbb{R}^n)$.

Ex. 4.5 (L^1_{loc} is the least regular) Let $\Omega \subset \mathbb{R}^n$ be measurable.

1. Show that for all $1 \le p \le \infty$,

$$L^{p}(\Omega) \subset L^{1}_{\text{loc}}(\Omega) = \{ f: \Omega \to \mathbb{C}, \int_{K \cap \Omega} |f| < \infty, \forall K \subset \Omega \text{ compact } \}.$$

2. Show that $L^p(\mathbb{R}^n) \nsubseteq L^p_{\text{loc}}(\mathbb{R}^n) \nsubseteq L^1_{\text{loc}}(\mathbb{R}^n)$ for all p > 1.

II. EXERCISES

Ex. 4.5 (Sobolev inequality for gradients n = 2)

We want to prove that for all $2 \leq q < \infty$ there is a constant $C_{Sob,q} > 0$ such that for all $f \in H^1(\mathbb{R}^2)$ we have

$$\|f\|_{L^{q}(\mathbb{R}^{2})} \leq C_{Sob,q} \|f\|_{H^{1}(\mathbb{R}^{2})}$$
(1)

where $2^* = 2n/(n-2)$.

We assume to know that

• For all $1 \le p \le 2$ there exists some C > 0 such that

$$\|\widehat{f}\|_{L^{p'}} \le C \|f\|_{L^p}$$

where 1/p' + 1/p = 1 and

$$\widehat{f}(k) = \frac{1}{(2\pi)} \int_{\mathbb{R}^3} f(x) e^{-ik \cdot x} \mathrm{d}x.$$

- 1. Justify (in detail) that it is enough to show (1) for $f \in C_c^{\infty}$.
- 2. For $f \in C_c^{\infty}(\mathbb{R}^2)$, compute $\widehat{\nabla f}(k)$ in terms of $\widehat{f}(k)$. Deduce from this a formula for $||f||_{H^1}$ in terms of \widehat{f} .
- 3. Let q > 2 and p = q', writing

$$\widehat{f}(k) = \widehat{f}(k)(1+|k|^2)^{1/2} \times (1+|k|^2)^{-1/2}$$

show that

$$\|\widehat{f}\|_p \le C \|f\|_{H^1}$$

for some C > 0 independent on f.

4. Conclude.

Ex. 4.6 (Sobolev inequality for gradients $n \ge 3$)

Let $n \geq 3$, we want to prove that there is a constant $C_{Sob} > 0$ such that for all $f \in L^1_{loc}$ with $\nabla f \in L^2(\mathbb{R}^n)$ (in the sense of distributions) we have

$$\|f\|_{L^{2^*}(\mathbb{R}^n)} \le C_{Sob} \|\nabla f\|_{L^2(\mathbb{R}^n)}$$

where $2^* = 2n/(n-2)$.

We assume to know two things:

• The Hardy-Littlewood-Sobolev inequality: for all p, r > 1 and $0 < \lambda < n$ such that $\frac{1}{p} + \frac{\lambda}{n} + \frac{1}{r} = 2$, we have

$$\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) \frac{1}{|x-y|^{\lambda}} g(y) \mathrm{d}x \mathrm{d}y \right| \le C \|f\|_p \|g\|_r,\tag{2}$$

for all measurable functions f, g.

• The Plancherel formula, for any $f,g\in L^2$

$$\int_{\mathbb{R}^n} \overline{f}g = \int_{\mathbb{R}^n} \overline{\widehat{f}}\,\widehat{g}$$

- 1. Justify (in detail) that it is enough to show (2) for $f \in C_c^{\infty}$.
- 2. Prove that there is come $C_{\alpha} > 0$, such that for all $k \in \mathbb{R}^n$

$$\frac{1}{|k|^{\alpha}} = C_{\alpha} \int_0^{\infty} e^{-\pi |k|^2 \lambda} \lambda^{\alpha/2 - 1} \mathrm{d}\lambda.$$

3. Prove that there is some $C_{\alpha,n} > 0$ such that for any $f \in C_c^{\infty}(\mathbb{R}^n)$ and $0 < \alpha < n$, we have

$$\left(\frac{1}{|k|^{\alpha}}\widehat{f}\right)^{\checkmark}(x) = C_{\alpha,n} \int_{\mathbb{R}^n} \frac{1}{|x-y|^{n-\alpha}} f(y) \mathrm{d}y.$$

4. Let $f, g \in C_c^{\infty}(\mathbb{R}^n)$, show that

$$\left| \int_{\mathbb{R}^n} fg \right| \leq \left(\int_{\mathbb{R}^{\kappa}} |k|^2 |\widehat{f}(k)|^2 \right)^{1/2} \left(\int_{\mathbb{R}^{\kappa}} |k|^{-2} |\widehat{g}(k)|^2 \right)^{1/2}$$
$$\leq C \|\nabla f\|_{L^2(\mathbb{R}^n)} \|g\|_{L^p(\mathbb{R}^n)}$$

for an appropriate p to be computed.

5. Justify that for any $1 \le p < \infty$

$$\sup_{\|g\|_{L^p}=1} \left| \int_{\mathbb{R}^n} fg \right| = \|f\|_{L^{p'}}$$

6. Conclude.

Ex. 4.7 (Bounded sequences in L^p have weak limits)

Let $1 , <math>\Omega \subset \mathbb{R}^d$ and we assume to know that $L^p(\Omega)$. Let $\{f_n\} \subset L^p(\Omega)$, bounded, we want to show that there exists a subsequence and $f \in L^p(\Omega)$, such that

$$f_{n'} \underset{n \to \infty}{\rightharpoonup} f \tag{3}$$

weakly in L^p

- 1. Let $\{\phi_k\} \subset L^p(\Omega)$ be a dense sequence. By a diagonal argument, show that there exists a subsequence $f_{n'}$, such that for all $k \geq 1$, the sequence $\{\langle f_{n'}, \varphi_k \rangle\}_{n'}$ converges, and denote by ℓ_k its limit.
- 2. Let $g \in L^{p'}$ show that $\{\langle f_{n'}, g \rangle\}_{n'}$ is convergent (where $\{f_{n'}\}$ is the subsequence from 1.)
- 3. Define, for all $g \in L^{p'}$, $F(g) = \lim_{n \to \infty} \langle f_{n'}, g \rangle$ and show that there exists $f \in L^p$ such that $F(g) = \int fg$.
- 4. Conclude. What properties of L^p did we use ?