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I. WARM UP

Ex. 4.1 (Countability)

We say a set I is (at most) countable if there exists an injective function ϕ : I → N.

1. Show that if I1 and I2 are countable, then I1 ∪ I2 is also countable. Deduce that Z is
countable.

2. Show that if I1 and I2 are countable, then I1 × I2 is also countable. Deduce that Q is
countable. Hint: The decomposition 2n13n3 is unique for n1, n2 ∈ N.

3. Show that if Ik, k ≥ 1 are countable then ∪k≥1Ik is countable.

4. Show that [0, 1] is not countable. Hint: By contradiction, if it were so, one could write

[0, 1] = {xn}n∈N and one can use the decimal decomposition xn = 0, x
(1)
n x

(2)
n ... where x

(k)
n ∈

[|0, 9|]. Then one could construct x ∈ [0, 1] that does not belong to {xn}n∈N by choosing x(n)

different from x
(n)
n .

5. Show that if Ik, k ≥ 1 are countable then
∏
k≥1 Ik may not be countable.

Ex. 4.2 (Approximation by step functions)

Denote

E(Rn) =

{
N∑
k=1

αk1Ak
, Ak = {a(k)

i ≤ xi ≤ b
(k)
i }, a

(k)
i < b

(k)
i ∈ R, αk ∈ C, N ≥ 1

}
.

We assume to know that E(Rn) is dense in Lp(Rn). Show that for 1 ≤ p < ∞, the following
assertions are equivalent

• uN ⇀ u weakly in Lp(Rn)

• {uN}N is bounded in Lp and
∫
A uN −→N→∞

∫
A u,∀A = {ai ≤ xi ≤ bi}, ai < bi ∈ R.
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Ex. 4.3 (Approximation by C∞c functions)
Let f ∈ Lp(Rn), 1 ≤ p < ∞ and let χ ∈ C∞c (R3). For ε > 0, define χε(x) = ε−dχ(x/ε). We

assume to know that E(Rn) is dense in Lp(Rn).

1. Show that fN = 1|x|≤N1|f |≤Nf converges to f in Lp(Rn) as N →∞.

2. Show that fN ∗ χε is in C∞c (Rn).

3. Show that fN ∗ χε converges to fN as ε → 0. Hint: One could approximate fN by a a step
function.

4. Conclude.

Ex. 4.4 (Lack of compactness)
Let ϕ ∈ Lp(Rn), 1 < p <∞, k ∈ Rn and define

ϕ
(1)
N (x) = N−d/pϕ(N−1x), ϕ

(2)
N (x) = Nd/pϕ(N1x)

ϕ
(3)
N (x) = ϕ(x− kN), ϕ

(4)
N (x) = eik·xNϕ(x).

Show that these functions converge weakly to 0 in Lp(Rn).

Ex. 4.5 (L1
loc is the least regular)

Let Ω ⊂ Rn be measurable.

1. Show that for all 1 ≤ p ≤ ∞,

Lp(Ω) ⊂ L1
loc(Ω) = {f : Ω→ C,

∫
K∩Ω
|f | <∞,∀K ⊂ Ω compact }.

2. Show that Lp(Rn) * Lploc(R
n) * L1

loc(Rn) for all p > 1.

II. EXERCISES

Ex. 4.5 (Sobolev inequality for gradients n = 2)
We want to prove that for all 2 ≤ q < ∞ there is a constant CSob,q > 0 such that for all

f ∈ H1(R2) we have

‖f‖Lq(R2) ≤ CSob,q‖f‖H1(R2) (1)

where 2∗ = 2n/(n− 2).
We assume to know that

• For all 1 ≤ p ≤ 2 there exists some C > 0 such that

‖f̂‖Lp′ ≤ C‖f‖Lp

where 1/p′ + 1/p = 1 and

f̂(k) =
1

(2π)

∫
R3

f(x)e−ik·xdx.
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1. Justify (in detail) that it is enough to show (1) for f ∈ C∞c .

2. For f ∈ C∞c (R2), compute ∇̂f(k) in terms of f̂(k). Deduce from this a formula for ‖f‖H1

in terms of f̂ .

3. Let q > 2 and p = q′, writing

f̂(k) = f̂(k)(1 + |k|2)1/2 × (1 + |k|2)−1/2

show that

‖f̂‖p ≤ C‖f‖H1

for some C > 0 independent on f .

4. Conclude.

Ex. 4.6 (Sobolev inequality for gradients n ≥ 3)

Let n ≥ 3, we want to prove that there is a constant CSob > 0 such that for all f ∈ L1
loc with

∇f ∈ L2(Rn) (in the sense of distributions) we have

‖f‖L2∗ (Rn) ≤ CSob‖∇f‖L2(Rn)

where 2∗ = 2n/(n− 2).

We assume to know two things:

• The Hardy-Littlewood-Sobolev inequality: for all p, r > 1 and 0 < λ < n such that 1
p+λ

n+ 1
r =

2, we have ∣∣∣∣∫
Rn

∫
Rn

f(x)
1

|x− y|λ
g(y)dxdy

∣∣∣∣ ≤ C‖f‖p‖g‖r, (2)

for all measurable functions f, g.

• The Plancherel formula, for any f, g ∈ L2∫
Rn

fg =

∫
Rn

f̂ ĝ

1. Justify (in detail) that it is enough to show (2) for f ∈ C∞c .

2. Prove that there is come Cα > 0, such that for all k ∈ Rn

1

|k|α
= Cα

∫ ∞
0

e−π|k|
2λλα/2−1dλ.

3. Prove that there is some Cα,n > 0 such that for any f ∈ C∞c (Rn) and 0 < α < n, we have(
1

|k|α
f̂

)∨
(x) = Cα,n

∫
Rn

1

|x− y|n−α
f(y)dy.
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4. Let f, g ∈ C∞c (Rn), show that∣∣∣∣∫
Rn

fg

∣∣∣∣ ≤ (∫
Rn
|k|2|f̂(k)|2

)1/2(∫
Rn
|k|−2|ĝ(k)|2

)1/2

≤ C‖∇f‖L2(Rn)‖g‖Lp(Rn)

for an appropriate p to be computed.

5. Justify that for any 1 ≤ p <∞

sup
‖g‖Lp=1

∣∣∣∣∫
Rn

fg

∣∣∣∣ = ‖f‖Lp′ .

6. Conclude.

Ex. 4.7 (Bounded sequences in Lp have weak limits)
Let 1 < p < ∞, Ω ⊂ Rd and we assume to know that Lp(Ω). Let {fn} ⊂ Lp(Ω), bounded, we

want to show that there exists a subsequence and f ∈ Lp(Ω), such that

fn′ ⇀
n→∞

f (3)

weakly in Lp

1. Let {φk} ⊂ Lp(Ω) be a dense sequence. By a diagonal argument, show that there exists a
subsequence fn′ , such that for all k ≥ 1, the sequence {〈fn′ , ϕk〉}n′ converges, and denote by
`k its limit.

2. Let g ∈ Lp′ show that {〈fn′ , g〉}n′ is convergent (where {fn′} is the subsequence from 1.)

3. Define, for all g ∈ Lp
′
, F (g) = lim

n→∞
〈fn′ , g〉 and show that there exists f ∈ Lp such that

F (g) =
∫
fg.

4. Conclude. What properties of Lp did we use ?


