Introduction to the Calculus of Variations
 Exercise sheet 4

CONTENTS

I. Warm up

1
II. Exercises

I. WARM UP

Ex. 4.1 (Countability)
We say a set I is (at most) countable if there exists an injective function $\varphi: I \rightarrow \mathbb{N}$.

1. Show that if I_{1} and I_{2} are countable, then $I_{1} \cup I_{2}$ is also countable. Deduce that \mathbb{Z} is countable.
2. Show that if I_{1} and I_{2} are countable, then $I_{1} \times I_{2}$ is also countable. Deduce that \mathbb{Q} is countable. Hint: The decomposition $2^{n_{1}} 3^{n_{3}}$ is unique for $n_{1}, n_{2} \in \mathbb{N}$.
3. Show that if $I_{k}, k \geq 1$ are countable then $\cup_{k \geq 1} I_{k}$ is countable.
4. Show that $[0,1]$ is not countable. Hint: By contradiction, if it were so, one could write $[0,1]=\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and one can use the decimal decomposition $x_{n}=0, x_{n}^{(1)} x_{n}^{(2)} \ldots$ where $x_{n}^{(k)} \in$ $[|0,9|]$. Then one could construct $x \in[0,1]$ that does not belong to $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ by choosing $x^{(n)}$ different from $x_{n}^{(n)}$.
5. Show that if $I_{k}, k \geq 1$ are countable then $\prod_{k \geq 1} I_{k}$ may not be countable.

Ex. 4.2 (Approximation by step functions)
Denote

$$
\mathcal{E}\left(\mathbb{R}^{n}\right)=\left\{\sum_{k=1}^{N} \alpha_{k} \mathbb{1}_{A_{k}}, A_{k}=\left\{a_{i}^{(k)} \leq x_{i} \leq b_{i}^{(k)}\right\}, a_{i}^{(k)}<b_{i}^{(k)} \in \mathbb{R}, \alpha_{k} \in \mathbb{C}, N \geq 1\right\} .
$$

We assume to know that $\mathcal{E}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$. Show that for $1 \leq p<\infty$, the following assertions are equivalent

- $u_{N} \rightharpoonup u$ weakly in $L^{p}\left(\mathbb{R}^{n}\right)$
- $\left\{u_{N}\right\}_{N}$ is bounded in L^{p} and $\int_{A} u_{N} \underset{N \rightarrow \infty}{\longrightarrow} \int_{A} u, \forall A=\left\{a_{i} \leq x_{i} \leq b_{i}\right\}, a_{i}<b_{i} \in \mathbb{R}$.

Ex. 4.3 (Approximation by C_{c}^{∞} functions)
Let $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$ and let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. For $\varepsilon>0$, define $\chi_{\varepsilon}(x)=\varepsilon^{-d} \chi(x / \varepsilon)$. We assume to know that $\mathcal{E}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$.

1. Show that $f_{N}=\mathbb{1}_{|x| \leq N} \mathbb{1}_{|f| \leq N} f$ converges to f in $L^{p}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$.
2. Show that $f_{N} * \chi_{\varepsilon}$ is in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
3. Show that $f_{N} * \chi_{\varepsilon}$ converges to f_{N} as $\varepsilon \rightarrow 0$. Hint: One could approximate f_{N} by a a step function.
4. Conclude.

Ex. 4.4 (Lack of compactness)
Let $\varphi \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty, k \in \mathbb{R}^{n}$ and define

$$
\begin{aligned}
\varphi_{N}^{(1)}(x) & =N^{-d / p} \varphi\left(N^{-1} x\right), & \varphi_{N}^{(2)}(x)=N^{d / p} \varphi\left(N^{1} x\right) \\
\varphi_{N}^{(3)}(x) & =\varphi(x-k N), & \varphi_{N}^{(4)}(x)=e^{i k \cdot x N} \varphi(x) .
\end{aligned}
$$

Show that these functions converge weakly to 0 in $L^{p}\left(\mathbb{R}^{n}\right)$.
Ex. 4.5 (L_{loc}^{1} is the least regular)
Let $\Omega \subset \mathbb{R}^{n}$ be measurable.

1. Show that for all $1 \leq p \leq \infty$,

$$
L^{p}(\Omega) \subset L_{\mathrm{loc}}^{1}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{C}, \int_{K \cap \Omega}|f|<\infty, \forall K \subset \Omega \text { compact }\right\} .
$$

2. Show that $L^{p}\left(\mathbb{R}^{n}\right) \nsubseteq L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right) \nsubseteq L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ for all $p>1$.

II. EXERCISES

Ex. 4.5 (Sobolev inequality for gradients $n=2$)
We want to prove that for all $2 \leq q<\infty$ there is a constant $C_{S o b, q}>0$ such that for all $f \in H^{1}\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{equation*}
\|f\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C_{S o b, q}\|f\|_{H^{1}\left(\mathbb{R}^{2}\right)} \tag{1}
\end{equation*}
$$

where $2^{*}=2 n /(n-2)$.
We assume to know that

- For all $1 \leq p \leq 2$ there exists some $C>0$ such that

$$
\|\widehat{f}\|_{L^{p^{\prime}}} \leq C\|f\|_{L^{p}}
$$

where $1 / p^{\prime}+1 / p=1$ and

$$
\widehat{f}(k)=\frac{1}{(2 \pi)} \int_{\mathbb{R}^{3}} f(x) e^{-i k \cdot x} \mathrm{~d} x .
$$

1. Justify (in detail) that it is enough to show (1) for $f \in C_{c}^{\infty}$.
2. For $f \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$, compute $\widehat{\nabla f}(k)$ in terms of $\widehat{f}(k)$. Deduce from this a formula for $\|f\|_{H^{1}}$ in terms of f.
3. Let $q>2$ and $p=q^{\prime}$, writing

$$
\widehat{f}(k)=\widehat{f}(k)\left(1+|k|^{2}\right)^{1 / 2} \times\left(1+|k|^{2}\right)^{-1 / 2}
$$

show that

$$
\|\widehat{f}\|_{p} \leq C\|f\|_{H^{1}}
$$

for some $C>0$ independent on f.
4. Conclude.

Ex. 4.6 (Sobolev inequality for gradients $n \geq 3$)
Let $n \geq 3$, we want to prove that there is a constant $C_{S o b}>0$ such that for all $f \in L_{\text {loc }}^{1}$ with $\nabla f \in L^{2}\left(\mathbb{R}^{n}\right)$ (in the sense of distributions) we have

$$
\|f\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)} \leq C_{S o b}\|\nabla f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

where $2^{*}=2 n /(n-2)$.
We assume to know two things:

- The Hardy-Littlewood-Sobolev inequality: for all $p, r>1$ and $0<\lambda<n$ such that $\frac{1}{p}+\frac{\lambda}{n}+\frac{1}{r}=$ 2, we have

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) \frac{1}{|x-y|^{\lambda}} g(y) \mathrm{d} x \mathrm{~d} y\right| \leq C\|f\|_{p}\|g\|_{r}, \tag{2}
\end{equation*}
$$

for all measurable functions f, g.

- The Plancherel formula, for any $f, g \in L^{2}$

$$
\int_{\mathbb{R}^{n}} \bar{f} g=\int_{\mathbb{R}^{n}} \overline{\hat{f}} \widehat{g}
$$

1. Justify (in detail) that it is enough to show (2) for $f \in C_{c}^{\infty}$.
2. Prove that there is come $C_{\alpha}>0$, such that for all $k \in \mathbb{R}^{n}$

$$
\frac{1}{|k|^{\alpha}}=C_{\alpha} \int_{0}^{\infty} e^{-\pi|k|^{2} \lambda} \lambda^{\alpha / 2-1} \mathrm{~d} \lambda
$$

3. Prove that there is some $C_{\alpha, n}>0$ such that for any $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $0<\alpha<n$, we have

$$
\left(\frac{1}{|k|^{\alpha}} \widehat{f}\right)^{\vee}(x)=C_{\alpha, n} \int_{\mathbb{R}^{n}} \frac{1}{|x-y|^{n-\alpha}} f(y) \mathrm{d} y .
$$

4. Let $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, show that

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} f g\right| & \leq\left(\int_{\mathbb{R}^{\infty}}|k|^{2}|\widehat{f}(k)|^{2}\right)^{1 / 2}\left(\int_{\mathbb{R}^{\circledR}}|k|^{-2}|\widehat{g}(k)|^{2}\right)^{1 / 2} \\
& \leq C\|\nabla f\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

for an appropriate p to be computed.
5. Justify that for any $1 \leq p<\infty$

$$
\sup _{\|g\|_{L^{p}=1}}\left|\int_{\mathbb{R}^{n}} f g\right|=\|f\|_{L^{p^{\prime}}}
$$

6. Conclude.

Ex. 4.7 (Bounded sequences in L^{p} have weak limits)
Let $1<p<\infty, \Omega \subset \mathbb{R}^{d}$ and we assume to know that $L^{p}(\Omega)$. Let $\left\{f_{n}\right\} \subset L^{p}(\Omega)$, bounded, we want to show that there exists a subsequence and $f \in L^{p}(\Omega)$, such that

$$
\begin{equation*}
f_{n^{\prime}} \underset{n \rightarrow \infty}{\rightharpoonup} f \tag{3}
\end{equation*}
$$

weakly in L^{p}

1. Let $\left\{\phi_{k}\right\} \subset L^{p}(\Omega)$ be a dense sequence. By a diagonal argument, show that there exists a subsequence $f_{n^{\prime}}$, such that for all $k \geq 1$, the sequence $\left\{\left\langle f_{n^{\prime}}, \varphi_{k}\right\rangle\right\}_{n^{\prime}}$ converges, and denote by ℓ_{k} its limit.
2. Let $g \in L^{p^{\prime}}$ show that $\left\{\left\langle f_{n^{\prime}}, g\right\rangle\right\}_{n^{\prime}}$ is convergent (where $\left\{f_{n^{\prime}}\right\}$ is the subsequence from 1.)
3. Define, for all $g \in L^{p^{\prime}}, F(g)=\lim _{n \rightarrow \infty}\left\langle f_{n^{\prime}}, g\right\rangle$ and show that there exists $f \in L^{p}$ such that $F(g)=\int f g$.
4. Conclude. What properties of L^{p} did we use ?
