Introduction to the Calculus of Variations Homework 3, due date 15.06

Ex. 1 (Banach Alaoglu for (separable) Hilbert spaces)
Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space with a Hilbert basis $\left(e_{k}\right)_{k \in \mathbb{N}}$. This means that for any $x \in \mathcal{H}$, we have

$$
x=\sum_{k \in \mathbb{N}}\left\langle e_{k}, x\right\rangle e_{k}, \quad\left\langle e_{k}, e_{j}\right\rangle=\delta_{k, j} .
$$

We want to show that if $\left\{x_{k}\right\} \subset \mathcal{H}$ is a bounded sequence, then it has an accumulation point for the weak convergence.

1. Justify that for all $k \geq 1$, the sequence of numbers $\left\{\left\langle e_{k}, x_{n}\right\rangle\right\}_{n}$ is bounded.
2. Justify that there exists $\varphi_{1}: \mathbb{N} \rightarrow \mathbb{N}$ strictly increasing such that $\left\{\left\langle e_{1}, x_{\varphi_{1}(n)}\right\rangle\right\}_{n}$ converges.
3. Justify that there exists $\varphi_{2}: \mathbb{N} \rightarrow \mathbb{N}$ strictly increasing such that $\left\{\left\langle e_{k}, x_{\varphi_{1} \circ \varphi_{2}(n)}\right\rangle\right\}_{n}$ converge for $k \in\{1,2\}$.
4. We construct by induction, $\left\{\varphi_{j}\right\}_{1 \leq j \leq k}$ strictly increasing, such that $\left\{\left\langle e_{k}, x_{\Phi_{k}(n)}\right\rangle\right\}_{n}$ converge for all $1 \leq j \leq k$, where $\Phi=\varphi_{1} \circ \cdots \circ \varphi_{k}$. Show that $\left\{x_{\Phi_{n}(n)}\right\}$ has a weak limit in \mathcal{H}. One will be careful in proving that the weak limit actually belongs to \mathcal{H}.

Ex. 2 (The dual of $L^{p}(\Omega)$, for $\left.1<p<\infty\right)$ Here we consider $\Omega \subset \mathbb{R}^{n}$ a measurable set and we will denote $L^{p}=L^{p}(\Omega, \mathbb{R})$ for $1<p<\infty$. For simplicity we consider real valued function but the proof adapts easily when \mathbb{R} is replaced by \mathbb{C}. We want to show that $\left(L^{p}\right)^{\prime}$ can be identified to $L^{p^{\prime}}$ where $1 / p+1 / p^{\prime}=1$. We assume to know that

- bounded sequences in L^{p} are precompact for the weak-convergence (meaning they have weak limits up to extracting a subsequence)
- and that L^{p} is uniformly convex, that is that for all $\varepsilon>0$, there exists $\delta>0$ such that for all $f, g \in L^{p}$, with $\|f\|_{p} \leq 1,\|g\|_{p} \leq 1$ and $\|f-g\|_{p}>\delta$ then $\|(f+g) / 2\|_{p} \leq 1-\varepsilon$.

1. Let $\Phi \in\left(L^{p}\right)^{\prime}$, that is $\Phi: L^{p} \rightarrow \mathbb{R}$, linear and bounded $\left(\sup _{f \in L^{p} \backslash\{0\}}|\Phi(f)| /\|f\|_{p}<+\infty\right)$. Define $K=\left\{f \in L^{p}, \quad \Phi(f)=0\right\}$. Show that K is a (strongly) closed and vector space.
2. Let $f \in L^{p} \backslash K$ and define $d=\inf \left\{\|f-g\|_{p}, g \in K\right\}$. Justify that $d>0$.
3. Let $\left\{f_{n}\right\} \subset K$, such that $\left\|f-f_{n}\right\|_{p} \rightarrow d$ as $n \rightarrow \infty$. Define $g_{n}=\left(f-f_{n}\right) /\left\|f-f_{n}\right\|_{p}$. Show that $\frac{1}{2}\left\|g_{n}+g_{m}\right\|_{p} \rightarrow 1$ as $n, m \rightarrow \infty$.
4. Deduce from this that $\left\{g_{n}\right\}$ is Cauchy and that there exists $f_{0} \in K$ such that $\left\|f-f_{\infty}\right\|_{p}=d$.
5. Justify that for any $g \in K, t \in[-1,1]$

$$
\int\left|f-f_{0}\right|^{p} \leq \int\left|f-f_{0}+t g\right|^{p}
$$

and show that for all $g \in K$,

$$
\int\left|f-f_{0}\right|^{p-2}\left(f-f_{0}\right) g=0
$$

6. Let $g \in L^{p}$ and denote $g=g_{1}+g_{2}$, with

$$
g_{1}=\frac{\Phi(g)}{\Phi\left(f-f_{0}\right)}\left(f-f_{0}\right),
$$

Show that $g_{2} \in K$ and deduce from it that there exits $u \in L^{p^{\prime}}$, independent of g, such that

$$
\Phi(g)=\int u g .
$$

