Introduction to the Calculus of Variations Homework 3, due date 15.06

Ex. 1 (Banach Alaoglu for (separable) Hilbert spaces)

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space with a Hilbert basis $(e_k)_{k \in \mathbb{N}}$. This means that for any $x \in \mathcal{H}$, we have

$$x = \sum_{k \in \mathbb{N}} \langle e_k, x \rangle e_k, \qquad \langle e_k, e_j \rangle = \delta_{k,j}.$$

We want to show that if $\{x_k\} \subset \mathcal{H}$ is a bounded sequence, then it has an accumulation point for the weak convergence.

- 1. Justify that for all $k \ge 1$, the sequence of numbers $\{\langle e_k, x_n \rangle\}_n$ is bounded.
- 2. Justify that there exists $\varphi_1 : \mathbb{N} \to \mathbb{N}$ strictly increasing such that $\{\langle e_1, x_{\varphi_1(n)} \rangle\}_n$ converges.
- 3. Justify that there exists $\varphi_2 : \mathbb{N} \to \mathbb{N}$ strictly increasing such that $\{\langle e_k, x_{\varphi_1 \circ \varphi_2(n)} \rangle\}_n$ converge for $k \in \{1, 2\}$.
- 4. We construct by induction, $\{\varphi_j\}_{1 \leq j \leq k}$ strictly increasing, such that $\{\langle e_k, x_{\Phi_k(n)} \rangle\}_n$ converge for all $1 \leq j \leq k$, where $\Phi = \varphi_1 \circ \cdots \circ \varphi_k$. Show that $\{x_{\Phi_n(n)}\}$ has a weak limit in \mathcal{H} . One will be careful in proving that the weak limit actually belongs to \mathcal{H} .

Ex. 2 (The dual of $L^p(\Omega)$, for $1) Here we consider <math>\Omega \subset \mathbb{R}^n$ a measurable set and we will denote $L^p = L^p(\Omega, \mathbb{R})$ for $1 . For simplicity we consider real valued function but the proof adapts easily when <math>\mathbb{R}$ is replaced by \mathbb{C} . We want to show that $(L^p)'$ can be identified to $L^{p'}$ where 1/p + 1/p' = 1. We assume to know that

- bounded sequences in L^p are precompact for the weak-convergence (meaning they have weak limits up to extracting a subsequence)
- and that L^p is uniformly convex, that is that for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $f, g \in L^p$, with $||f||_p \le 1$, $||g||_p \le 1$ and $||f g||_p > \delta$ then $||(f + g)/2||_p \le 1 \varepsilon$.
- 1. Let $\Phi \in (L^p)'$, that is $\Phi : L^p \to \mathbb{R}$, linear and bounded $(\sup_{f \in L^p \setminus \{0\}} |\Phi(f)| / ||f||_p < +\infty)$. Define $K = \{f \in L^p, \quad \Phi(f) = 0\}$. Show that K is a (strongly) closed and vector space.
- 2. Let $f \in L^p \setminus K$ and define $d = \inf\{\|f g\|_p, g \in K\}$. Justify that d > 0.
- 3. Let $\{f_n\} \subset K$, such that $||f f_n||_p \to d$ as $n \to \infty$. Define $g_n = (f f_n)/||f f_n||_p$. Show that $\frac{1}{2}||g_n + g_m||_p \to 1$ as $n, m \to \infty$.
- 4. Deduce from this that $\{g_n\}$ is Cauchy and that there exists $f_0 \in K$ such that $||f f_\infty||_p = d$.

5. Justify that for any $g \in K, t \in [-1, 1]$

$$\int |f - f_0|^p \le \int |f - f_0 + tg|^p$$

and show that for all $g \in K$,

$$\int |f - f_0|^{p-2} (f - f_0)g = 0.$$

6. Let $g \in L^p$ and denote $g = g_1 + g_2$, with

$$g_1 = \frac{\Phi(g)}{\Phi(f - f_0)}(f - f_0),$$

Show that $g_2 \in K$ and deduce from it that there exits $u \in L^{p'}$, independent of g, such that

$$\Phi(g) = \int ug.$$