Introduction to the Calculus of Variations Homework 2, due date 25.05

Ex. 1 (Geodesics on surfaces of revolution: Clairaut's invariant)
For $\theta \in \mathbb{R}$, we denote by $u_{\theta}=(\cos \theta, \sin \theta, 0), v_{\theta}=\partial_{\theta} u_{\theta}=(-\sin \theta, \cos \theta, 0)$ and $k=(0,0,1)$. Let $f, g \in C^{2}(\mathbb{R})$ and define

$$
\left\{\begin{aligned}
\sigma: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
(\theta, \lambda) & \longmapsto f(\lambda) u_{\theta}+g(\lambda) k .
\end{aligned}\right.
$$

and $\Sigma=\sigma\left(\mathbb{R}^{2}\right)$. We assume that $f \neq 0$ and $f^{\prime 2}+g^{\prime 2} \neq 0$. Let $\gamma \in C^{2}\left([0,1], \mathbb{R}^{3}\right)$ such that $\gamma(t) \in \Sigma$ for all $t \in[0,1]$, we assume that γ is parametrized by arclength (i.e. $\left\|\gamma^{\prime}\right\|=1$). The goal of this exercise is to show by two "different" ways that if γ is a geodesic on Σ then

$$
\begin{aligned}
& r(t) \cos \phi(t)=\text { constant, where } \\
& r(t)=\sqrt{\gamma_{1}(t)^{2}+\gamma_{2}(t)^{2}}, \quad \cos \phi(t)=\left\langle\gamma^{\prime}(t), v_{\theta}\right\rangle .
\end{aligned}
$$

Here we have denoted $\gamma=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$ and $\|(x, y, z)\|=\sqrt{x^{2}+y^{2}+z^{2}}$ for any $x, y, z \in \mathbb{R}$.

1. Show that there exist $\lambda, \theta \in C^{2}([0,1])$ such that

$$
\gamma(t)=f(\lambda(t)) u_{\theta(t)}+g(\lambda(t)) k, \quad \forall t \in[0,1] .
$$

We can abuse notation and write $\gamma=f(\lambda) u_{\theta}+g(\lambda) k$. In particular note that $r=f(\lambda)$.
2. Recall what it means for γ to be a geodesic of Σ (minimization problem + Lagrangian + constraint).
3. Let $X=(x, y, z) \in \Sigma$, show that $\left(\partial_{\lambda} \sigma(X), \partial_{\theta} \sigma(X)\right)$ is an orthonormal basis of $T_{X} \Sigma$, the tangent plane to Σ at X.
4. Show that the Euler-Lagrange equations of γ associated to the minimization problem in question 1. are equivalent to the system

$$
\left\{\begin{array}{l}
\left\langle\partial_{\lambda} \sigma, \gamma^{\prime \prime}\right\rangle=0, \\
\left\langle\partial_{\theta} \sigma, \gamma^{\prime \prime}\right\rangle=0 .
\end{array}\right.
$$

5. Deduce from the above that $r(t) \cos \phi(t)=$ constant.
6. Use Noether's theorem to obtain the same result from the formulation of question 1. Hint: What are the symmetries of the Lagrangian in 1. ? Is it invariant by some transformation ?

General hint: Check the course, it is often a reformulation of it.

