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Ex. 1 (Geodesics on surfaces of revolution: Clairaut’s invariant)

For θ ∈ R, we denote by uθ = (cos θ, sin θ, 0), vθ = ∂θuθ = (− sin θ, cos θ, 0) and k = (0, 0, 1).
Let f, g ∈ C2(R) and define {

σ : R2 −→ R3

(θ, λ) 7−→ f(λ)uθ + g(λ)k.

and Σ = σ(R2). We assume that f 6= 0 and f ′2 + g′2 6= 0. Let γ ∈ C2([0, 1],R3) such that γ(t) ∈ Σ
for all t ∈ [0, 1], we assume that γ is parametrized by arclength (i.e. ‖γ′‖ = 1). The goal of this
exercise is to show by two “different” ways that if γ is a geodesic on Σ then

r(t) cosφ(t) = constant, where

r(t) =
√
γ1(t)2 + γ2(t)2, cosφ(t) = 〈γ′(t), vθ〉.

Here we have denoted γ = (γ1(t), γ2(t), γ3(t)) and ‖(x, y, z)‖ =
√
x2 + y2 + z2 for any x, y, z ∈ R.

1. Show that there exist λ, θ ∈ C2([0, 1]) such that

γ(t) = f(λ(t))uθ(t) + g(λ(t))k, ∀t ∈ [0, 1].

We can abuse notation and write γ = f(λ)uθ + g(λ)k. In particular note that r = f(λ).

2. Recall what it means for γ to be a geodesic of Σ (minimization problem + Lagrangian +
constraint).

3. Let X = (x, y, z) ∈ Σ, show that (∂λσ(X), ∂θσ(X)) is an orthogonal basis of TXΣ, the
tangent plane to Σ at X.

4. Show that the Euler-Lagrange equations of γ associated to the minimization problem in
question 1. are equivalent to the system{

〈∂λσ, γ′′〉 = 0,
〈∂θσ, γ′′〉 = 0.

5. Deduce from the above that r(t) cosφ(t) = constant.

6. Use Noether’s theorem to obtain the same result from the formulation of question 1. Hint:
What are the symmetries of the Lagrangian in 1. ? Is it invariant by some transformation
?
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General hint: Check the course, it is often a reformulation of it.

Ex.1.2 (Properties of the Legendre transform)
Let f : Rn → R ∩ {+∞} and define for x∗ ∈ Rn

f∗(x∗) = sup
x∈Rn

{x∗ · x− f(x)} .

Show that

1. For all x, x∗ ∈ Rn, f(x) + f∗(x∗) ≥ x∗ · x.

2. If g : Rn → R ∩ {+∞} and g ≥ f then f∗ ≥ g∗.

3. The Legendre transform f∗ is a convex function and f∗∗ ≤ f .

4. If f is convex and C1 (therefore we assume it to be finite, i.e. to not take the value +∞),
then f(x) + f∗(∇f(x)) = x · ∇f(x) for all x ∈ Rn. Hint: one can use the inequality
f(y)− f(x) ≥ ∇f(x) · (y − x).

5. Deduce from the above that f∗∗ = f .

6. If f is strictly convex and f(x)/|x| → ∞ as |x| → ∞, then f∗ is C1.

7. If f and f∗ are C1 and if f is convex then we have the equivalence

f(x) + f∗(x∗) = x∗ · x ⇐⇒ x∗ = ∇f(x) ⇐⇒ x = ∇f∗(x∗).

Ex.1.3 (Regularity of the Hamiltonian)
Let f : [a, b]× Rn × Rn → Rn, C2 and such that

•

D2
ξf(t, u, ξ) =

(
∂2f

∂ξi∂ξj
(t, u, ξ)

)
i,j

> 0

for all t, u, ξ ∈ [a, b]× Rn × Rn.

• there exist ω, g continuous, ω ≥ 0, such that ω(θ)/θ →∞ as θ →∞ and such that

(t, u, ξ) ≥ ω(|ξ|) + g(x, u)

for all t, u, ξ ∈ [a, b]× Rn × Rn.

For all t, u ∈ [a, b]× Rn define

H(t, u, p) = sup
ξ∈Rn

{ξ · v − f(t, u, ξ)} .

Show that

1. Show that for all t, u ∈ [a, b]× Rn there exists a unique ξ(t, u, p) such that

H(t, u, p) = ξ(t, u, p) · v − f(t, u, ξ(t, u, p))

and that ξ ∈ C1([a, b]× Rn × Rn). Hint: Implicit function theorem.
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2. Deduce from this that H is in fact C2.

Ex.1.4 (Condition for Euler-Lagrange solutions to be minimizers)
Assume the same hypotheses as in Ex. 1.3 and moreover that there is a solution S ∈ C2(R ×

Rn × R3) to the Hamilton-Jacobi equation

∂tS(t, u) +H(t, u,∇uS(t, u)) = 0, ∀(t, u) ∈ R× Rn,

and some u0 satisfying

u′0(t) = −∇vH(t, u0(t),∇qS(t, u0(t))), ∀t ∈ [a, b].

1. Show that u0 satisfies the Euler-Lagrange equation associated to f , that is

d

dt
∇ξf(t, u0, u

′
0) = ∇uf(t, u0, u

′
0).

2. Show that for all u ∈ C2([a, b],Rn), it holds that

d

dt
S(t, u(t)) ≤ f(t, u(t), u′(t)).

3. Conclude that for all u ∈ C2([a, b],Rn) with u(a) = u0(a) and u(b)− u0(b), it holds that∫ b

a
f(t, u(t), u′(t))dt ≥

∫ b

a
f(t, u0(t), u′0(t))dt.

Ex.1.4 (Damped harmonic oscillator)
Consider the Hamiltonian

H(t, q, p) =
1

2m
p2e−Γt +

m

2
ω2

0q
2eΓt

for some m,ω0,Γ > 0.

1. Consider the generating function S(t, q,Q) = eΓt/2qQ. Compute the associated the new
coordinates (Q,P ) and show that the new Hamiltonian in this system of coordinates is

H̃(t, Q, P ) =
1

2m
Q2 +mω2

0P
2 +

Γ

2
QP.

2. What remarkable property does H̃ satisfy ? Look for a solution to the Hamilton-Jacobi
equation of the form

S̃(Q,α) = ψ(Q,α)− αt

and solve the Hamiltonian dynamics of H̃. One may distinguish different cases depending
on the relative values of the parameters m,ω0 and Γ.

3. Deduce from the above the form of solutions to the Hamiltonian equations associated to H.


