Introduction to the Calculus of Variations
 Exercise sheet 1

Ex. 1 (Geodesics on surfaces of revolution: Clairaut's invariant)
For $\theta \in \mathbb{R}$, we denote by $u_{\theta}=(\cos \theta, \sin \theta, 0), v_{\theta}=\partial_{\theta} u_{\theta}=(-\sin \theta, \cos \theta, 0)$ and $k=(0,0,1)$. Let $f, g \in C^{2}(\mathbb{R})$ and define

$$
\left\{\begin{aligned}
\sigma: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
(\theta, \lambda) & \longmapsto f(\lambda) u_{\theta}+g(\lambda) k
\end{aligned}\right.
$$

and $\Sigma=\sigma\left(\mathbb{R}^{2}\right)$. We assume that $f \neq 0$ and $f^{\prime 2}+g^{\prime 2} \neq 0$. Let $\gamma \in C^{2}\left([0,1], \mathbb{R}^{3}\right)$ such that $\gamma(t) \in \Sigma$ for all $t \in[0,1]$, we assume that γ is parametrized by arclength (i.e. $\left\|\gamma^{\prime}\right\|=1$). The goal of this exercise is to show by two "different" ways that if γ is a geodesic on Σ then

$$
\begin{aligned}
& r(t) \cos \phi(t)=\text { constant, where } \\
& r(t)=\sqrt{\gamma_{1}(t)^{2}+\gamma_{2}(t)^{2}}, \quad \cos \phi(t)=\left\langle\gamma^{\prime}(t), v_{\theta}\right\rangle .
\end{aligned}
$$

Here we have denoted $\gamma=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$ and $\|(x, y, z)\|=\sqrt{x^{2}+y^{2}+z^{2}}$ for any $x, y, z \in \mathbb{R}$.

1. Show that there exist $\lambda, \theta \in C^{2}([0,1])$ such that

$$
\gamma(t)=f(\lambda(t)) u_{\theta(t)}+g(\lambda(t)) k, \quad \forall t \in[0,1]
$$

We can abuse notation and write $\gamma=f(\lambda) u_{\theta}+g(\lambda) k$. In particular note that $r=f(\lambda)$.
2. Recall what it means for γ to be a geodesic of Σ (minimization problem + Lagrangian + constraint).
3. Let $X=(x, y, z) \in \Sigma$, show that $\left(\partial_{\lambda} \sigma(X), \partial_{\theta} \sigma(X)\right)$ is an orthogonal basis of $T_{X} \Sigma$, the tangent plane to Σ at X.
4. Show that the Euler-Lagrange equations of γ associated to the minimization problem in question 1. are equivalent to the system

$$
\left\{\begin{array}{l}
\left\langle\partial_{\lambda} \sigma, \gamma^{\prime \prime}\right\rangle=0 \\
\left\langle\partial_{\theta} \sigma, \gamma^{\prime \prime}\right\rangle=0
\end{array}\right.
$$

5. Deduce from the above that $r(t) \cos \phi(t)=$ constant.
6. Use Noether's theorem to obtain the same result from the formulation of question 1. Hint: What are the symmetries of the Lagrangian in 1. ? Is it invariant by some transformation ?

General hint: Check the course, it is often a reformulation of it.
Ex.1.2 (Properties of the Legendre transform)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cap\{+\infty\}$ and define for $x^{*} \in \mathbb{R}^{n}$

$$
f^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{n}}\left\{x^{*} \cdot x-f(x)\right\} .
$$

Show that

1. For all $x, x^{*} \in \mathbb{R}^{n}, f(x)+f^{*}\left(x^{*}\right) \geq x^{*} \cdot x$.
2. If $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cap\{+\infty\}$ and $g \geq f$ then $f^{*} \geq g^{*}$.
3. The Legendre transform f^{*} is a convex function and $f^{* *} \leq f$.
4. If f is convex and C^{1} (therefore we assume it to be finite, i.e. to not take the value $+\infty$), then $f(x)+f^{*}(\nabla f(x))=x \cdot \nabla f(x)$ for all $x \in \mathbb{R}^{n}$. Hint: one can use the inequality $f(y)-f(x) \geq \nabla f(x) \cdot(y-x)$.
5. Deduce from the above that $f^{* *}=f$.
6. If f is strictly convex and $f(x) /|x| \rightarrow \infty$ as $|x| \rightarrow \infty$, then f^{*} is C^{1}.
7. If f and f^{*} are C^{1} and if f is convex then we have the equivalence

$$
f(x)+f^{*}\left(x^{*}\right)=x^{*} \cdot x \Longleftrightarrow x^{*}=\nabla f(x) \Longleftrightarrow x=\nabla f^{*}\left(x^{*}\right)
$$

Ex.1.3 (Regularity of the Hamiltonian)
Let $f:[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, C^{2}$ and such that

$$
D_{\xi}^{2} f(t, u, \xi)=\left(\frac{\partial^{2} f}{\partial \xi_{i} \partial \xi_{j}}(t, u, \xi)\right)_{i, j}>0
$$

for all $t, u, \xi \in[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n}$.

- there exist ω, g continuous, $\omega \geq 0$, such that $\omega(\theta) / \theta \rightarrow \infty$ as $\theta \rightarrow \infty$ and such that

$$
(t, u, \xi) \geq \omega(|\xi|)+g(x, u)
$$

for all $t, u, \xi \in[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n}$.
For all $t, u \in[a, b] \times \mathbb{R}^{n}$ define

$$
H(t, u, p)=\sup _{\xi \in \mathbb{R}^{n}}\{\xi \cdot v-f(t, u, \xi)\} .
$$

Show that

1. Show that for all $t, u \in[a, b] \times \mathbb{R}^{n}$ there exists a unique $\xi(t, u, p)$ such that

$$
H(t, u, p)=\xi(t, u, p) \cdot v-f(t, u, \xi(t, u, p))
$$

and that $\xi \in C^{1}\left([a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Hint: Implicit function theorem.
2. Deduce from this that H is in fact C^{2}.

Ex.1.4 (Condition for Euler-Lagrange solutions to be minimizers)
Assume the same hypotheses as in Ex. 1.3 and moreover that there is a solution $S \in C^{2}(\mathbb{R} \times$ $\mathbb{R}^{n} \times \mathbb{R}^{3}$) to the Hamilton-Jacobi equation

$$
\partial_{t} S(t, u)+H\left(t, u, \nabla_{u} S(t, u)\right)=0, \quad \forall(t, u) \in \mathbb{R} \times \mathbb{R}^{n},
$$

and some u_{0} satisfying

$$
u_{0}^{\prime}(t)=-\nabla_{v} H\left(t, u_{0}(t), \nabla_{q} S\left(t, u_{0}(t)\right)\right), \quad \forall t \in[a, b] .
$$

1. Show that u_{0} satisfies the Euler-Lagrange equation associated to f, that is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \nabla_{\xi} f\left(t, u_{0}, u_{0}^{\prime}\right)=\nabla_{u} f\left(t, u_{0}, u_{0}^{\prime}\right)
$$

2. Show that for all $u \in C^{2}\left([a, b], \mathbb{R}^{n}\right)$, it holds that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S(t, u(t)) \leq f\left(t, u(t), u^{\prime}(t)\right)
$$

3. Conclude that for all $u \in C^{2}\left([a, b], \mathbb{R}^{n}\right)$ with $u(a)=u_{0}(a)$ and $u(b)-u_{0}(b)$, it holds that

$$
\int_{a}^{b} f\left(t, u(t), u^{\prime}(t)\right) \mathrm{d} t \geq \int_{a}^{b} f\left(t, u_{0}(t), u_{0}^{\prime}(t)\right) \mathrm{d} t
$$

Ex.1.4 (Damped harmonic oscillator)

Consider the Hamiltonian

$$
H(t, q, p)=\frac{1}{2 m} p^{2} e^{-\Gamma t}+\frac{m}{2} \omega_{0}^{2} q^{2} e^{\Gamma t}
$$

for some $m, \omega_{0}, \Gamma>0$.

1. Consider the generating function $S(t, q, Q)=e^{\Gamma t / 2} q Q$. Compute the associated the new coordinates (Q, P) and show that the new Hamiltonian in this system of coordinates is

$$
\widetilde{H}(t, Q, P)=\frac{1}{2 m} Q^{2}+m \omega_{0}^{2} P^{2}+\frac{\Gamma}{2} Q P .
$$

2. What remarkable property does \widetilde{H} satisfy ? Look for a solution to the Hamilton-Jacobi equation of the form

$$
\widetilde{S}(Q, \alpha)=\psi(Q, \alpha)-\alpha t
$$

and solve the Hamiltonian dynamics of \widetilde{H}. One may distinguish different cases depending on the relative values of the parameters m, ω_{0} and Γ.
3. Deduce from the above the form of solutions to the Hamiltonian equations associated to H.

