Introduction to the Calculus of Variations Exercise sheet 1: Homework, due date 02.05

Ex. 1 (Implicit function theorem)

Let $f : \mathbb{R}^2 \to \mathbb{R}$, C^1 and such that f(0,0) = 0 and $\partial_y f(0,0) \neq 0$. We want to prove that there exist $\varepsilon > 0$ and a C^1 function $\varphi :] - \varepsilon, \varepsilon [\rightarrow] - \varepsilon, \varepsilon [$ such that for all $x, y \in] - \varepsilon, \varepsilon [$

$$f(x,y) = 0 \iff y = \varphi(x)$$

Without loss of generality, we assume $\partial_y f(0,0) > 0$.

- 1. Show that there exists $\varepsilon > 0$, such that for all $x \in [-\varepsilon, \varepsilon], [-\varepsilon, \varepsilon] \ni y \mapsto f(x, y)$ is strictly increasing.
- 2. Deduce that for all $x \in [-\varepsilon, \varepsilon]$, there exists a unique $\varphi(x) \in [-\varepsilon, \varepsilon]$ such that f(x, y) = 0 if and only if $y = \varphi(x)$.
- 3. Using a Taylor expansion of f around (0,0), show that φ is differentiable at 0.
- 4. Show that it is in fact differentiable on $] \varepsilon, \varepsilon[$ and C^1 on this set.
- 5. (bonus) Generalize the theorem for $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, for $n, m \ge 0$. Explain briefly the proof and the differences with the case n = m = 1.

Ex.2 (Weierstrass example)

Let $f(x,\xi) = x\xi^2$ for $x, \xi \in \mathbb{R}$ and consider for $\varepsilon \in [0,1)$

$$(P_{\varepsilon}) \qquad m_{\varepsilon} = \inf_{u \in X} \left\{ I(u) := \int_{\varepsilon}^{1} f(x, u'(x)) dx \right\},\$$
$$X = \left\{ u \in C^{1}([0, 1]), \quad u(\varepsilon) = 1, u(1) = 0 \right\}.$$

- 1. Show that for $\varepsilon \in (0,1)$ there is a unique minimizer of (P) in C^2 .
- 2. Show that for $\varepsilon = 0$ there is no minimizer of (P) in $X \cap C^2$.
- 3. Find a sequence $\{u_n\} \subset C_p^1$ (piecewise C^1) such that $u_n(0) = 1, u_n(1) = 0$ and $I(u_n) \to 0$ as $n \to \infty$.
- 4. Show that $m_0 = 0$ and that there is therefore no minimizer of (P) in X.