Introduction to the Calculus of Variations
 Exercise sheet 1: Homework, due date 02.05

Ex. 1 (Implicit function theorem)
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, C^{1}$ and such that $f(0,0)=0$ and $\partial_{y} f(0,0) \neq 0$. We want to prove that there exist $\varepsilon>0$ and a C^{1} function $\left.\varphi:\right]-\varepsilon, \varepsilon[\rightarrow]-\varepsilon, \varepsilon[$ such that for all $x, y \in]-\varepsilon, \varepsilon[$

$$
f(x, y)=0 \Longleftrightarrow y=\varphi(x)
$$

Without loss of generality, we assume $\partial_{y} f(0,0)>0$.

1. Show that there exists $\varepsilon>0$, such that for all $x \in[-\varepsilon, \varepsilon],[-\varepsilon, \varepsilon] \ni y \mapsto f(x, y)$ is strictly increasing.
2. Deduce that for all $x \in[-\varepsilon, \varepsilon]$, there exists a unique $\varphi(x) \in[-\varepsilon, \varepsilon]$ such that $f(x, y)=0$ if and only if $y=\varphi(x)$.
3. Using a Taylor expansion of f around $(0,0)$, show that φ is differentiable at 0 .
4. Show that it is in fact differentiable on $]-\varepsilon, \varepsilon\left[\right.$ and C^{1} on this set.
5. (bonus) Generalize the theorem for $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, for $n, m \geq 0$. Explain briefly the proof and the differences with the case $n=m=1$.

Ex. 2 (Weierstrass example)
Let $f(x, \xi)=x \xi^{2}$ for $x, \xi \in \mathbb{R}$ and consider for $\varepsilon \in[0,1)$

$$
\begin{aligned}
& \left(P_{\varepsilon}\right) \quad m_{\varepsilon}=\inf _{u \in X}\left\{I(u):=\int_{\varepsilon}^{1} f\left(x, u^{\prime}(x)\right) \mathrm{d} x\right\}, \\
& X=\left\{u \in C^{1}([0,1]), \quad u(\varepsilon)=1, u(1)=0\right\} .
\end{aligned}
$$

1. Show that for $\varepsilon \in(0,1)$ there is a unique minimizer of (P) in C^{2}.
2. Show that for $\varepsilon=0$ there is no minimizer of (P) in $X \cap C^{2}$.
3. Find a sequence $\left\{u_{n}\right\} \subset C_{p}^{1}$ (piecewise C^{1}) such that $u_{n}(0)=1, u_{n}(1)=0$ and $I\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
4. Show that $m_{0}=0$ and that there is therefore no minimizer of (P) in X.
