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Ex.1.1 (Properties of convex functions) Let f : C2(Rn) → R, show that the following assertions
are equivalent.

1. For all x, y ∈ Rn and 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

2. For all x, y ∈ Rn,

f(x) ≥ f(y) + 〈∇f(y), x− y〉.

3. For all x, y ∈ Rn,

〈∇f(x)−∇f(y), x− y〉 ≥ 0

4. For all x, v ∈ Rn,

〈∇2f(x)v, v〉 ≥ 0.

Ex.1.2 (Implicit function theorem)
Let f : R2 → R, C1 and such that f(0, 0) = 0 and ∂yf(0, 0) 6= 0. We want to prove that there

exist ε > 0 and a C1 function ϕ :]− ε, ε[→]− ε, ε[ such that for all x, y ∈]− ε, ε[

f(x, y) = 0 ⇐⇒ y = ϕ(x).

Without loss of generality, we assume ∂yf(0, 0) > 0.

1. Show that there exists ε > 0, such that for all x ∈ [−ε, ε], [−ε, ε] 3 y 7→ f(x, y) is strictly
increasing.

2. Deduce that for all x ∈ [−ε, ε], there exists a unique ϕ(x) ∈ [−ε, ε] such that f(x, y) = 0 if
and only if y = ϕ(x).

3. Using a Taylor expansion of f around (0, 0), show that ϕ is differentiable at 0.

4. Show that it is in fact differentiable on ]− ε, ε[ and C1 on this set.

Ex.1.3 (Weierstrass example)
Let f(x, ξ) = xξ2 for x, ξ ∈ R and consider, for ε ∈ [0, 1),

(Pε) mε = inf
u∈X

{
I(u) :=

∫ 1

ε
f(x, u′(x))dx

}
,

Xε =
{
u ∈ C1([0, 1]), u(ε) = 1, u(1) = 0

}
.



2

1. Show that for ε ∈ (0, 1) there is a unique minimizer of (P ) in C2 ∩Xε.

2. Show that for ε = 0 there is no minimizer of (P ) in X0 ∩ C2.

3. Find a sequence {un} ⊂ C1
p (piecewise C1) such that un(0) = 1, un(1) = 0 and I(un)→ 0 as

n→∞.

4. Show that m0 = 0 and that there is therefore no minimizer of (P ) in X.

Ex.1.4 (Lagrange multipliers: finite dimensional case)

Let n ≥ 1, Ω ⊂ Rn open and f, g : Ω→ Rn C1 functions. Assume that

• f has a local minimum at x0 ∈ Ω subject to the condition g(x) = 0, that is

∃ε > 0, |x− x0| ≤ ε and g(x) = 0 =⇒ f(x) ≥ f(x0).

• ∇g(x0) 6= 0.

Show that there exists λ ∈ R such that

∇f(x0) = λ∇g(x0).

Hint: Adapt the proof of the theorem from the lecture with the isoperimetrical constraint.

Ex.1.5 (Lagrange multipliers: application) Let A ∈Mn(R) be a non-negative matrix A ≥ 0 (that
is 〈x,Ax〉 ≥ 0 for all x ∈ Rn). Define

m := inf
x∈X
{I(u) = 〈x,Ax〉} ,

X = {x ∈ Rn, such that ‖x‖ = 1} .

Using the implicit function theorem, prove that the minimization problem has a solution x0 and
that x0 is en eigenvector of A with eigenvalue m.

Ex.1.6 (Geodesics of the Euclidean space are straight lines)

Show that the geodesics (path of minimum distance between two points) of the Euclidean space
are straight lines (at least among C1 paths).

Hint: For a C2 path γ : [0, 1]→ Rn, for some n ≥ 1, defines the length of γ, L(γ), and compute
the Euler–Lagrange equation.

Ex.1.7 (Geodesics of the cylinder are helices)

Consider Σ = {(x, y, z) ∈ R3, |z| = 1}.

1. Show that the geodesics on Σ are helices, that is they can be parametrized by γ(t) =
(cos(ωt), sin(ωt), αt+ β) for some ω, α, β ∈ R.

Hint: There are always many ways to parametrize a path, a smart way is to pick one
parametrized by arclength, that is |γ′(s)| = 1 for all s.

2. What is the shortest path on Σ from (1, 0, 0) to (1, 0, 1)?
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Ex.1.8 (Lagrangian formalism)
Let n ≥ 1, V : Rn → R be C2 and define f(t, u, ξ) = 1

2mξ
2 − V (u), for u, ξ ∈ Rn. For some

X0, X1 ∈ Rn, consider the minimization problem

(P ) m = inf
u∈X

{
I(u) :=

∫ 1

0
f(t, u(t), u′(t))dt

}
,

X =
{
u ∈ C1([0, 1]), u(0) = X0, u(1) = X1

}
.

Assume that u0 : [0, 1]→ Rn is C2 and solves the above minimization problem.

1. Show that the energy H(u, ξ) = 1
2mξ

2 + V (u) is preserved along the trajectory u0.

2. Show that u0 satisfies Newton’s principle, that is

mu′′ = F (u)

where F : Rn → Rn is a function to be determined in terms of V .

In this setting f is called the Lagrangian of the system and I the action. The formalism of
Lagrange is, to some extent, equivalent to the ones of Newton and Hamilton.

Ex.1.9 (Fermat’s principle)
A light beam goes from (0, 1) ∈ R2 to (1,−1) ∈ R2. In the upper half plane {y > 0}, the

speed of light is c/n1 and c/n2 in the lower half plane {y < 0}, for some indices n1, n2 ≥ 1. The
trajectory of light follows the path of shortest time. Show that when it crosses the plane {y = 0},
we have n1 sin θ1 = n2 sin θ2 where we have denoted by θ1 and θ2 the angles of incidence.


