ADVANCED ANALYSIS

Exercise sheet 8 - 22.12.2022

Ex.1.1 (Partial integration)
Let $v \in H^{1}\left(\mathbb{R}^{n}\right)$, real valued and assume that $-\Delta v=f+g$, with $0 \geq f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{2}\left(\mathbb{R}^{n}\right)$. We want to show that

- for all $u \in H^{1}\left(\mathbb{R}^{n}\right), u(\Delta v) \in L^{1}\left(\mathbb{R}^{n}\right)$
-

$$
\begin{equation*}
-\int_{\mathbb{R}^{n}} u \Delta v=\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v \tag{1}
\end{equation*}
$$

We assume that we already know that if $u \in H^{1}\left(\mathbb{R}^{n}\right)$ and $u(-\Delta v) \in L^{1}$ then (1) holds.

1. Justify that it is enough to prove it for u real and non-negative.
2. Assume that $u \geq 0$. Let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ sucht that $\chi \equiv 1$ on $B(0,1)$ and $\chi \equiv 0$ on $B(0,2)^{c}$ and define

$$
u_{j}(x)=\chi(x / i) \min (u(x), j) .
$$

Show that $u_{j} \in H^{1}\left(\mathbb{R}^{n}\right)$ and that $u_{j} \rightarrow u$ in $H^{1}\left(\mathbb{R}^{n}\right)$ when $j \rightarrow \infty$.
3. Explain why (1) is true for u replaced by u_{j}.
4. Justify (= give a reason or theorem and check its assumptions are satisfied) that
(a) $\int \nabla u_{j} \cdot \nabla v \underset{j \rightarrow \infty}{\longrightarrow} \int \nabla u \cdot \nabla v$
(b) $\int u_{j} f \underset{j \rightarrow \infty}{\longrightarrow} \int u f$ (careful here)
(c) $\int u_{j} g \underset{j \rightarrow \infty}{\longrightarrow} \int u g$
5. Explain why $u(-\Delta v) \in L^{1}\left(\mathbb{R}^{n}\right)$ and conlcude.

Ex.1.2

Let $\Omega=\mathbb{R}^{n} \backslash\{0\}$ and define for $\phi \in D(\Omega)$,

$$
T(\phi)=\int_{\mathbb{R}^{n}} \frac{\phi(x)}{|x|^{n}} \mathrm{~d} x .
$$

1. Show that $T \in D^{\prime}(\Omega)$.
2. Find a distribution $\widetilde{T} \in D^{\prime}\left(\mathbb{R}^{n}\right)$ such that $\widetilde{T}(\phi)=T(\phi)$ for all $\phi \in D(\Omega)$. Hint: one could consider changing the numerator in $\phi(x) /|x|^{n}$ to remove the divergence at 0 .
3. Using Theorem 6.14 in the Lieb-Loss, characterize all such $\widetilde{T} \in D\left(\mathbb{R}^{n}\right)$ that coincides with T on $D(\Omega)$.

Theorem 6.14
Let $\overline{T, S_{1}, \ldots, S_{N}} \in D^{\prime}(\Omega)$ such that

$$
\bigcap_{i=1}^{N} \mathcal{N}_{S_{i}} \subset \mathcal{N}_{T}
$$

Then, there are $c_{1}, \ldots, c_{N} \in \mathbb{C}$ such that

$$
\begin{equation*}
T=\sum_{i=1}^{N} c_{i} S_{i} . \tag{2}
\end{equation*}
$$

Ex.1.3

Let $\left(f_{j}\right) \subset H^{1}\left(\mathbb{R}^{n}\right)$ such that $f_{j} \rightharpoonup f$ in $L^{2}\left(\mathbb{R}^{n}\right)$ and $\nabla f_{j} \rightharpoonup g_{i}$ in $L^{2}\left(\mathbb{R}^{n}\right)(\rightharpoonup$ means weakly $)$.

1. Recall what $f_{j} \rightharpoonup f$ in L^{2} and $\nabla f_{j} \rightharpoonup g_{i}$ in $L^{2}\left(\mathbb{R}^{n}\right)$ means.
2. Show that $f \in H^{1}\left(\mathbb{R}^{3}\right)$ and that $\nabla f=g$ in the distributional sense.

Ex.1.4

Let $f \in H^{1}\left(\mathbb{R}^{n}\right)$. We want to show that for $1 \leq j \leq n$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\partial_{j} f\right|^{2}=\lim _{t \rightarrow 0} \frac{1}{t^{2}} \int_{\mathbb{R}^{n}}\left|f\left(x+t \mathbf{e}_{j}\right)-f(x)\right|^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

1. Justify that $\widehat{\partial_{j} f}$ makes sense and is in $L^{2}\left(\mathbb{R}^{n}\right)$. Rewrite

$$
\int_{\mathbb{R}^{n}}\left|\widehat{\partial_{j} f}\right|^{2}
$$

in two ways.
2. Denote $g(x)=f\left(x+t \mathbf{e}_{\mathbf{j}}\right)$. Justify that \widehat{g} makes sens and is in $L^{2}\left(\mathbb{R}^{n}\right)$. Compute $\widehat{g}(k)$ for $k \in \mathbb{R}^{n}$.
3. Using the Plancherel formula, rewrite

$$
\int_{\mathbb{R}^{n}}\left|f\left(x+t \mathbf{e}_{j}\right)-f(x)\right|^{2} \mathrm{~d} x .
$$

in terms of \widehat{f}.
4. Show the limit (3) (give rigorous arguments, if you use a theorem, check the assumptions are satisfied).

