ADVANCED ANALYSIS Exercise sheet 6 – 8.12.2022

Let $\Omega \subset \mathbb{R}^n$ be an open set.

Ex.1.1 (Some examples of distributions)

- 1. Let $\Omega = (-1, 1)$, and let f(x) = |x|. Compute the derivative of f in the distributional sense. What can you tell on f?
- 2. Same question for $g(x) = \operatorname{sign}(x)$.

Ex.1.2 (Functions are uniquely determined by distributions) Recall that for $f \in L^1_{loc}(\Omega)$, we define the distribution $T \in D'(\Omega)$ by

$$T_f(\phi) = \int f\phi$$

for any $\phi \in D(\Omega)$. Prove that if $f, g \in L^1_{\text{loc}}(\Omega)$ and $T_f = T_g$ then f = g.

Ex.1.3(Distributions with zero derivatives are constants)

Let $T \in D'(\Omega)$ and assume Ω to be connected. Show that if $\partial_i T = 0$ in $D'(\Omega)$ for all $1 \le i \le n$, then T = C for some constant C.

Ex.1.4(Multiplication by C^{∞} and convolution with C_c^{∞}) Let $T \in D'(\Omega)$, show that

- 1. for any $\psi \in C^{\infty}(\Omega)$, $T_{\psi}(\phi) := T(\psi\phi)$, for all $\phi \in D(\Omega)$, defines a distribution.
- 2. for any $j \in C_c^{\infty}(\Omega)$, $j * T := T(j_R * \phi)$, for all $\phi \in D(\Omega)$ and where $j_R(x) = j(-x)$, defines a distribution.

Ex.1.6(The null space of a distribution is of codimension 1) For any $T \in D'(\Omega)$ define

$$\mathcal{N}_T = \{ \phi \in D(\Omega), \, T(\phi) = 0 \}.$$

Show that there exists $\phi_0 \in D(\Omega)$, such that all $\phi \in D(\Omega)$ can be decomposed

$$\phi = \lambda \phi_0 + \psi_T$$

for some $\lambda \in \mathbb{C}$ and $\psi_T \in \mathcal{N}_T$.

Ex.1.6(Lagrange multipliers for distributions)

Let $T, S_1, \ldots, S_N \in D'(\Omega)$ such that

$$\bigcap_{i=1}^N \mathcal{N}_{S_i} \subset \mathcal{N}_T.$$

We want to show that there are $c_1, \ldots, c_N \in \mathbb{C}$ such that

$$T = \sum_{i=1}^{N} c_i S_i. \tag{1}$$

- 1. Justify why it is enough to assume that $(S_i)_i$ is linearly independent.
- 2. For $\phi \in D(\Omega)$ denote $\underline{S}(\phi) = (S_1(\phi), \dots, S_N(\phi))$

$$V = \{ \underline{S}(\phi), \phi \in D(\Omega) \}.$$

Show that V is a vector space of dimension N.

- 3. Show that there are some $u_1, \ldots, u_N \in D(\Omega)$, such that $\underline{S}(u_1), \ldots, \underline{S}(u_N)$ are linearly independent and therefore span V.
- 4. Deduce from this that the matrix whose coefficients are $M_{i,j} = S_i(u_j)$ is invertible.
- 5. For any $\phi \in D(\Omega)$, denote

$$\lambda_i(\phi) = \sum_{j=1}^N (M^{-1})_{i,j} S_j(\phi)$$

and check that

$$\phi - \sum_{i=1}^N \lambda_i(\phi) u_i \in \bigcap_{i=1}^N \mathcal{N}_{S_i}.$$

6. Prove that (1) holds for some $c_1, \ldots, c_N \in \mathbb{C}$.

Ex.1.7 $(C^{\infty}(\Omega)$ is dense in $W^{1,p}_{\text{loc}}(\Omega)$). Let $f \in W^{1,p}_{\text{loc}}(\Omega)$. Let $\mathcal{O} \subset K \subset \Omega$ with \mathcal{O} open and K compact. Show that there is a sequence $\{f_k\} \subset C^{\infty}(\mathcal{O})$ such that

$$f_k \xrightarrow[k \to \infty]{} f$$
 strongly in $W^{1,p}(\mathcal{O})$.