ADVANCED ANALYSIS Exercise sheet 5 – 1.12.2022

Ex.1.1 (Elementary of properties of the Fourier transform)

Let f be a function in $L^1(\mathbb{R}^n)$ and denote by \widehat{f} its Fourier transform. Prove that

1. the map $f \to \hat{f}$ is linear in f,

2.
$$\widehat{\tau_h f}(k) = e^{-2\pi i(k,h)} \widehat{f}(k), h \in \mathbb{R}^n$$

3.
$$\widehat{\delta_{\lambda}f}(k) = \lambda^n \widehat{f}(\lambda k) \ \lambda > 0,$$

where τ_h is the translation operator, i.e., $(\tau_h f)(x) = f(x-h)$, and δ_λ is the scaling operator such that $(\delta_\lambda f)(x) = f(x/\lambda)$.

Ex.1.2 (Fourier transforms of L^1 functions vanish at infinity)

Let $f \in L^1(\mathbb{R}^n)$ and let \widehat{f} be its Fourier transform. Prove that $\widehat{f}(k) \to 0$ as $|k| \to \infty$.

Ex.1.3(The Hausdorff-Young inequality)

Let $1 \leq p, q \leq \infty$ and $C_{p,q} > 0$ such that for any $f \in L^1 \cap L^p$ we have

$$\|\widehat{f}\|_q \le C_{p,q} \|f\|_p.$$

Show that

$$\frac{1}{p} + \frac{1}{q} = 1$$

Ex.1.4(Fourier transform and convolutions)

Let $1 \le p, q, r \le 2$ such that $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Show that for any $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, we have

$$\widehat{f \ast g} = \widehat{f}\widehat{g}$$

Hint: One essentially needs to make sure that all quantities make sense.

Ex.1.5(Fourier transform of $|x|^{\alpha-n}$)

Prove that there is some $C_{\alpha,n} > 0$ such that for any $f \in C_c^{\infty}(\mathbb{R}^n)$ and $0 < \alpha < n$, we have

$$\left(\frac{1}{|k|^{\alpha}}\widehat{f}\right)^{\vee}(x) = C_{\alpha,n} \int_{\mathbb{R}^n} \frac{1}{|x-y|^{n-\alpha}} f(y) \mathrm{d}y$$

Hint: One can use that there is some $C_{\alpha} > 0$ such that for any $k \in \mathbb{R}^n$

$$\frac{1}{|k|^{\alpha}} = C_{\alpha} > 0 \int_0^{\infty} e^{-\pi |k|^2 \lambda} \lambda^{\alpha/2 - 1} \mathrm{d}\lambda.$$

Ex.1.6(Derivatives of distributions are distributions)

Let $T \in D'(\Omega)$, recall that for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, $D^{\alpha}T(\phi)$ is defined by

$$D^{\alpha}T(\phi) = (-1)^{|\alpha|}T(D^{\alpha}\phi)$$

for all $\phi \in D(\Omega)$, where $|\alpha| = \sum_{k=1}^{n} \alpha_k$.

- 1. Show that $D^{\alpha}T \in D'(\Omega)$.
- 2. Show that if $T = T_f$ for some $f \in C^{\infty}$, we have

$$D^{\alpha}T_f = T_{D^{\alpha}f}.$$