ADVANCED ANALYSIS

Exercise sheet $3-16.11 .2022$

Ex.1.1 (The dual of L^{1})
We assume known that $L^{p}(\Omega)^{*}=L^{p^{\prime}}(\Omega)$ for $1<p<\infty$, in the sense that for any $L \in L^{p}$ there is some $g \in L^{p^{\prime}}$ such that $L(f)=\int g f$ for all $f \in L^{p}$. We want to prove the same thing for $p=1$ when μ is σ-finite.

Let $L \in L^{1}(\Omega)^{*}$.

1. Assume for the moment $\mu(\Omega)<\infty$. Prove that for all $p \geq 1$, there is $g_{p} \in L^{p^{\prime}}$ such that $L(f)=\int g_{p} f$ for all $f \in L^{p}(\Omega)$.
2. Prove that g_{p} is independent of p, we will denote $g:=g$.
3. Prove that there is some $C>0$ such that for all $p \geq 1$,

$$
\|g\|_{p} \leq C \mu(\Omega)^{1 / q}
$$

4. Prove that $g \in L^{\infty}$ and that $\|g\|_{L^{\infty}} \leq C$.
5. Prove that for $f \in L^{1}$, we have

$$
\begin{equation*}
L(f)=\int g f \tag{1}
\end{equation*}
$$

6. We know release the assumption $\mu(\Omega)<\infty$ and use the σ-finiteness of μ. Prove that there exists some $g \in L^{\infty}$ such that (1) holds.

Ex.1.2

Consider $L^{1}\left(\mathbb{R},\left(1+x^{2}\right) \mathrm{d} x\right)\left(\mathrm{d} m u(x)=\left(1+x^{2}\right) \mathrm{d} x\right)$ and

$$
K=\left\{g \in L^{1}\left(\mathbb{R},\left(1+x^{2}\right) \mathrm{d} x\right) \int g=1\right\}
$$

1. Prove that K is closed and convex.
2. Prove that the distance from K to $f=0$ is not attained.

Ex.1.3 (Convolutions) Let us take $\Omega=\mathbb{R}^{n}$ and $d \mu(x)=\mathrm{d} x$.

1. Let $f \in L^{p}$ and $g \in L^{q}$ with $\frac{1}{p}+\frac{1}{q}=1$. Prove that for all $\varepsilon>0$, there is some $R_{\varepsilon}>0$ such that

$$
\sup _{|x|>R_{\varepsilon}}|f * g(x)|<\varepsilon
$$

2. Let $f \in L^{p}, g \in L^{q}$ and $h \in L^{r}$ with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$, show that

$$
\left|\int f g h\right| \leq\|f\|_{p}\|g\|_{q}\|h\|_{r} .
$$

3. Let $f \in L^{p}, g \in L^{q}$ and $h \in L^{r}$ with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2$, show that

$$
\left|\iint f(x) g(x-y) h(y) \mathrm{d} x \mathrm{~d} y\right| \leq\|f\|_{p}\|g\|_{q}\|h\|_{r}
$$

Hint: W.l.o.g. we can assume $f, g, h \geq 0$. Then, one could use (2) with the functions $\alpha(x, y)=f(x)^{p^{\prime} / r} g(x-y)^{q / r^{\prime}}, \beta(x, y)=g(x-y)^{q / p^{\prime}} h(y)^{r / p^{\prime}}$ and $\gamma(x, y)=f(x)^{p / q^{\prime}} h(y)^{r / q^{\prime}}$.

