ADVANCED ANALYSIS Exercise sheet 3 – 16.11.2022

Ex.1.1 (The dual of L^1)

We assume known that $L^p(\Omega)^* = L^{p'}(\Omega)$ for $1 , in the sense that for any <math>L \in L^p$ there is some $g \in L^{p'}$ such that $L(f) = \int gf$ for all $f \in L^p$. We want to prove the same thing for p = 1 when μ is σ -finite.

Let $L \in L^1(\Omega)^*$.

- 1. Assume for the moment $\mu(\Omega) < \infty$. Prove that for all $p \ge 1$, there is $g_p \in L^{p'}$ such that $L(f) = \int g_p f$ for all $f \in L^p(\Omega)$.
- 2. Prove that g_p is independent of p, we will denote g := g.
- 3. Prove that there is some C > 0 such that for all $p \ge 1$,

$$\|g\|_p \le C\mu(\Omega)^{1/q}.$$

- 4. Prove that $g \in L^{\infty}$ and that $||g||_{L^{\infty}} \leq C$.
- 5. Prove that for $f \in L^1$, we have

$$L(f) = \int gf \tag{1}$$

6. We know release the assumption $\mu(\Omega) < \infty$ and use the σ -finiteness of μ . Prove that there exists some $g \in L^{\infty}$ such that (1) holds.

Ex.1.2

Consider $L^1(\mathbb{R}, (1+x^2)dx)$ $(dmu(x) = (1+x^2)dx)$ and

$$K = \left\{ g \in L^1(\mathbb{R}, (1+x^2) \mathrm{d}x) \int g = 1 \right\}.$$

- 1. Prove that K is closed and convex.
- 2. Prove that the distance from K to f = 0 is not attained.

Ex.1.3 (Convolutions) Let us take $\Omega = \mathbb{R}^n$ and $d\mu(x) = dx$.

1. Let $f \in L^p$ and $g \in L^q$ with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that for all $\varepsilon > 0$, there is some $R_{\varepsilon} > 0$ such that

$$\sup_{|x|>R_{\varepsilon}}|f*g(x)|<\varepsilon$$

2. Let $f \in L^p$, $g \in L^q$ and $h \in L^r$ with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, show that

$$\left|\int fgh\right| \le \|f\|_p \|g\|_q \|h\|_r.$$

3. Let $f \in L^p$, $g \in L^q$ and $h \in L^r$ with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 2$, show that

$$\left| \iint f(x)g(x-y)h(y) \mathrm{d}x \mathrm{d}y \right| \le \|f\|_p \|g\|_q \|h\|_r.$$

Hint: W.l.o.g. we can assume $f, g, h \ge 0$. Then, one could use (2) with the functions $\alpha(x,y) = f(x)^{p'/r}g(x-y)^{q/r'}, \ \beta(x,y) = g(x-y)^{q/p'}h(y)^{r/p'}$ and $\gamma(x,y) = f(x)^{p/q'}h(y)^{r/q'}$.