ADVANCED ANALYSIS Exercise sheet 13 – 7-8-9.02.2023

Ex.1 (Case n = 1) Let $V \in L^1(\mathbb{R}) + L^\infty(\mathbb{R})$ and $\psi \in H^1(\mathbb{R})$, define

$$\mathcal{E}(\psi) = \int_{\mathbb{R}} |\nabla \psi|^2 + \int_{\mathbb{R}} V |\psi|^2$$

and

$$E_0 = \inf \left\{ \mathcal{E}(\psi) \middle| \psi \in H^1(\mathbb{R}) \quad \|\psi\|_{L^2(\mathbb{R})} = 1 \right\}.$$
(1)

- 1. Stability
 - (a) Recall the Sobolev inequality for $H^1(\mathbb{R})$ and justify that $V|\psi|^2 \in L^1(\mathbb{R})$ for $\psi \in H^1(\mathbb{R})$ and $V \in L^1(\mathbb{R}) + L^{\infty}(\mathbb{R})$.
 - (b) Prove that $E_0 > -\infty$.
- 2. Weak continuity of the potential.
 - (a) Assume that for all $\eta > 0$

$$|\{x: \quad |V(x)| > \eta\}| < \infty$$

Show that if $\psi_j \rightharpoonup \psi_0$ in $H^1(\mathbb{R})$ then

$$\int V |\psi_j|^2 \xrightarrow[j \to \infty]{} \int V |\psi|^2$$

- (b) Existence of minimizers. Assume that $E_0 < 0$.
 - i. Show that there exists $\psi_0 \in H^1(\mathbb{R})$ such that $\|\psi_0\|_2 = 1$ and $\mathcal{E}(\psi_0) = E_0$.
 - ii. Show that ψ_0 satisfies

$$-\Delta\Psi_0 + V\Psi_0 = E_0\Psi_0 \quad \text{in } D'(\mathbb{R}).$$

Ex.2 (Case n = 2) Let $\varepsilon > 0$, $V \in L^{1+\varepsilon}(\mathbb{R}^2) + L^{\infty}(\mathbb{R}^2)$ and $\psi \in H^1(\mathbb{R}^2)$, define

$$\mathcal{E}(\psi) = \int_{\mathbb{R}} |\nabla \psi|^2 + \int_{\mathbb{R}^2} V |\psi|^2$$

and

$$E_0 = \inf \left\{ \mathcal{E}(\psi) \middle| \psi \in H^1(\mathbb{R}^2), \quad \|\psi\|_{L^2(\mathbb{R})^2} = 1 \right\}.$$

- 1. Stability.
 - (a) Recall the Sobolev inequality for $H^1(\mathbb{R}^2)$ and justify that $V|\psi|^2 \in L^1(\mathbb{R}^2)$ for $\psi \in H^1(\mathbb{R}^2)$ and $V \in L^{1+\varepsilon}(\mathbb{R}^2) + L^{\infty}(\mathbb{R}^2)$ for all $\varepsilon > 0$.
 - (b) Prove that $E_0 > -\infty$.
- 2. Weak continuity of the potential.
 - (a) Assume that for all $\eta > 0$

$$|\{x: |V(x)| > \eta\}| < \infty$$

Show that if $\psi_j \rightharpoonup \psi_0$ in $H^1(\mathbb{R}^2)$ then

$$\int V |\psi_j|^2 \xrightarrow[j \to \infty]{} \int V |\psi|^2$$

Ex.3 (Regularity of eigenfunctions) Let $n \ge 1$ and assume that $V \in C^{\infty}(\mathbb{R}^n)$. Let $E \in \mathbb{R}$ and $\psi \in L^2(\mathbb{R}^n)$ such that

$$-\Delta \psi + V\Psi = E\psi, \quad \text{in } D'(\mathbb{R}^n).$$

- 1. Show that for any R > 0, $\Psi \in W^{2,2}(B_R)$.
- 2. Show that $\psi \in C^{\infty}(\mathbb{R}^n)$.

Ex.4 (The hydrogen atom) For $\Psi \in H^1(\mathbb{R}^3)$, define

$$\mathcal{E}(\Psi) = \int_{\mathbb{R}^3} |\nabla \psi|^2 - \int_{\mathbb{R}^3} \frac{1}{|x|} |\psi(x)|^2$$

and define E_0 as in (1).

- 1. Let $\Psi_{gs}(x) = e^{-\frac{1}{2}|x|}$. Compute $\mathcal{E}(\Psi_{gs})$.
- 2. Show that there exists $\psi_0 \in H^1(\mathbb{R}^3)$ such that $\mathcal{E}(\psi_0) = E_0$ and $\|\psi_0\|_{L^2} = 1$.
- 3. Show that ψ_0 is C^{∞} on $\mathbb{R}^3 \setminus \{0\}$ and C^0 on \mathbb{R}^3 .
- 4. Denoting $\eta = \psi_0 \Psi_{gs}^{-1}$, show that

$$\mathcal{E}(\psi_0) = \int_{\mathbb{R}^3} |\Psi_{gs}|^2 |\nabla \eta|^2 - \frac{1}{4}.$$

5. Deduce that there exists $c \in \mathbb{C}$ such that $\psi_0 = c \Psi_{gs}$.

Ex.4 (The non-linear Schrödinger equation)

Let $a \in \mathbb{R}$ and define

$$\mathcal{E}_{\rm nls}(\psi) = \int_{\mathbb{R}^3} |\nabla \psi(x)|^2 + \int_{\mathbb{R}^3} |x|^2 |\psi(x)|^2 + \frac{a}{2} \int_{\mathbb{R}^3} |\psi(x)|^4$$

and

$$E_0 = \inf \left\{ \mathcal{E}_{\text{nls}}(\psi) \middle| \psi \in H^1(\mathbb{R}^n), \quad \|\psi\|_{L^2(\mathbb{R})} = 1 \right\}.$$
(2)

- 1. Repulsive case. Assume a > 0.
 - (a) Show that there exists ψ_0 that solves the minimization problem (2).
 - (b) Show that

$$-\Delta\psi_0 + |x|^2\psi_0 + |\psi_0|^2\psi_0 = \mu\psi_0, \quad \text{in } D'(\mathbb{R}^n)$$

for some $\mu \in \mathbb{R}$ to be determined.

- 2. Attractive case. Assume a < 0.
 - (a) Show that $E_0 = -\infty$. *Hint:* one could consider $\psi_{\lambda} = \lambda^{3/2} \psi(\lambda)$ for $\lambda > 0$ and some $\psi \in H^1(\mathbb{R}^3)$.