ADVANCED ANALYSIS Exercise sheet 12 – 31.01.2023

Ex.1.1 (Poincarés inequality)

Let $n \geq 2$, $\Omega \subset \mathbb{R}^n$ be open, bounded, connected and with the cone property. Let $1 \leq p < n$ and $g \in L^{p'}(\Omega)$ with $\int g = 1$, we want to prove that for $1 \leq q \leq np/(n-p)$, there exists some number $C_P > 0$ such that for all $f \in W^{1,p}(\Omega)$

$$\|f - \int fg\|_{L^q(\Omega)} \le C_P \|\nabla f\|_{L^p(\Omega)} \tag{1}$$

- **I.** Case q < np/n p.
- 1. Recall the Sobolev inequality associated to $W^{1,p}(\Omega)$.
- 2. We prove (1) by contradiction. Assume that no such constant C_P exists. Justify that there exists $\{f_j\} \subset W^{1,p}(\Omega) \setminus \{0\}$ such that $\|f \int fg\|_{L^q(\Omega)} \neq 0$ and

$$\frac{\|\nabla f\|_{L^p(\Omega)}}{\|f - \int fg\|_{L^q(\Omega)}} \xrightarrow[j \to \infty]{} 0.$$

- 3. Denote $h_j = f_j \int f_j g$. Show that $\{h_j\}$ is bounded in $W^{1,p}(\Omega)$.
- 4. Show that, up to a subsequence, $h_j \rightharpoonup h_\infty$ and compute for any $\varphi \in C_c^\infty(\Omega)$
 - $\lim_{j\to\infty} \int h_j \nabla \varphi$
 - $\lim_{j\to\infty} \int h_j g$.
- 5. Conclude that $h_{\infty} = 0$.
- 6. Show that $h_j \xrightarrow{j \to \infty} h_\infty$ strongly in L^p .
- 7. Arrive at a contradiction.
- II. Case q = np/n p.
- 1. Justify that for some C > 0 and all $f \in W^{1,p}(\Omega)$, it holds

$$\|f - \int fg\|_{L^q(\Omega)} \le C\left(\|f - \int fg\|_{L^p(\Omega)} + \|\nabla f\|_{L^p(\Omega)}\right)$$

2. Use the case I to conclude.

 $\mathbf{Ex.1.2}\ (\mathrm{Hardy's\ inequality,\ again})$

Let $n \geq 3$, we want to show that for all $f \in H^1(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} \frac{|f(x)|^2}{|x|^2} \mathrm{d}x \le \frac{4}{(n-2)^2} \int_{\mathbb{R}^n} |\nabla f(x)|^2 \mathrm{d}x \tag{2}$$

1. Let $u \in C_c^{\infty}(\mathbb{R}^n)$ non-negative. Show by integration by part that

$$\int_{\mathbb{R}^n} u\nabla u \cdot \frac{x}{|x|^2} = -(n-2) \int_{\mathbb{R}^n} \frac{u^2}{|x|^2}.$$

- 2. Using the Cauchy-Schwarz inequality (Hölder), show that (2) holds for $u \in C_c^{\infty}(\mathbb{R}^n)$.
- 3. Conclude.
- Ex.1.3 (Missing assumption in the Fatou lemma)

Find some sequence of measurable functions $\{f_j\}$, such that $\int |f_j| < \infty$ for all j and

$$\liminf_{j\to\infty}\int_{\mathbb{R}}f_j<\int_{\mathbb{R}}\liminf_{j\to\infty}f_j.$$