ADVANCED ANALYSIS

Exercise sheet 12 - 31.01.2023

Ex.1.1 (Poincarés inequality)
Let $n \geq 2, \Omega \subset \mathbb{R}^{n}$ be open, bounded, connected and with the cone property. Let $1 \leq p<n$ and $g \in L^{p^{\prime}}(\Omega)$ with $\int g=1$, we want to prove that for $1 \leq q \leq n p /(n-p)$, there exists some number $C_{P}>0$ such that for all $f \in W^{1, p}(\Omega)$

$$
\begin{equation*}
\left\|f-\int f g\right\|_{L^{q}(\Omega)} \leq C_{P}\|\nabla f\|_{L^{p}(\Omega)} \tag{1}
\end{equation*}
$$

I. Case $q<n p / n-p$.

1. Recall the Sobolev inequality associated to $W^{1, p}(\Omega)$.
2. We prove (1) by contradiction. Assume that no such constant C_{P} exists. Justify that there exists $\left\{f_{j}\right\} \subset W^{1, p}(\Omega) \backslash\{0\}$ such that $\left\|f-\int f g\right\|_{L^{q}(\Omega)} \neq 0$ and

$$
\frac{\|\nabla f\|_{L^{p}(\Omega)}}{\left\|f-\int f g\right\|_{L^{q}(\Omega)}} \underset{j \rightarrow \infty}{\longrightarrow} 0
$$

3. Denote $h_{j}=f_{j}-\int f_{j} g$. Show that $\left\{h_{j}\right\}$ is bounded in $W^{1, p}(\Omega)$.
4. Show that, up to a subsequence, $h_{j} \rightharpoonup h_{\infty}$ and compute for any $\varphi \in C_{c}^{\infty}(\Omega)$

- $\lim _{j \rightarrow \infty} \int h_{j} \nabla \varphi$
- $\lim _{j \rightarrow \infty} \int h_{j} g$.

5. Conclude that $h_{\infty}=0$.
6. Show that $h_{j} \underset{j \rightarrow \infty}{\longrightarrow} h_{\infty}$ strongly in L^{p}.
7. Arrive at a contradiction.
II. Case $q=n p / n-p$.
8. Justify that for some $C>0$ and all $f \in W^{1, p}(\Omega)$, it holds

$$
\left\|f-\int f g\right\|_{L^{q}(\Omega)} \leq C\left(\left\|f-\int f g\right\|_{L^{p}(\Omega)}+\|\nabla f\|_{L^{p}(\Omega)}\right)
$$

2. Use the case \mathbf{I} to conclude.

Ex.1.2 (Hardy's inequality, again)
Let $n \geq 3$, we want to show that for all $f \in H^{1}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{|f(x)|^{2}}{|x|^{2}} \mathrm{~d} x \leq \frac{4}{(n-2)^{2}} \int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} \mathrm{~d} x \tag{2}
\end{equation*}
$$

1. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ non-negative. Show by integration by part that

$$
\int_{\mathbb{R}^{n}} u \nabla u \cdot \frac{x}{|x|^{2}}=-(n-2) \int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}}
$$

2. Using the Cauchy-Schwarz inequality (Hölder), show that (2) holds for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
3. Conclude.

Ex.1.3 (Missing assumption in the Fatou lemma)
Find some sequence of measurable functions $\left\{f_{j}\right\}$, such that $\int\left|f_{j}\right|<\infty$ for all j and

$$
\liminf _{j \rightarrow \infty} \int_{\mathbb{R}} f_{j}<\int_{\mathbb{R}} \liminf _{j \rightarrow \infty} f_{j} .
$$

