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We denote by (Ω,Σ, µ) a measure space.

Ex.1.1 (Good notation)
Let 1 ≤ p <∞ and let f ∈ Lp ∩ L∞. Show that

• f ∈ Lq for any p ≤ q ≤ ∞

• limq→∞ ‖f‖q = ‖f‖∞.

Ex.1.2 (Convex functions have subgradients (in 1d))
Let I ⊂ R be an open interval and f : I → R and convex functions.

1. Show that the function τ defined for all x 6= y by

τ(x, y) =
f(x)− f(y)

x− y

is non-decreasing in both its variables.

2. Show that f has a subderivative at each point of I, i.e. for any x ∈ I, there is some Vx ∈ R
such that for all y ∈ I

f(y) ≥ f(x) + Vx(y − x).

3. Show the above property in the case where f is C2 (we take for granted that, since f is
convex, it satisfies f ′′ ≥ 0).

Ex.1.3 (Gas of fermions (electrons))
Let N ≥ 1, we say that m ∈ S if m ∈ L1(R3 × R3) and satisfies

• 0 ≤ m(x, p) ≤ 1 for a.e. x, p ∈ R3 (Pauli exclusion principle)

• (density of N electrons in phase space)

1

(2π)3

∫
R3×R3

m(x, p)dxdp = N (1)

For Z ≥ 1 (atomic number), define the Vlasov energy of the gas described by the distribution
m by

EVlasov(m) =

∫∫
R3×R3

(
p2 − Z

|x|

)
m(x, p)dxdp+

∫
R3

ρm(x)ρm(y)

|x− y|
dxdy,

where ρm is the position density associated to m and is defined by

ρm(x) =
1

(2π)3

∫
m(x, p)dp.
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Using the bathtub principle (Theorem 1.14 of the Lieb-Loss), show that

inf
m∈S
EVlasov(m) = inf

0≤ρ∈L1(R3)∫
R3 ρ=N

ETF(ρ)

where the Thomas-Fermi energy is defined by

ETF(ρ) = CTF

∫
R3

ρ5/3(x)− Z
∫
R3

ρ(x)

|x|
+

∫∫
R3×R3

ρ(x)ρ(y)

|x− y|
dxdy.

Hint: One could use that

inf
m∈S
EVlasov(m) = inf

0≤ρ∈L1(R3)∫
R3 ρ=N

inf
m∈S

1
(2π)3

∫
R3 m(·,p)dp=ρ

EVlasov(m),

where by 1
(2π)3

∫
R3 m(·, p)dp = ρ, it is meant

1

(2π)3

∫
R3

m(x, p)dp = ρ(x)

for almost every x ∈ R3.
NB: The Thomas-Fermi energy is a model for the energy of electrons in atoms and molecules. It

is a theory that depends only on the spatial density of the electrons (this is very surprising !). Here,
we see that it is obtained as a special case of the Vlasov theory that models electrons by a density
measure on phase space R3 × R3 (space × momentum). It is gives some qualitative properties of
such systems but not always (atoms don’t bind in TF, so there is no molecule, sad...). Physicists
now use other models but mathematicians love playing with it and its extensions (other terms can
be added to try to make it more accurate).

Ex.1.4 (Some other counter examples)
Consider the following sequences in Lp(R), with 1 < p <∞:

1. fk(x) :=

{
sin kx for 0 ≤ x ≤ 1,

0 otherwise.

2. gk(x) := k
1
p g(kx), where g is any fixed function in Lp(R).

3. hk(x) := g(x+ k) for some fixed function g in Lp(R).

Prove that fk, gk, hk converge weakly to 0 but do not converge strongly to 0 (or to anything else).

Ex.1.5 (Projection on convex sets, Lemma 2.8 of the Lieb-Loss)
Let 1 < p <∞ and let K ⊂ Lp(Ω) be convex and norm closed set (i.e. if (fn) ∈ K is a sequence

such that ‖fn − f‖p → 0 then f ∈ K). Let f ∈ Lp(Ω) \K and define the distance to K as

D = dis(f,K) = inf
g∈K
‖f − g‖p. (2)

We wan to show that there is a function h ∈ K such that the distance is attained, i.e.

D = ‖h− f‖p.

We will assume the Hanner inequality (2.5 in LL).
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Lemma 1 (Hanner’s inequality, more useful than it looks) For any f, g ∈ Lp and 1 ≤ p ≤ 2, then

‖f + g‖pp + ‖f − g‖pp ≥ (‖f‖p + ‖g‖p)p +
∣∣‖f‖p − ‖g‖p∣∣p (3)(

‖f + g‖p + ‖f − g‖p
)p

+
∣∣‖f + g‖p − ‖f − g‖p

∣∣p ≤ 2p(‖f‖pp + ‖g‖pp). (4)

If 2 ≤ p ≤ ∞, the inequalities are reversed.

1. Assume 1 ≤ p ≤ 2.

(a) Explain why without loss of generality, we can assume f = 0.

(b) Let (gn) be a minimizing sequence for (2), show that ‖gn+gm‖p → D when n,m→∞.

(c) Using (4), prove that (gn) is a Cauchy-sequence, you can use a contradiction argument.

(d) Conclude.

2. Prove the case 2 ≤ p ≤ ∞.


