

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

Riemannian Geometry

sheet 11

Exercise 1. Given two natural numbers n, m, show that the growth functions $x \mapsto x^n$ and $x \mapsto x^m$ are equivalent if and only if n = m.

Exercise 2. Consider the free abelian group \mathbb{Z}^2 . It is the fundamental group of the 2-torus $\mathbb{R}^2/\mathbb{Z}^2$.

- 1. Compute the growth function with respect to the generating set given by the standard basis vectors of \mathbb{R}^2 and their inverses.
- 2. Compute the growth function with respect to the generating set that figures in the comparison with the growth of Riemannian volume on the universal covering, discussed in the lecture on 9 July.

Exercise 3. Let F_2 be the free group on two generators a, b. Its elements are all words (including the empty one) that one can write using the letters a, b, a^{-1}, b^{-1} , subject only to the relation of cancellation between a and a^{-1} , resp. b and b^{-1} . Compute the growth function with respect to the generating set $\{a, b, a^{-1}, b^{-1}\}$.

Exercise 4. Let

$$H := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \; \middle| \; a, b, c \in \mathbb{Z} \right\} \; .$$

1. Show that one has a presentation in terms of generators and relations as $H = \langle x, y, z \mid [x, z] = [y, z] = 0, [x, y] = z \rangle$.

For $w \in H$ denote by l(w) the minimal length of a word in $S := \{x, y, z, x^{-1}, y^{-1}, z^{-1}\}$ representing w. Let $m, n, k \in \mathbb{Z}$.

- 2. Show that $l(x^m \cdot y^n \cdot z^k) \le |m| + |n| + 6\sqrt{|k|}$.
- 3. Show that $|m| + |n| \le l(x^m \cdot y^n \cdot z^k)$ and $|k| \le l(x^m \cdot y^n \cdot z^k)^2$.
- 4. Show that $\frac{1}{2} \cdot (|m| + |n| + \sqrt{|k|}) \le l(x^m \cdot y^n \cdot z^k)$.
- 5. Conclude that the growth function of H with respect to S is equivalent to a polynomial function of degree 4.