

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

Riemannian Geometry

sheet 08

Exercise 1. Let (M,g) be a Riemannian manifold. A conformal deformation of g is a metric of the form $g_{\varphi} := e^{2\varphi} \cdot g$ for some $\varphi \in C^{\infty}(M)$. Define a vector field and a quadratic form on $\mathfrak{X}(M)$ via $\nabla \varphi$ and $Hess(\varphi)(X,Y)$ by $g(\nabla \varphi, X) = X(\varphi)$ and $Hess_{\varphi}(X,Y) := g(\nabla_X \nabla \varphi, Y)$.

1. Show that the Levi-Civita connections and sectional curvatures of g and g_{φ} are related as follows, where we assume X, Y orthonormal in the second statement.

$$\begin{split} \nabla^{\varphi}_{X}Y = & \nabla_{X}Y + X(\varphi)Y + Y(\varphi)X - g(X,Y)\nabla\varphi \ ,\\ K_{\varphi}(X,Y) = & \frac{1}{e^{2\varphi}}(K(X,Y) - Hess_{\varphi}(X,X) - Hess_{\varphi}(Y,Y) \\ & -g(\nabla\varphi,\nabla\varphi) + g(X(\varphi),X(\varphi)) + g(Y(\varphi),Y(\varphi))) \ . \end{split}$$

2. Apply this formula to calculate the curvature of g^{hyp} on \mathbb{H} from the previous sheets.

Exercise 2.

- 1. Let G be a finite group of odd order acting on an orientable manifold M. Show that the action is orientation preserving.
- 2. For which integers n, k with k odd does there exist a free action of \mathbb{Z}/k on S^n ?

Exercise 3. Let G be a Lie group with a bi-invariant metric g, i.e. one which is invariant under both left and right translations. Show the following formulae for Lie-bracket, Levi-Civita connection and curvature hold for all left-invariant vector fields X, Y, Z:

- 1. g([X,Y],Z) = g(X,[Y,Z])
- 2. $\nabla_X Y = \frac{1}{2}[X,Y]$
- 3. $R(X,Y)Z = -\frac{1}{4}[[X,Y],Z]$

Deduce that for such a metric $K \ge 0$ everywhere.

Exercise 4. Let G be a Lie group and X a left-invariant vector field. The trajectories of X determine a mapping $\varphi : (-\varepsilon, \varepsilon) \to G$ with G(0) = e and $\varphi'(t) = X(\varphi(t))$.

- 1. Prove that $\varphi(t)$ is defined for all $t \in \mathbb{R}$ and that $\varphi(t+s) = \varphi(t) \cdot \varphi(s)$. We say φ is a one-parameter subgroup.
- 2. Using the previous exercise, show that if G admits a bi-invariant metric, the one-parameter subgroups are the geodesics through $e \in G$.