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Exercise 1. Prove that every isometry of Rn (with the Euclidean metric) is an affine transformation.

Exercise 2. Let M be a complete connected Riemannian manifold. A point p ∈ M is called a pole,

if for all nonzero Jacobi fields J along geodesics starting at p with J(0) = 0 one has J(t) 6= 0 for all

t > 0.

1. Show that any simply connected M which has a pole p ∈M is diffeomorphic to Rn.

2. Show that the paraboloid {(x, y, z) ∈ R3 | x2 + y2 = z} satisfies the assumptions of the previous

point, but has a point with positive sectional curvature.

Exercise 3. Let (M,< , >M ) and (N,< , >N ) be two Riemannian manifolds with isometry

groups IM and IN . Prove that there is an inclusion from IM × IN into the isometry group IM×N of

the product (M ×N,< , >M + < , >N ). Show by example that this inclusion is in general not an

equality.

Exercise 4. Let (M,< , >) be a Riemannian manifold and let p : N →M be a local diffeomorphism

onto M . Equip N with the induced metric making p into a local isometry.

1. Assume p is a covering space map. Show that N is complete if and only if M is complete

2. Show by example that the previous statement fails in general if p is only a local diffeomorphism.


