

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

## **Riemannian Geometry**

sheet 06

**Exercise 1.** Prove that every isometry of  $\mathbb{R}^n$  (with the Euclidean metric) is an affine transformation.

**Exercise 2.** Let M be a complete connected Riemannian manifold. A point  $p \in M$  is called a pole, if for all nonzero Jacobi fields J along geodesics starting at p with J(0) = 0 one has  $J(t) \neq 0$  for all t > 0.

- 1. Show that any simply connected M which has a pole  $p \in M$  is diffeomorphic to  $\mathbb{R}^n$ .
- 2. Show that the paraboloid  $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z\}$  satisfies the assumptions of the previous point, but has a point with positive sectional curvature.

**Exercise 3.** Let  $(M, < , >_M)$  and  $(N, < , >_N)$  be two Riemannian manifolds with isometry groups  $I_M$  and  $I_N$ . Prove that there is an inclusion from  $I_M \times I_N$  into the isometry group  $I_{M \times N}$  of the product  $(M \times N, < , >_M + < , >_N)$ . Show by example that this inclusion is in general not an equality.

**Exercise 4.** Let (M, < , >) be a Riemannian manifold and let  $p : N \to M$  be a local diffeomorphism onto M. Equip N with the induced metric making p into a local isometry.

- 1. Assume p is a covering space map. Show that N is complete if and only if M is complete
- 2. Show by example that the previous statement fails in general if p is only a local diffeomorphism.