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Exercise 1. Show that (H, ghyp) from Ex. 3, sheet 02, has constant sectional curvature —1.

Exercise 2. Recall that a Riemannian metric g is called Einstein with Einstein constant A if Ric = Ag.
Let (M, g™V) and (N, g™) be Einstein manifolds with Einstein constants Aps, Ay. Show that the product
metric on M x N is Einstein if and only if A\yy = An.

Exercise 3. Let (M,g) be a 4-dimensional Riemannian manifold. Show that ¢ is Einstein if and
only if for every point p € M and every 2-plane o C T,M with orthogonal complement o+ one has
K(O’) = K(UJ‘). Hint: Consider orthogonal bases for o and o=

Exercise 4. Let (M, g) be a 4-dimensional Riemannian manifold.

1. Assume that for every point p € M and every 2-plane o C T),M with orthogonal complement ot
one has K (o) = —K (o). Show that the scalar curvature of g vanishes identically.

2. Show that the product metric on S? x H? satisfies the assumption of the previous point.



