

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

Riemannian Geometry

sheet 03

Exercise 1. Show that (\mathbb{H}, g^{hyp}) from Ex. 3, sheet 02, has constant sectional curvature -1.

Exercise 2. Recall that a Riemannian metric g is called Einstein with Einstein constant λ if $Ric = \lambda g$. Let (M, g^N) and (N, g^M) be Einstein manifolds with Einstein constants λ_M , λ_N . Show that the product metric on $M \times N$ is Einstein if and only if $\lambda_M = \lambda_N$.

Exercise 3. Let (M, g) be a 4-dimensional Riemannian manifold. Show that g is Einstein if and only if for every point $p \in M$ and every 2-plane $\sigma \subseteq T_pM$ with orthogonal complement σ^{\perp} one has $K(\sigma) = K(\sigma^{\perp})$. Hint: Consider orthogonal bases for σ and σ^{\perp}

Exercise 4. Let (M, g) be a 4-dimensional Riemannian manifold.

- 1. Assume that for every point $p \in M$ and every 2-plane $\sigma \subseteq T_p M$ with orthogonal complement σ^{\perp} one has $K(\sigma) = -K(\sigma^{\perp})$. Show that the scalar curvature of g vanishes identically.
- 2. Show that the product metric on $S^2 \times \mathbb{H}^2$ satisfies the assumption of the previous point.