Riemannian Geometry

sheet 02

Exercise 1. Show that on a compact manifold, every Riemannian metric is geodesically complete.

Exercise 2. Give an example of a Riemannian manifold (M, g) with associated distance function d_{M} and a submanifold $N \subseteq M$ with induced metric and associated distance function d_{N} s.t. for any two distinct points $p \neq q \in N$ there is an inequality $d_{M}(p, q)<d_{N}(p, q)$.

Exercise 3. Consider the upper half plane $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with Riemannian metric defined via $g_{(x, y)}^{h y p}:=\frac{1}{y^{2}} \cdot g_{(x, y)}^{E u c}$, where $g^{E u c}$ is the restriction of the standard Euclidean metric on \mathbb{R}^{2} to \mathbb{H}. Determine all geodesics in $\left(\mathbb{H}, g^{h y p}\right)$ and deduce that $\left(\mathbb{H}, g^{h y p}\right)$ is complete.

Exercise 4. (Surfaces of revolution, continued) We use the same notations as in exercise 4 from the prvious sheet.

1. Show that all meridians, i.e. curves parametrized by arc length of the form $t \mapsto \varphi(C, v(t))$ for some constant C, are geodesics.
2. Show that all parallels, i.e. curves parametrized by arc length of the form $t \mapsto \varphi(u(t), C)$ for some constant C, are geodesics if and only if $\dot{f}(C)=0$.
3. (Clairaut's relation) Assume $\gamma(t)=\varphi(u(t), v(t))$ is a curve parametrized by arc length which is never tangent to a parallel, i.e. $\dot{v}(t) \neq 0$ for all t. Let $r(t)=f(v(t))$ denote the distance of the axis of rotation to the parallel passing through $\gamma(t)$. Let $\psi(t)$ denote the angle between α and this parallel, i.e. for $\varphi_{1}:=\frac{\partial \varphi}{\partial u}$, one has $\left\|\varphi_{1}\right\| \cdot\|\dot{\gamma}\| \cdot \cos \psi=\left\langle\dot{\gamma}, \varphi_{1}\right\rangle$. Show that γ defines a geodesic if and only if $r(t) \cdot \cos \psi(t)$ is a constant function.
Hint: Use $\frac{\partial \log k(t)}{\partial t}=\frac{\dot{k}}{k}$.
4. Draw pictures illustrating these results.
