

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

Riemannian Geometry

sheet 02

Exercise 1. Show that on a compact manifold, every Riemannian metric is geodesically complete.

Exercise 2. Give an example of a Riemannian manifold (M, g) with associated distance function d_M and a submanifold $N \subseteq M$ with induced metric and associated distance function d_N s.t. for any two distinct points $p \neq q \in N$ there is an inequality $d_M(p,q) < d_N(p,q)$.

Exercise 3. Consider the upper half plane $\mathbb{H} := \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ with Riemannian metric defined via $g_{(x,y)}^{hyp} := \frac{1}{y^2} \cdot g_{(x,y)}^{Euc}$, where g^{Euc} is the restriction of the standard Euclidean metric on \mathbb{R}^2 to \mathbb{H} . Determine all geodesics in (\mathbb{H}, g^{hyp}) and deduce that (\mathbb{H}, g^{hyp}) is complete.

Exercise 4. (Surfaces of revolution, continued) We use the same notations as in exercise 4 from the prvious sheet.

- 1. Show that all meridians, i.e. curves parametrized by arc length of the form $t \mapsto \varphi(C, v(t))$ for some constant C, are geodesics.
- 2. Show that all parallels, i.e. curves parametrized by arc length of the form $t \mapsto \varphi(u(t), C)$ for some constant C, are geodesics if and only if $\dot{f}(C) = 0$.
- 3. (Clairaut's relation) Assume $\gamma(t) = \varphi(u(t), v(t))$ is a curve parametrized by arc length which is never tangent to a parallel, i.e. $\dot{v}(t) \neq 0$ for all t. Let r(t) = f(v(t)) denote the distance of the axis of rotation to the parallel passing through $\gamma(t)$. Let $\psi(t)$ denote the angle between α and this parallel, i.e. for $\varphi_1 := \frac{\partial \varphi}{\partial u}$, one has $\|\varphi_1\| \cdot \|\dot{\gamma}\| \cdot \cos \psi = \langle \dot{\gamma}, \varphi_1 \rangle$. Show that γ defines a geodesic if and only if $r(t) \cdot \cos \psi(t)$ is a constant function. Hint: Use $\frac{\partial \log k(t)}{\partial t} = \frac{\dot{k}}{k}$.
- 4. Draw pictures illustrating these results.