

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

## **Riemannian Geometry**

## sheet 01

**Exercise 1.** Let (M,g) be a Riemannian manifold and  $\gamma : [a,b] \to M$  a smooth curve. Denote by  $\frac{D}{dt} : \mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma)$  the operator induced by the Levi-Civita connections on the vector fields along  $\gamma$ , as introduced in the lecture. Show that for all  $V, W \in \mathfrak{X}(\gamma)$  the following equation holds:

$$\frac{d}{dt}g(V,W) = g\left(\frac{D}{dt}V,W\right) + g\left(V,\frac{D}{dt}W\right) \ .$$

**Exercise 2.** Let (M, g) be a Riemannian manifold and let  $Z \subseteq M$  be a submanifold. Restriction of g to TZ defines a Riemannian metric on Z. Compute the Levi-Civita connection for this restricted metric in terms of the Levi Civita connection for g on M.

**Exercise 3.** Let  $Z \subseteq \mathbb{R}^{n+1}$  be an *n*-dimensional submanifold. Consider  $\mathbb{R}^{n+1}$  with the standard Euclidean metric and Z with the induced metric as in the previous exercise.

- 1. Let  $\gamma : [a, b] \to Z \subseteq \mathbb{R}^{n+1}$  be a smooth curve. Show that  $\gamma$  defines a geodesic on Z if at every point  $t \in [a, b]$ , with respect to the standard metric on  $\mathbb{R}^{n+1}$ , the second derivative  $\ddot{\gamma}(t)$  is orthogonal to  $T_{\gamma(t)}Z \subseteq T_{\gamma(t)}\mathbb{R}^{n+1} = \mathbb{R}^{n+1}$ .
- 2. Apply this to conclude that the geodescics on a sphere are exactly the great circles.

**Exercise 4.** Denote by (x, y) the standard coordinates on  $\mathbb{R}^2$ . Let  $c : (a, b) \to \mathbb{R}^2$ , c(t) = (f(t), g(t)) be a smooth curve with  $f'(t)^2 + g'(t)^2 \neq 0$  and  $f(t) \neq 0$  for all  $t \in (a, b)$ .

1. Let  $U = (r, s) \times (a, b) \subseteq \mathbb{R}^2$ . Show that the function

$$\varphi: U \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto (f(v) \cos(u), f(v) \sin(u), g(v))$$

is an immersion. The image  $\varphi(U)$  is called the surface of revolution generated by c.

2. Show that the metric induced by the standard metric on  $\mathbb{R}^3$  on  $\varphi(U)$  is given in the coordinates (u, v) by the following  $2 \times 2$  matrix:

$$\begin{pmatrix} f^2 & 0 \\ 0 & (f')^2 + (g')^2 \end{pmatrix}$$

3. Show that for a curve  $\gamma : (x, y) \to U, \gamma(t) = (u(t), v(t))$  the condition to define a geodesic can be expressed as  $\frac{d^2u}{dt^2} = 2f \frac{dt}{dt} \frac{dt}{dt} \frac{dt}{dt}$ 

$$\frac{d^2u}{dt^2} + \frac{2ff'}{f^2}\frac{du}{dt}\frac{dv}{dt} = 0$$
(1)

and

$$\frac{d^2v}{dt^2} - \frac{ff'}{(f')^2 + (g')^2} \left(\frac{du}{dt}\right)^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} \left(\frac{dv}{dt}\right)^2 = 0.$$
 (2)