Department Mathematik
print


Navigationspfad


Inhaltsbereich

Vorlesung: Fourier Series (WiSe 2025-26)



!!!! TO BE UPDATED !!! PLEASE CHECK BACK !!!



Lecture (Vorlesung):
Wed 10-12 (in B 004) & Fri 08-10 (in B 006).   LSF

Exercises (Übungen):
See separate webpage (Moodle).   LSF

Tutorials (Tutorien):
See separate webpage (Moodle).

Synopsis (Kurzbeschreibung):
Description to come!

(More details on content below.)

NB Die Vorlesung wird auf Englisch gehalten.

Audience (Hörerkreis):
Students pursuing the following degrees: BSc (Bachelor) Mathematics
(PO 2021: WP4 OR WP5; PO 2015: WP20).
Students in other study programmes should get in touch with the Lecturer.

Credits:
9 (6+3) ECTS (4+2 SWS).

Prerequisites (Vorkenntnisse):
Analysis I-III, Lineare Algebra I-II. Functional Analysis (FA) is an advantage
but not indispensable: motivated (!) students without FA are very welcome!
We will cover a lot of ground, relatively fast.

Language (Sprache):
English.

Exam (Prüfung):
See Moodle.

Content (Inhalt) (!! TO BE UPDATED - CHECK BACK !!):
  • Fourier analysis: Fourier coefficients; mapping properties of the Fourier transform ℱ: L^1[0,2pi] -> l^infinity
    (boundedness on various spaces; injectivity/surjectivity/what is ran(ℱ)?); Hölder & Sobolev spaces
    (& their properties & embeddings) & mapping properties of ℱ; regularity
    (C^k, C^infinity, analyticity, Hölder & Sobolev) & decay of Fourier coefficients.
  • Fourier synthesis: Convergence of Fourier series (pointwise; uniformly (on subsets);
    absolute; normal; pointwise a.e.; L^p-convergence; in measure; summability/regularization (Fejer/Cesaro, Abel, etc)
    & convergence (in L^p & a.e.)); divergence of Fourier series (examples & counter examples);
    connection to Fourier analysis.
  • Applications: To PDE's: Wave, Heat & Laplace equation: separation of variables (convergence!);
    eigenfunction expansions; eigenvalue asymptotics; Sturm-Liouville problems; Approximation Theory.
  • Function spaces: BV, absolutely continuous functions; Hölder & Sobolev spaces (properties & embeddings).
  • Operators: Convolution operators; integral operators (incl singular integral operators (SIO); Hilbert transform);
    "good kernels"/approximation of the identity/Dirac sequences; maximal functions; interpolation.
  • Various Outlooks (including generalisations of all (!) the above): Multi-dimensional Fourier series;
    Fourier transform on R^d; Abstract Harmonic Analysis.


Literature:
In Moodle you will find a copy of the notes from the lecture (to be updated as we go along).
Above you will find a short description of the content of the lecture.
The course will not follow a particular textbook. The list below provides a short selection
of relevant English and German textbooks on the subject (of which there are many!).

Supplementary literatur (Ergänzende Literatur):


Office hours (Sprechstunde):
See Moodle.

To access the course material, you need to sign up (opens 06. October 2025) in Moodle here (Psword: Carleson) .

-----------------------------------

Letzte Änderung: 28 July 2025.

Thomas Østergaard Sørensen