2.4. Linear functionals and dual space

(44)

Definition 2.35 [Let X be a normed space. A linear functional (on I) is a linear operator l: I ≥ dom (1) → K The dual space of X is X* := BL(X, K). Notations for the norm on \mathbb{X}^* : $\|\cdot\|_{\mathbb{X}\to\mathbb{K}} = :\|\cdot\|_{\mathbb{X}} = :\|\cdot\|_{\mathbb{X}} = :\|\cdot\|_{\mathbb{X}}$ [Note:] X * consists of the bounded (equivalently, continuous) linear functionals; X * is therefore also called the topological dual - not to be confused with the algebraic dural of all linear functionals, X'== {f: X -> It | flinear } = Hom_K(X, H), common in Linear Argelona! (Covollary 2.36) (to Thm. 2.34). (X*, Il· 1/x*) is a Banach space (whether X is complete or not). Examples 2.37 Let X = C([a,b]) (with a c b & H2) equipped with 11.110 (a) For $f \in \mathbb{X}$, let $l(f) := \int_{a}^{b} f(x) dx \in \mathbb{K}$ This is clearly a linear functional l: X -> It with $|l(f)| \leq \int_{a}^{b} |f(x)| dx \leq ||f||_{\infty}(b-a)$ (*(so || ll = * = (b-a), and f=1 gives equality in (*1, so || l) = b-a. (b) For fEX and to E [a, b], let Stoff: = ftt) EK. This gives a linear functional Sto: X -> K, called the Divac 5-functional (at to), with $|5_{10}(f)| = |fty| \leq ||ft|_{00}$ and again equality for f = 1. So $\| \mathcal{J}_{t_0} \|_{X^*} = 1$. (NB: 1 Boundedness (i.e., continuity) of Sto depends on the norm on X. For ex., δ_{t_0} is <u>not</u> bounded, if X is equipped with the L^2 -norm ($\|f\|_2 = \int_0^1 |f(x)| dx$).

$$\frac{|Nodakivn:|}{|X \ge Y} | Let X, Y be normed spaces. We with (fs)
X \ge Y (or X \ge Y) iff X is isometrically isomorphic b Y.
(Nor precisely: The map $l^{\frac{1}{2}} = j = 1$. Then $(l^{p})^{\frac{1}{2}} \ge l^{\frac{q}{2}}$.
How precisely: The map $l^{\frac{q}{2}} = j = (\gamma_{n})_{n} \mapsto fy \in (l^{p})^{\frac{q}{2}}$,
is a bijective isometry
 $\frac{Pf!}{(a) Caxe | L = p \le \infty} : Let x = (k_{n})_{n \in \mathbb{N}} \in l^{p}$, $f \in (l^{p})^{\frac{q}{2}}$.
We coold with the canonical (Schander) basis $(e_{n})_{n \in \mathbb{N}}$ for l^{p} (see 2.15)
Then x can be witten as a $l^{1} l^{p}$ -convergent sectors $x = \sum_{n \in \mathbb{N}} x_{n} e_{n}$
Since f is continuous (we little) and timer,
 $f(x) = f(\lim_{N \to \infty} \sum_{n \in \mathbb{N}} (x, e_{n}) = \sum_{n \in \mathbb{N}} f(x, e_{n}) = \sum_{n \in \mathbb{N}} v f(e_{n})$. Ge j
For $N \in W$ (Fixed), define $\tilde{x} := (\tilde{x}_{n})_{n \in \mathbb{N}} \in l^{p}$ by
 $\tilde{x}_{n} := \begin{cases} \frac{1}{f(e_{n})} \stackrel{q}{=} i f = \sum_{n \in \mathbb{N}} if(e_{n}) \stackrel{q}{=} i f = \sum_{n \in \mathbb{N}} if(e_{n}) \stackrel{q}{=} i f = \sum_{n \in \mathbb{N}} if(e_{n}) \stackrel{q}{=} i f(e_{n}) \stackrel{q$$$

Hence, the map
$$J: (\ell^p)^* \rightarrow \ell^q$$
 (to
is well-defined, and
 $f \mapsto (f(e_n))_{n \in M}$
(i) J is linen
(ii) $\| \text{If } H_q = \| (f(e_n))_{n \in M} \|_q \leq \| f \|_{(\frac{p}{2})^{\frac{q}{2}}} \quad by (f(e_n))_{n \in M}$
(iii) $\| \text{If } H_q = \| (f(e_n))_{n \in M} \|_q \leq \| f \|_{(\frac{p}{2})^{\frac{q}{2}}} \quad by (f(e_n))_{n \in M}$
(iii) J is only surjectiv: If $y = (y_n)_n \in \ell^q$, define
 $f_Y: \ell^p \rightarrow | K$
 $f_Y: x = (x_n)_n \mapsto f_Y(e_1) = \sum_{n \in M} x_n y_n$
Clearly, f_Y is linen. It is well-defined: $\sum_{n \in M} |x_ny_n| \leq \| x \|_p \|_{y_q}$
by Höbdu's inequality, so
 $\| f_Y \|_{(p)^q} \leq \| y \|_q$
and so $f_Y \in (\mathbb{P})^{\frac{q}{2}}$. But $f_Y(e_n) = y_n$ the \mathcal{W}_1 so $J(f_y) = y$.
(iv) $(e_1 \land Höldur imply:$
 $\forall f \in (\mathbb{P})^{\frac{q}{2}} \forall x \in \mathcal{P} : | f(e_1)| \leq \| x \|_p \cdot \| (f(e_n))_{n \in \mathbb{N}} \|_q$
 $= > \| \| f \|_{(p)^q} \leq \| \| J f \|_q$
So $\| \| J f \|_q = \| f \|_{(p)^q}$, and J is an isometric isomorphism.
(The map in the statement of the turn is J^{-1}).
(b) The case $p = t$ is analogous, but instead of defining \tilde{x}_n use
 $| f(e_n) | \leq \| f \|_{(p_1^q)^{\frac{q}{2}}} \quad [e_n]_q$
 $his impliers \| (f(e_n) \|_n f_\infty \in hf \|_{(p_1^q)^{\frac{q}{2}}} \dots$ which replaces $\{e^{\frac{q}{2} \times e_1\}}$,
 (e_n) the properties of J follow as above. B
 $(\overline{Reumet} \geq \frac{39}{2}]$ (a) $(c_0)^{\frac{q}{2}} \cong \ell^{\frac{q}{2}}$ (see exercise)
(b) The curp $\ell^{\frac{q}{2}} \rightarrow (\ell^\infty)_{j}^{\frac{q}{2}} y \mapsto f_y$, $de(iwel (as in Thm. 2.5e) by$
 $f_y(x) = \sum x_n y_n$, $x \in \ell^\infty$, $y \in \ell^{\frac{q}{2}}$
is well - defined (Hölder), linent, isometric, but we draw $\ell^{\frac{q}{2}}$ (see later]
In other words: $(\ell^\infty)^{\frac{q}{2}}$ is strictly "larger" turn $\ell^{\frac{q}{2}}$ (see later]

(