[Remark 1.44] (a) Completeness is essential : Consider & (with
metric form IR). Let
$$\{q_n \in \mathbb{R} \mid n \in \mathbb{N}\}$$
 be an enumeration of \mathbb{R} .
Define $A_n := \mathbb{R} \setminus \{q_n\}$. This is open and clause in \mathbb{R} but
 $\bigcap A_n := \mathcal{Q}$ is not dense in \mathbb{R} .
(b) Openness of $\bigcap A_n$ is folse in general. Consider $A_n := \mathbb{R} \setminus \{q_n\}$.
(c) Baint's Theorem also holds if \mathbb{R} is a locally comput Hansdorff span.
Pf(of(143): Define $D := \bigcap A_n$. Let $\kappa_0 \in \mathbb{X}$ be arbitrary and fix $\varepsilon \approx 0$.
To prove the danseriess of D in \mathbb{X} we have to prove that $D \cap B_{\varepsilon}(\kappa_0) \neq \mathcal{Q}$.
When $K \in D \cap B_{\varepsilon}(x_0)$ (see drawing)
That A_1 is dense implies $A_1 \cap B_{\varepsilon}(x_0) \neq \mathcal{Q}_1$ so pick $x_1 \in A_1 \cap B_{\varepsilon}(x_0)$
and $\varepsilon_1 \in (o_1 \frac{\varepsilon}{2})$ set
 $\overline{B_{\varepsilon_1}(x_1)} \subseteq A_1 \cap B_{\varepsilon}(x_0)$ ($C \cap Pn$)
Proceeding similarly with A_2 and $B_{\varepsilon_1}(x_1) \subseteq A_1 \cap A_2 \cap B_{\varepsilon}(x_0)$

We now prove 3 equivalent reformulations of Barrestini (29)
1 Lemma 1.47 [Let I be a topological space. Then the following
4 statements are equivalent:
11)
$$A_n \subseteq \mathbb{K}$$
 open & dense $\forall n \in \mathbb{N}$ \Longrightarrow A_n dense
111) $A_n \subseteq \mathbb{K}$ open & dense $\forall n \in \mathbb{N}$ \Longrightarrow A_n is a dense
111) $A_n \subseteq \mathbb{K}$ open & dense $\forall n \in \mathbb{N}$ \Longrightarrow A_n is a dense G_T
111) $A_n \subseteq \mathbb{K}$ is a dense G_T the \mathbb{N} \Longrightarrow A is a dense G_T
111) $A \subseteq \mathbb{K}$ has an interior point \Longrightarrow A non-integer
111) $A \subseteq \mathbb{K}$ has an interior point \Longrightarrow A non-integer
112) $A \subseteq \mathbb{K}$ meager \Longrightarrow A^C dense
123 fone (hence, all) of the above holds, \mathbb{K} is called a Baire space.
134 fone (hence, all) of the above holds, \mathbb{K} is called a Baire space.
145 for $(bence, all)$ of the above holds, \mathbb{K} is a Baire space.
147 porticular \therefore If $\mathbb{K} \neq \mathcal{G}$, then \mathbb{K} is non-integer.
147 porticular \therefore If $\mathbb{K} \neq \mathcal{G}$, then \mathbb{K} is non-integer.
147 (of 1.48): (i) \cong (ii) by definition of G_T
151) \Rightarrow (iii): Suppose A is integer, that is, $A = \bigcup A_n$ with
 A_n nowhere dense the \mathbb{N} By 1.47 (a) this is equivalent
140 ($\overline{A_n}$) $\stackrel{\circ}{\circ}$ dense k open the \mathbb{N} and (i) implies that
140 ($\overline{A_n}$) $\stackrel{\circ}{\circ}$ dense k open the \mathbb{N} and (i) implies that
140 \mathbb{K}^{K} \mathbb{K}^{K} is also dense. But then
151 \mathbb{K}^{K} is a so interior painles, hence A has
162 \mathbb{K}^{K} intervection $P(\overline{A_n})^{-1} \cong$ \mathbb{K} is also dense. But then
163 \mathbb{K}^{K} intervection $P(\mathbb{K}^{K})$ is \mathbb{K}^{K} intervection \mathbb{K}^{K} intervection \mathbb{K}^{K} in \mathbb{K}^{K} is \mathbb{K}^{K} .