Breause f is continuous k
$$V_{\alpha}$$
 open, f (V_{α}) is open $V_{\alpha} \in J$, (1)
hence (1) gives an open cover of \mathbb{X} - which is compart.
Hence, $\exists N \in \mathcal{N}$ and $x_{2,\dots,\alpha_{N}}$ s.t. $\mathbb{X} \subseteq \bigcup_{n=1}^{\infty} f(V_{\alpha})$, and therefore,
 $f(\mathbb{X}) \subseteq \bigcup_{n=1}^{\infty} V_{\alpha_{n}}$
(b), (c), (d): see Exercises,
1.5. Example: Spaces of continuous functions
General assumptions in this section:
(i) \mathbb{X} is a compart Hansdorff space
(ii) $C(\mathbb{X})$ is equipped with the uniform (supremum) mether:
 $d_{\infty}(f_{1}g) := \|f^{1}g\|_{\infty}^{1} = \sup_{\mathbb{X} \in \mathbb{Z}} |f^{1}G^{1}-g(\pi)|$
(Node: $\sup_{\mathbb{Z}} = \max$ is finite $\forall f_{1}g \in C(\mathbb{X})$ by Thum $L_{0}^{1}(d)$)
(Theorem 1.31) $C(\mathbb{X})$ is complete.
Pf: Follows form completeness of $C_{b}(\mathbb{X})$ (bounded coult functions;
see exercise), and that $C(\mathbb{X}) = C_{b}(\mathbb{X})$, which follows form
compartures of \mathbb{X} , and Thus, $L_{0}^{1}(d)$. \mathbb{R}
Theorem 1.32 $|\mathbb{X}|$ is metricable $\Longrightarrow C(\mathbb{X})$ is separable
(A topological space (\mathbb{X}, \mathbb{T}) is metricable $(\cong) C(\mathbb{X})$ is separable
(A topological space (\mathbb{X}, \mathbb{T}) is metricable $(\cong) \exists under d \text{ on } \mathbb{X}$ that
 $generalizes, General Topology, \mathbb{T})
Pf: For \mathbb{T}^{2} : See (lex) Bowbaki, "Elemends of Hathematics, General Topology,
Here we only prove:
 \cong : Fix any metric that is compartiable with the topology.
For $m_{1} \in \mathbb{N}$, define
 $G_{m,n} := \{f \in C(\mathbb{X}) \mid f(B_{1}(n)) \leq B_{1}(f(n)) \quad \forall x \in \mathbb{X}\}$
By compediates of \mathbb{X} we get
(i) Any f $\in C(\mathbb{X})$ is even uniformly continuous, by Tom $L_{0}^{2}(c)$.$

Choose
$$\varepsilon := \frac{1}{m}$$
 there, and let m large enough s.t. (20)
 $\frac{1}{m} \leq \delta$. Then $f \in G_{min}$, so $C(\mathbf{X}) = \bigcup G_{min}$ that $\mathcal{W}(\mathbf{I})$
(ii) For any $m \in \mathcal{W}$ we can find $\operatorname{Ku} \in \mathcal{W}$ and $a_{3,\dots,a_{Kn}} \in \mathbf{X}$
such that \mathbf{X} can be written as a union of open balls
of reduces $\frac{1}{m}$: $\mathbf{X} = \bigcup_{K=1}^{M} (a_{K}) (2[(\mathbf{X} \text{ is compact})]$
Now, K is separable, i.e. there exists convoluble
suff $\{k_{N} \in K \mid V \in \mathcal{W}\}$ which is deuse in K .
For given we \mathcal{W} and any $q: \{1,\dots,K_{m}\} \rightarrow \mathcal{W}$, i.e.
 $q = (q(1),\dots,q(\mathcal{K}_{m})) \in \mathcal{W}^{K_{m}}$, define
 $G_{mn}^{m} := \{g \in G_{mn} \mid |g(a_{K}) - K_{q(K)}| \leq \frac{1}{m}$ the $1,\dots,K_{m}\}$
We only work to consider those q with $G_{mn}^{m} \neq \phi_{1}$
so let $\overline{q}_{mn}: = \{q \in \mathcal{W}^{K_{m}} \mid G_{mn}^{m} \neq \phi_{2}\}$
 \overline{q}_{mn} is not empty (since $q_{2}:=(V_{1}\dots V)\in \overline{q}_{mn}$, because
two conclude function $f \equiv R_{N} \in G_{mn}^{m}$).
For every $q \in \overline{q}$ mup pick some $g_{R} \in \overline{G}_{mn}^{m}$. Now define
 $L_{mn}: = \{g_{R} \mid q \in \overline{q}_{mn}\}$ and $L:= \bigcup L_{mn}$
 $m_{M}(a_{R})$
 $k_{q(e_{1})}$
 f_{1}
 f_{2}
 f_{3}
 f_{3}
 f_{2}
 f_{3}
 f_{3}
 f_{2}
 f_{3}
 f_{3}
 f_{4}
 f_{3}
 f_{4}
 f_{2}
 f_{4}
 f_{5}
 f_{5}

Note: Lun is constable because In EIN Km 21 hence Lis countable. The theorem now follows from $C(\underline{aim}) = C(\mathbf{X})$ Pf: Fix $f \in C(\mathbb{Z})$, $n \in \mathbb{W}$. (1) => Jm EIN: fEGmn. Also, Jqf E finn s.t fEGMA: Simply choose qf(k) such that If (ak) - Required I < In, which is possible by the denseness of {ky | ve my in K. $(2) => \forall x \in \mathbb{X} \exists k_x \in \{1, \dots, K_m\} : x \in B_{\frac{1}{m}}(a_{R_x})$ Take gefElmn EL as approximant. Since f, gefEGmin we have, for all KES, $|f(x) - gq_f(x)| \leq |f(x) - f(a_{k_x})| + |f(a_{k_x}) - \chi_{q_f(k_x)}|$ < to by def. of 6min</td>< to by def. of 6min</td> + $| \kappa_{q_f(k_x)} - g_{q_f}(a_{k_x})| + |g_{q_f}(a_{k_x}) - g_{q_f}(x)|$ $\leq \frac{1}{n} b_{\gamma} det. of G_{mn} \qquad \leq \frac{1}{n} b_{\gamma} det. of G_{mn}$ くこ Since f and n were arbitrary, the claim follows B Au alternative approach to separability: Definition 1-33 / (a) A the vectorspace A is a the algebra : (=> There exists a multiplication A × A → A which satisfirs: (a+b)c = ac+bc $\forall a, b, c \in A$ c(a+b) = ca+cbVa, b, c EA $\lambda(ac) = (\lambda a | c = a(\lambda c)) \quad \forall a_i c \in A_i \lambda \in K$ (Example: C(X) is a (commutative!) IK - algebra)

Pf: Let B be the fK - subalgebon of the K-algebon C'(X) generated by the monomials
(#1 M_{n,K}: X ∋ x = (x₁)..., x_d) → x_dⁿ ∈ R , n∈N₀, x∈{1,..., d}
Then Sfore - Weierstrop gives B = C(X) since, clearly,
(1) I ∈ B and, if fK = 0, then B is closed under complex conjugation, since x ∈ X ⊆ Red and B is a C - subspace.
(2) If x, y ∈ X, x ≠ y, then ∃x ∈ {1,...,d}: x_x ≠ y_x, so M_{1,K}(x) ≠ M_{1,K}(y), and so B separates puints.

$$|f_n(x)| = |f_n(x)| + |f_n(y)| + |f_n(y) - f_n(x)|$$

 $\leq b_y \ll 1$ $\leq b_y (\ll x)$ $\leq b_y (\ll x)$ $\leq b_y (\ll x)$

So lan fulx =: fbel exists for every x E X (some (fulxiluein) not a Candy & K complete)

We now prove continuity of f: Note that (*1 holds for all nE IN, and E & I there are indep of n Hence, we can take the kinit n > 20 in (*1 to get

VE 20 JJ20: VX'E B5(x1: (f(x1-f(x'))) ≤ E [Covollary 1.39] Assume - in addition to the assumptions in Thm. 1.38 - that X is compart. Then in fact

$$\lim_{n\to\infty} d_{\infty}(f_n, f) = 0$$

(i.e., the convergence is uniform on Z)

Using (**1, for every xE X we can chouse $k_x \in \{1, -1, k\}$ s.t. xEB5(akx) Then, YUE IN, $|f_n(\kappa) - f(\kappa)| = |f_n(\kappa) - f_n(a_{k_x})| + |f_n(a_{k_x}) - f(a_{k_x})| + |f(a_{k_x}) - f(\kappa)| = :T_2 = :T_3$ (1) T, L & for every nEIN by the definition of a kx and (*) (2) JNEIN: YUZN YXEX: T2 < E by simultanons convergence of (-In (ak)), for k=1,..., K (finitely many !) by Thu. 1.38 (3) T3 ≤ E by the definition of akx, (*1, and the limit u → ∞ in (*) Henre, we have VERO JNEIN VUZN VKES: Ifubel-fbell < 32 2 $\left[\frac{Theorem 1.40}{(Avzelâ-Ascoli)} \right] Let X be a compart metric space,$ $and <math>(f_{n})_{n\in\mathbb{N}} \subseteq C(X)$ on equicontinuous and pointnise bounded Frez: sup [fulx] 200 nelw sequence, i.e. Then there exists a uniformly convergent subsequence (frij) it w. Equivalently: Every equicontinuous and pointwise bounded subset F S C(X) is relatively compact (i.e. F is compart).

Pf. The equivalent of two 2 shelements follows form:
2 metricipane,
$$A \leq 2$$
: A relatively compart ≤ 2 every sequence
in A has a convergent subsequence (with humit not necessarily in A but
any in \overline{A}) (see exercise).
We poor the "sequence version":
Since X is compart, X is also separable (by Thm. 12?), so
there exists a dense subset $\{a_{\lambda} \in X \mid l \in N\} \leq X$. Pocutwise
boundedness gives subject $\{a_{\lambda} \in X \mid l \in N\} \leq X$. Pocutwise
boundedness gives subject $\{a_{\lambda} \in X \mid l \in N\} \leq X$. Pocutwise
boundedness gives subject $\{a_{\lambda} \in X \mid l \in N\} \leq X$. Pocutwise
boundedness gives $\sup_{x \in X} |I_{n}(a_{\lambda})| \leq \infty$ $Vl \in N$, (K(
so, by the Boltzann-Weiserstage Them. (in K), for every l there exists
a subsequence $(n_{1}^{(k)})_{j \in N} \leq N'$ such that
 $(\lim_{x \to 0} f_{n}^{(k)}(a_{\lambda})) = exists. (K**)$
But the need simultaneous convergence on the set of points
 $\{a_{\lambda} \in X \mid l \in N\}$ for a simple subsequence. Use clianonal sequence
trick: Wood, assume $(n_{1}^{(k+1)})_{j \in N} \leq (n_{1}^{(k)})_{j \in N}$
 $E Indered, sup $[f_{n+1}(a_{\lambda})] < \infty$ by $(e_{1} = 11ms, (K*1)$ holds,
with $(n_{2}^{(k)})_{j} \in M$ ("chapteral sequence"). Then
 $(V_{1})_{j \geq k} \leq (n_{1}^{(k)})_{j}$ could from $f_{V_{1}}(a_{k}) exists for all $l \in N$.
Since the set of the assumptions - compactures of X and equicontimity -
are rescential for Thm 1.40 to the pointwise boundaries of a
sequent into (mitorn) convergent of a subsequence.$$