Now, every Ax is a union of certain Brs, and the correspon- (15) ding k's necessarily belong to K. Thus UA, = UBk (AA) XEI KEK (a) k (as imply $X = UA_k = UB_k = UA_{kk} M_{kk}$ Pf. of Thm 1.23: (a) By contradiction: Assump X is compact, but that there exists a sequence (xulnere CX without convergent subsequence. Claim: Vx E X there exists a neighbourhood Ulr | such that Xn E U (x) for at most finitely many n. Pf. of claim: Suppose claim false. Then EXEX and a constable neighbourhood base { Vk} KEIN of x with Vk = Vke, Fke W (holds wlog. (o.B.d.A), see pf. Tum. (.G(b)) such that (*) HREIN: Xu E Yk for infinitely many n so, for all kEIN, define up EIN such that xnp E Vp. Since opp holds for infinitely many n, we can choose the up s.t. Up K het IV But then (Xnn) kew is a subsequence of (Xn) new and kin Xne = X Wlog, the neighbourhoods U(x) from the claim can be assumed to be open. (Otherwise shrink Ula) to the open set contained in it which itself contains x). Now, $X = \bigcup \bigcup(y) = \bigcup \bigcup(y_j)$ for some ne Mr and some $y_{1}, y_n \in X$ because X is compact. The claim implies that each U(y;) contains at most finitely many members of the sequence (xn/nEW, SO X contains at most finitely many members of the sequence (xn)new & (b) "=>"follows from Theorem 1.2 and (a). We prove ="by contradiction?" Assume every sequence has a convergent subsequence, but there exists an open cover of X without finite subcover. As X is 2nd countable, then exists a countable subcorer $X = \bigcup C'_j$ of iew this cover (by Thm. 1-24). For every us IN picka point $(**) \qquad \times_{n} \in \mathbb{X} \setminus (\bigcup_{j=1}^{j})$ (possible the W, since there exists no finite subcover)

By hypothesis, (in)
$$\leq \mathbb{X}$$
 has a convergent subsequence (6)
 $X_{u,k} \stackrel{k \to \infty}{\longrightarrow} X \in \mathbb{E}$. There exists $N \in M$ such that $X \in C_{i,N}$, so
 $G_{i,N}$ is a neighbourhood of X . Now, $(X_{u,n})_{N \in A}$ being convergent
means $X_{u,k} \in C_N$ for finally all k (i.e. $\exists tr: k \geq K \Rightarrow X_{u,k} \in C_N$).
On two other hand, $N_k \geq N$ for finally all k , hence $X_{u,k} \in C_N$
for finally all k by (ker) G
 $f_{i,N}$ finally all k by (ker) G
 $f_{i,N}$ finally all k by (ker) G
 $f_{i,N}$ finally all k by (ker) G
 $f_{i,N}$ for finally all k by $(ker) = A$ compact
(b) X Hausdorff and A compart => A closed
 $Pf. (a)$ Let $UU_X \geq A$ be an open cover. Since A is closed A^{C}
 $is open, and$ $X = A^{C} \cup (UU_X)$ is an open cover.
Since X is compart, there exists $u \in M$ and $u \in I^{i+1} \times I_{i-1}$, $u \in T$ such tool
 $X = A^{C} \cup (UU_X_i)$
and so $UU_X \geq A$ is a finite subcover.
 E_{ient} be E_{ient} and L closed $M = \frac{1}{M_{i+1}}$
 E_{ient} $R^{C} = \{x \in R^{P} \mid \|I_X \|_{Y} \leq I\} = \{x \in R^{P} \mid \|I_X \|_{P} < I\} = \overline{B_{i}(0)}$
is bounded and closed built consider $e^{(n)} = (\dots, 0, 1, 0, \dots) \in \overline{B_{i}(0)}$
(with (at the nith position), $n \in N$. Then
 $d_{P}(e^{(n)}) \in \|I_{r}e^{(n)}\|_{P} = \{x \in R^{P} \mid \|I_{r} \|_{P} < 0, \dots \in \overline{R}$ $M_{i,m} \in M$, $n \neq n$,
so there exists no convergent subsequence, and $\overline{B_{ib}}$ is finite
 Seq . Compared thence, by Thm. 1-23 (s1, \overline{B_{i}}) is not compared.

Theorem 1.27 | Let X be a metric space. Then
X is compart (a) X is sequentially compart

$$U(c)$$

X is 2nd constable (b) X is sequentially compart
 $U(c)$
X is 2nd constable (c) X is sequentially compart
(a) =>: This is Them. 1.9.
(a) =>: This is Them. 1.23(a) (since X is L^{ch} constable).
(a) =>: This is Them. 1.23(a) (since X is L^{ch} constable).
(c): We prove that sequential compactness implies sequentially by constructing
a constable set M with $\overline{M} = \overline{X}$. Fix $u \in M$ and use the following
algorithm to define particles in plass $Z_{m}^{(n)}$:
(i) Choose an arbitrary $X_{m}^{(n)} \in \overline{K}$; set $k:=2$.
(ii) WHILE $R_{m}^{(n)} := \overline{X} \setminus (\bigcup B_{L}(X_{m}^{(n)})) \neq 4$ DO
{ pick $X_{m1}^{(n)} \in \mathbb{R}_{m}^{(n)}$ and increment $k \to kerr]$
Claim: This algorithm stops after finitely many steps.
Time, because for $k \neq 4$, we have $d(X_{m}^{(n)}, X_{m}^{(n)}) \geq \frac{1}{m}$. Hence, if the
algorithm did use clop after finitely many steps.
Time, because for $k \neq 4$, we have $d(X_{m}^{(n)}, X_{m}^{(n)}) \geq \frac{1}{m}$. Hence, if the
algorithm did use clop after finitely many steps.
Time, because $(X_{m}^{(n)})_{k\in M} \leq X$ instruct a convergent subseq.,
in contradiction to X being sequentially compart
 $G(X = U)_{k\in M} \leq X$ instruct a convergent subseq.,
in contradiction to X being sequentially compart
 $G(X = V \in M \in M \in M$ such that
 $G(X = U \in M \in M (X_{m}^{(n)})$
Set $M_{m} = \{X_{m}^{(n)}(j=1,\dots, K_{m})$ and $M := U = M \in M$. Then M is constable.
To prove diverses $(M = X_{m})$, the X $X \in M$ such that
 $d(X, M) = d(X, X_{m}^{(n)}) < \frac{1}{m} \in X$ so $M = X$ \mathbb{R}

Them 1.28 (Tychonoff's Theorem - or Tiknoner)
Let
$$J \neq \phi$$
 be an index set, and \mathbb{X}_{x} a compart topological space for
all $k \in J$. Then
 $X_{x} = \{f: J \rightarrow \bigcup \mathbb{X}_{x} \mid f(x) \in \mathbb{X}_{x}\}$
is compart in the purched topology.
Pf: See any textbook on topology (Kelley, Numbers, V. Querenburg f.ex.)
Definition 1.21/Let \mathbb{X}, \mathbb{Y} be topological spaces. Define
(i) $C(X, \mathbb{Y}) := \{f: X \rightarrow \mathbb{Y} \mid f \text{ is continuous}\}$
In particular, bu $\mathbb{Y} = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, set $C(X) := C(X, \mathbb{K})$
(ii) $C_{b}(X) := \{f \in C(X) \mid \|f(\mathbb{K}_{0} \leq o)\}$ (bounded continuous functions)
where $\|f(\mathbb{F}) = \sup \|f(\mathbb{E})\| = \sup \{f(\mathbb{K})\| \| \mathbb{X} \in \mathbb{Z}\}$
(Mercen 1.30 (Let \mathbb{X}, \mathbb{Y} be topological spaces, \mathbb{X} compart, $f \in C(X, \mathbb{Y})$.
Then f is a homeomorphism (i.e., f^{-1} is continuous)
(c) If X, \mathbb{Y} are medice spaces, then f is uniformly continuous)
(d) Assume \mathbb{Y} is Heursderff and f is a bijection.
Then f is a homeomorphism (i.e., f^{-1} is continuous)
(e) $\inf X, \mathbb{Y}$ are medice spaces, then f is $\inf \{f(X), d_{\mathbb{Y}}\}$
(equivalually: $\mathbb{Y} \le \mathbb{I} = \mathbb{R}$ (i.e. $f: X \rightarrow \mathbb{R}$). Then \mathbb{F} takes
on its maximum and minimum $\mathbb{I} = \mathbb{X}, \mathbb{X} \in \mathbb{R}$:
 $\mathbb{Y} \le \mathbb{R}$: $f(X_1) \le f(X) = f(X_1)$ be an assume case (\mathbb{R}).

$$\frac{Pf: (a) Let \ \cup V_{\alpha} \ \ge f(\mathbf{X}) \ be an open cover. Then
(*)
$$\mathbf{X} \le f^{-1}(\bigcup V_{\alpha}) = \bigcup f^{-1}(V_{\alpha}) \quad (= in fact)$$$$

Breause f is continuous k
$$V_{\alpha}$$
 open, f (V_{α}) is open $V_{\alpha} \in J$, (1)
hence (1) gives an open cover of \mathbb{X} - which is compart.
Hence, $\exists N \in \mathcal{N}$ and $x_{2,\dots,\alpha_{N}}$ s.t. $\mathbb{X} \subseteq \bigcup_{n=1}^{\infty} f(V_{\alpha})$, and therefore,
 $f(\mathbb{X}) \subseteq \bigcup_{n=1}^{\infty} V_{\alpha_{n}}$
(b), (c), (d): see Exercises,
1.5. Example: Spaces of continuous functions
General assumptions in this section:
(i) \mathbb{X} is a compart Hansdorff space
(ii) $C(\mathbb{X})$ is equipped with the uniform (supremum) mether:
 $d_{\infty}(f_{1}g) := \|f^{1}g\|_{\infty}^{1} = \sup_{\mathbb{X} \in \mathbb{Z}} |f^{1}G^{1}-g(\pi)|$
(Node: $\sup_{\mathbb{Z}} = \max$ is finite $\forall f_{1}g \in C(\mathbb{X})$ by Thum $L_{0}^{1}(d)$)
(Theorem 1.31) $C(\mathbb{X})$ is complete.
Pf: Follows form completeness of $C_{b}(\mathbb{X})$ (bounded coult functions;
see exercise), and that $C(\mathbb{X}) = C_{b}(\mathbb{X})$, which follows form
compartures of \mathbb{X} , and Thus, $L_{0}^{1}(d)$. \mathbb{R}
Theorem 1.32 \mathbb{X} is metriculate ($\mathbb{D} \subset (\mathbb{X})$) is separable
(A topological space (\mathbb{X}, \mathbb{T}) is metriculate ($\mathbb{D} \subseteq C(\mathbb{X})$) is separable
(A topological space (\mathbb{X}, \mathbb{T}) is metriculate ($\mathbb{D} \subseteq C(\mathbb{X})$ is separable
(A topological space (\mathbb{X}, \mathbb{T}) is metriculate ($\mathbb{D} \subseteq C(\mathbb{X})$) is defined to \mathbb{T} theorem 1.32
 \mathbb{P}_{1}^{1} For \mathbb{T}^{2}^{1} : See (lex) Bonvbahi, "Elemends of Hathematics, General Topology,
Here we only prove:
 \mathbb{T} : Fix any metric thad is compartiable with the topology.
For $m, n \in \mathbb{N}$, define
 $G_{m,n} := \{f \in C(\mathbb{X}) \mid f(\mathbb{B}_{1}(n)) \subseteq \mathbb{B}_{1}^{1}(f(n)) \quad \forall x \in \mathbb{X}\}$
By competions of \mathbb{X} we get
(i) Any f $\in C(\mathbb{X})$ is even uniformly continuous, by Tun. Loc(c).