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This is an overview of material on Metric and Topological Spaces (Ana2) needed
for the course.
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Metric and Topological Spaces

Let X be a (non-empty) set (for example X = Rd or any subset of Rd), and let P(X) be
the family of all subsets of X (its power set).

Definition 1 (Topology; topological space). A family T of subsets of X, T ⊆ P(X),
is called a topology (on X) if and only if (’iff’)

(i) ∅, X ∈ T .

(ii) A1, A2 ∈ T ⇒ A1 ∩ A2 ∈ T .

(iii) For any index set I:
(
Aj ∈ T for all j ∈ I

)
⇒ ⋃

j∈I Aj ∈ T .

The pair (X, T ) (or often just X) is called a topological space, and A ⊆ X is open
:⇔ A ∈ T .

Remark 1. By induction, (ii) is equivalent to:

(ii’) For any n ∈ N :
(
Aj ∈ T for all j = 1, . . . , n

)
⇒ ⋂n

j=1 Aj ∈ T .

Definition 2 (Coarser/finer topologies). Let T1, T2 be topologies on X. We say that
T1 is finer than T2, and T2 is coarser than T1, iff T2 ⊆ T1.

Example 1.

1. Indiscrete topology: T := {∅, X}.

2. Discrete topology: T := P(X).

3. All topologies are finer than the indiscrete, and coarser than the discrete topology.

4. Euclidean (or standard) topology TE on Rd, d ∈ N: A ⊆ Rd is open (in (Rd, TE))
iff ∀x ∈ A ∃ε > 0 such that Bε(x) ⊆ A, where Bε(x) := {y ∈ Rd | |x− y| < ε} is the
Euclidean ball of radius ε > 0 about/around/with centre x ∈ Rd.

Definition 3 (Induced/relative topology). Let (X, T ) be a topological space, and let
A ⊆ X (not necessarily open!). The relative (or induced) topology TA on A is

TA :=
{
B ⊆ A

∣∣∣ ∃C ∈ T with B = C ∩ A
}
⊆ P(A) .1



Remark 2.

1. TA is a topology on A.

2. If A /∈ T and B ∈ TA, then it may happen that B /∈ T . Example: Let X = R with
the standard topology TE, A = [0, 1]. Then B := [0, 1

2 [∈ TA but B /∈ TE.

Definition 4 (Closed set; neighbourhood; Hausdorff space; adherent point/point
of closure; limit/accumulation point; closure; interior point; interior; boundary
point; boundary; dense).
Let (X, T ) be a topological space, A ⊆ X, x ∈ X.

(i) The set A is called closed (in X, or, correctly, in (X, T )) iff Ac := X \ A ∈ T
(that is, the complement Ac of A is open (in X)).

(ii) A set U ⊆ X (not necessarily open) is called a neighbourhood of x iff ∃A ∈ T such
that x ∈ A and A ⊆ U .

(iii) The (topological) space X (or, correctly, (X, T )) is called a Hausdorff space (or,
is Hausdorff) iff For all x, y ∈ X, x 6= y, there exist neigbourhoods Ux of x and Uy
of y such that Ux ∩ Uy = ∅.

(iv) The point x is called an adherent point (or, a point of closure) of A iff For
all neighbourhoods U of x: U ∩ A 6= ∅.

(v) The point x is called a limit point (or, an accumulation point) of A iff For all
neighbourhoods U of x: (U \ {x}) ∩ A 6= ∅.

(vi) The closure A of A is A := {x ∈ X |x adherent point of A}.

(vii) The point x is called a boundary point of A iff For all neighbourhoods U of x:
U ∩ A 6= ∅ and U ∩ Ac 6= ∅.

(viii) The boundary ∂A of A is ∂A := {x ∈ X |x boundary point of A}.

(ix) The point x is called an interior point of A iff There exists a neigbourhood U
of x such that U ⊆ A.

(x) The interior A◦ of A is A◦ := {x ∈ X |x interior point of A}.

(xi) The set A is dense in X (correctly, in (X, T )) iff A = X.

Remark 3.

1. Every point of A is an adherent point of A. Hence, A ⊆ A.

2. Note that A = A ∪ ∂A and A◦ = A \ ∂A.

Lemma 1. Let X be a topological space, A ⊆ X.

(i) A is open iff ∀x ∈ A : x is an interior point of A.

(ii) A is closed iff A = A.

(iii) A and ∂A are closed.
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Definition 5 (Base; subbase; neighbourhood base).
Let (X, T ) be a topological space.

(i) A family B ⊆ T is called a base (or basis) for (the topology) T iff T consists
of unions of sets from B.

(ii) A family S ⊆ T is called a subbase (or subbasis) for (the topology) T iff
finite intersections of sets from S form a base for T .

(iii) A family N ⊆ T is called a neighbourhood base (or neighbourhood basis) at
x ∈ X iff Every N ∈ N is a neighbourhood of x and for every neighbourhood U of
x there exists N ∈ N with N ⊆ U .

Example 2. Consider Rd with the standard topology. Let x ∈ Rd.

1. The family {B1/n(x) |n ∈ N} is a neighbourhood base at x.

2. The family {B1/n(q) |n ∈ N, q ∈ Qd} is a base for the standard topology.

Lemma 2. Let S ⊆ P(X). Then there exists a topology T (S) on X such that

(i) S is a subbase for T (S).

(ii) T (S) is the coarsest (that is, “smallest”) topology containing S. That is,

T (S) =
⋂

T ⊇S;T topology
T .

The topology T (S) is called the topology generated by S.

Definition 6 (Product topology). Let I 6= ∅ be an arbitrary (!) index set. For every
α ∈ I, let (Xα, Tα) be a topological space. The product topology on the Cartesian
product space,

×
α∈I

Xα :=
{
f : I →

⋃
α∈I

Xα

∣∣∣∀α ∈ I : f(α) ∈ Xα

}
, (1)

is the one generated by the family{×
α∈I

Aα
∣∣∣∀α ∈ I : Aα ∈ Tα, and Aα 6= Xα for at most finitely many α’s

}
.

Remark 4. If I is finite, then the condition “Aα 6= Xα for at most finitely many α’s” is
always fulfilled.

Definition 7 (Metric; metric space). A map d : X ×X → [0,∞ [ is called a metric
(on X) iff

(i) d(x, y) ≥ 0 ∀x, y ∈ X, with d(x, y) = 0 iff x = y. (positiv definit)

(ii) d(x, y) = d(y, x) ∀x, y ∈ X. (symmetric)

(iii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X. (triangle inequality)

If d is a metric on X, then (X, d) (or, often just X) is called a metric space.
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Definition 8 (Induced metric; open (metric) ball; open set; Cauchy sequence;
convergent sequence; limit; complete (metric) space).
Let (X, d) be a metric space.

(i) Let Y ⊆ X. The map dY := d|Y×Y : Y × Y → [0,∞ [ is called the induced metric
(on Y ).

(ii) For x ∈ X, ε > 0, the set Bε(x) := {y ∈ X | d(x, y) < ε} is called the open (metric)
ball of radius ε > 0 about/around/with centre x. (More correctly: Bε(x; d).)

(iii) A set A ⊆ X is called open (in the metric space (X, d)) iff For every x ∈ A there
exists ε > 0 such that Bε(x) ⊆ A.

(iv) The family Td := {A ⊆ X |A is open in (X, d) } is a topology on X, called the
metric topology. Hence, any metric space is a topological space.

(v) A sequence (xn)n∈N ⊆ X is called a Cauchy sequence (or, is said to be Cauchy
(!)) (in X, or, in (X, d)) iff

For every ε > 0 there exists N ∈ N such that for every n,m ≥ N : d(xn, xm) < ε.

(vi) A sequence (xn)n∈N ⊆ X is called convergent (or, is said to converge) (in X, or,
in (X, d)) iff There exists x ∈ X such that limn→∞ d(xn, x) = 0 (which is equivalent
to: ∀ε > 0∃n0 ∈ N : ∀n ≥ n0 : xn ∈ Bε(x)). In this case, (xn)n∈N is said to converge
to x, and x is called its limit. We write limn→∞ xn = x or xn → x, n→∞.

(vii) The space X (more correctly, (X, d)) is called complete (or, is a complete metric
space) iff every Cauchy sequence in X converges. That is: For all Cauchy sequences
(xn)n∈N ⊆ X there exists x ∈ X (!) such that limn→∞ xn = x.

Remark 5. Completeness is not a topological notion!

Definition 9. Let (X, d) be a metric space, let A ⊆ X, x ∈ X.

(i) The (extended) number diam(A) := supa,b∈A d(a, b) ∈ [0,∞] is called the diameter
of A.

(ii) The number dist(x,A) := infa∈A d(x, a) is called the distance of x to A.

Lemma 3. Let X be a complete metric space, and let A ⊆ X. Then A is closed iff A is
complete.
(More precisely/correctly: Assume (X, d) is a complete metric space, A ⊆ X. Then A is
closed in (X, d) iff (A, dA) is a complete metric space.)
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