

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. Dr. Thomas Ø. Sørensen Version 0.1 FA 1 Handout SoSe 2022 18. April 2022

This is an overview of material on MEASURE AND INTEGRATION THEORY (Ana3).

TO BE UPDATED - CHECK DATE AND VERSION

Measure and Integration Theory

Let X be a non-empty set (for example $X = \mathbb{R}^d$ or any subset of \mathbb{R}^d), and let $\mathcal{P}(X)$ be the family of all subsets of X (its *power set*).

Definition 1 (σ -algebra). A family of subsets of X, $\mathcal{A} \subset \mathcal{P}(X)$, is called a σ -algebra (on X) if and only if ('iff')

- (i) $X \in \mathcal{A}$.
- (*ii*) $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$.
- (*iii*) $(A_j \in \mathcal{A} \text{ for all } j \in \mathbb{N}) \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}.$

The pair (X, \mathcal{A}) is called a measurable space, and $A \subset X$ is measurable : $\Leftrightarrow A \in \mathcal{A}$.

Proposition 1 (Generated σ -algebras; Borel-(σ -)algebra).

(i) For any family $\mathcal{B} \subset \mathcal{P}(X)$ there exists a smallest σ -algebra $\sigma(\mathcal{B})$ containing \mathcal{B} (that is, $\sigma(\mathcal{B}) \supset \mathcal{B}$, and if \mathcal{C} is a σ -algebra with $\mathcal{C} \supset \mathcal{B}$, then $\mathcal{C} \supset \sigma(\mathcal{B})$), given by

$$\sigma(\mathcal{B}) := \bigcap_{\mathcal{A} \subset \mathcal{P}(X), \mathcal{A}} \bigcap_{\sigma\text{-algebra}, \mathcal{A} \supset \mathcal{B}} \mathcal{A}.$$
(1)

We call $\sigma(\mathcal{B})$ the σ -algebra generated by \mathcal{B} .

- (ii) Let (X, \mathcal{T}) be a topological space (for example, a metric space (X, d) with the topology \mathcal{T}_d generated by the metric d). The σ -algebra $\sigma(\mathcal{T})$ is called the Borel- σ -algebra (or Borel-algebra) (on (X, \mathcal{T})), denoted $\mathcal{B}(X)$ (more correct would be: $\mathcal{B}(X, \mathcal{T})$), and $B \subset X$ is a Borel-set (or Borel or Borel-measurable) : $\Leftrightarrow B \in \mathcal{B}(X)$.
- (iii) For a measurable space (X, \mathcal{A}) and a subset $B \subset X$ (not necessarily measurable), the induced σ -algebra (or trace- σ -algebra) on B is defined by $\mathcal{A}_B := \{B \cap A \mid A \in \mathcal{A}\}$. If $B \in \mathcal{A}$, then $\mathcal{A}_B \subset \mathcal{A}$.

Example 1 (Borel-algebra on \mathbb{R}^d , $\mathbb{R}_{\geq 0}$, $\overline{\mathbb{R}}$, $\overline{\mathbb{R}}_{\geq 0}$). Let $X := \mathbb{R}^d$ with the usual topology $\mathcal{T}_{\text{Eucl}}$, generated by the Euclidean metric $|\cdot|$. We denote $\mathcal{B}^d := \mathcal{B}(\mathbb{R}^d) := \sigma(\mathcal{T}_{\text{Eucl}})$ the Borel-algebra on \mathbb{R}^d , and write $\mathcal{B} := \mathcal{B}^1$ when there is no risk of confusion. We denote $\mathcal{B}_{\geq 0} := \mathcal{B}^1_{\mathbb{R}_{\geq 0}} := \{\mathbb{R}_{\geq 0} \cap A \mid A \in \mathcal{B}^1\}$. It is the Borel-algebra of $\mathbb{R}_{\geq 0}$ (with the topology on $\mathbb{R}_{\geq 0}$ the one induced from \mathbb{R}). For $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$, we denote $\mathcal{B}(\overline{\mathbb{R}}) := \sigma(\mathcal{B}^1 \cup \{\{-\infty\}\} \cup \{\{+\infty\}\})$. It is the Borel-algebra on $\overline{\mathbb{R}}$ for the usual topology on $\overline{\mathbb{R}}$. Finally, $\overline{\mathcal{B}}_{>0} := \{\overline{\mathbb{R}}_{>0} \cap A \mid A \in \mathcal{B}(\overline{\mathbb{R}})\} (= \mathcal{B}(\overline{\mathbb{R}}_{>0}))$.

Definition 2 ((Positive) measure).

- (i) Let \mathcal{A} be a σ -algebra on X. A map $\mu : \mathcal{A} \to [0, \infty]$ is called a (positive) measure (on X, or on (X, \mathcal{A})) iff
 - (i) $\mu(\emptyset) = 0.$
 - (ii) For all $A_j \in \mathcal{A}$, $j \in \mathbb{N}$, with $A_j \cap A_k = \emptyset$ for $j \neq k$:

$$\mu\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{j=1}^{\infty} \mu(A_j) \quad (\sigma\text{-additivity}).$$
(2)

The triple (X, \mathcal{A}, μ) is called a measure space.

(ii) A measure μ (or, more correctly, a measure space (X, \mathcal{A}, μ)) is called finite (or bounded) iff $\mu(X) < \infty$, and σ -finite iff there exists $(X_j)_{j \in \mathbb{N}}, X_j \in \mathcal{A}, X = \bigcup_{j=1}^{\infty} X_j$, with $\mu(X_j) < \infty$ for all $j \in \mathbb{N}$.

Example 2 (Lebesgue-Borel measure on \mathbb{R}^d). There exists a unique measure, called the *Lebesgue-Borel measure* λ^d , on \mathcal{B}^d so that for all rectangles $Q := \bigvee_{j=1}^d [a_j, b_j) \subset \mathbb{R}^d$, $-\infty \leq a_j \leq b_j \leq \infty$, holds

$$\lambda^{d}(Q) = \prod_{j=1}^{d} (b_j - a_j).$$
(3)

Furthermore, λ^d is translation and rotation invariant, and σ -finite.

Definition 3 ((μ -)Null sets; complete measure). Let (X, A, μ) be a measure space.

- (i) A subset $N \subset X$ is called a (μ -)null set iff $N \in \mathcal{A}$ and $\mu(N) = 0$.
- (ii) (X, \mathcal{A}, μ) (or just μ) is called complete iff all subsets of null sets are null sets.

Theorem 1 (Completion of measure). Let (X, \mathcal{A}, μ) be a measure space. Then there exists a smallest complete measure space $(X, \overline{\mathcal{A}}, \overline{\mu})$ (called the completion of (X, \mathcal{A}, μ)) containing (X, \mathcal{A}, μ) (that is, $\overline{\mathcal{A}} \supset \mathcal{A}, \overline{\mu}|_{\mathcal{A}} = \mu$, and $\overline{\mu}$ is complete).

Example 3 (Lebesgue measure on \mathbb{R}^d). The completion of $(\mathbb{R}^d, \mathcal{B}^d, \lambda^d)$ (which is not in itself complete) is denoted $(\mathbb{R}^d, \overline{\mathcal{B}^d}, \overline{\lambda^d})$. Elements of $\overline{\mathcal{B}^d}$ are called *Lebesgue-measurable* (subsets of \mathbb{R}^d), and $\overline{\lambda^d}$ is called (d-dimensional) Lebesgue measure. One has

$$\overline{\mathcal{B}^d} = \left\{ B \cup \widetilde{N} \, \middle| \, B \in \mathcal{B}^d, \exists N \in \mathcal{B}^d \text{ with } \lambda^d(N) = 0, \widetilde{N} \subset N \right\}.$$
(4)

Furthermore, $A \in \overline{\mathcal{B}^d}$ iff for all $\varepsilon > 0$ there exists $U \subset \mathbb{R}^d$ open and $C \subset \mathbb{R}^d$ closed, with $C \subset A \subset U$, such that $\lambda^d(U \setminus \underline{C}) < \varepsilon$. Note in particular that $\mathcal{B}^d \subset \overline{\mathcal{B}^d} \subset \mathcal{D}(\mathbb{R}^d)$

Note, in particular, that $\mathcal{B}^d \subsetneq \overline{\mathcal{B}^d} \subsetneq \mathcal{P}(\mathbb{R}^d)$.

Definition 4 (Measurable maps and functions).

- (i) Let (X, \mathcal{A}) , (Y, \mathcal{C}) be measurable spaces. A map $f : X \to Y$ is called $(\mathcal{A}-\mathcal{C}-)$ measurable iff $f^{-1}(C) \in \mathcal{A}$ for all $C \in \mathcal{C}$. We denote by $\mathcal{M}(X, Y)$ the set of all $\mathcal{A}-\mathcal{C}$ -measurable maps. (More correct would be $\mathcal{M}((X, \mathcal{A}), (Y, \mathcal{C}))$.)
- (ii) In the special case $(Y, \mathcal{C}) = (\mathbb{R}, \mathcal{B}^1)$, we denote $\mathcal{M}(X) := \mathcal{M}(X, \mathbb{R})$ the set of all measurable functions $f : X \to \mathbb{R}$, and $\mathcal{M}_+(X) := \{f \in \mathcal{M}(X) \mid f \ge 0\}$. Note that $\mathcal{M}_+(X) = \mathcal{M}(X, \mathbb{R}_{\ge 0}) = \mathcal{M}((X, \mathcal{A}), (\mathbb{R}_{\ge 0}, \mathcal{B}_{\ge 0})).$
- (iii) In the special case $(Y, \mathcal{C}) = (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$, we denote $\overline{\mathcal{M}}(X) := \mathcal{M}(X, \overline{\mathbb{R}})$ the set of all measurable numerical (or extended real-valued) functions $f : X \to \overline{\mathbb{R}}$, and $\overline{\mathcal{M}}_+(X) := \{f \in \overline{\mathcal{M}}(X) \mid f \ge 0\}$. Again, $\overline{\mathcal{M}}_+(X) = \mathcal{M}(X, \overline{\mathbb{R}}_{\ge 0})$.
- (iv) We denote by $\mathcal{M}(X,\mathbb{C})$ the set of all complex functions $f : X \to \mathbb{C}$ such that $\Re(f), \Im(f) \in \mathcal{M}(X,\mathbb{R}).$

Remark 1. One has

$$\mathcal{M}(X) = \left\{ f : X \to \mathbb{R} \, \middle| \, f^{-1} \big((-\infty, a) \big) \in \mathcal{A} \text{ for all } a \in \mathbb{R} \right\}, \tag{5}$$

and similarly with $(-\infty, a)$ replaced with $(-\infty, a]$, (a, ∞) , or $[a, \infty)$. Analogous statements hold for $\overline{\mathcal{M}}(X)$. We denote, for $a \in \overline{\mathbb{R}}$,

$$\{f < a\} := f^{-1}((-\infty, a)) = \{x \in X \mid f(x) \in (-\infty, a)\},$$
(6)

and similarly for other types of intervals.

Definition 5 (Distribution function).

Let (X, \mathcal{A}, μ) be a measure space. For $f \in \overline{\mathcal{M}}(X)$, we call the function $\mu_f : \mathbb{R} \to \mathbb{R}$ given by

$$\mu_f(t) := \mu(\{f > t\}) = \mu(\{x \in X \mid f(x) > t\})$$
(7)

the distribution function of f (relative to μ).

Definition 6 (Almost everywhere (a.e.); f = g a.e.).

Let (X, \mathcal{A}, μ) be a measure space.

- (i) A mathematical statement Q = Q(x) (which is assumed to make sense for all $x \in X$) is said to hold (μ -) almost everywhere (a.e., or μ -a.e.) iff there exists a (μ -)null set N such that Q(x) is true/holds for all $x \in X \setminus N$.
- (*ii*) Let $f, g : X \to \mathbb{M}$ ($\mathbb{M} \in \{\mathbb{R}, \mathbb{R}_{\geq 0}, \overline{\mathbb{R}}, \overline{\mathbb{R}}_{\geq 0}, \mathbb{C}\}$) be measurable, then f = g a.e. iff f(x) = g(x) a.e. This defines an equivalence relation $\sim_{a.e.}$ on $\mathcal{M}(X, \mathbb{M})$.

Definition 7 (Step functions).

Let (X, \mathcal{A}) be a measurable space. A function $f : X \to \mathbb{R}$ is called a step function iff there exists $N \in \mathbb{N}$, $A_1, \ldots, A_N \in \mathcal{A}$, and $a_1, \ldots, a_N \in \mathbb{R}$ such that

$$f = \sum_{n=1}^{N} a_n \mathbb{1}_{A_n} \,. \tag{8}$$

Here, $\mathbb{1}_B$ is the characteristic (or indicator) function of (the set) B, given by $\mathbb{1}_B(x) = 1$ if $x \in B$, and equal 0 otherwise ($x \notin B$).

Note that step functions are measurable by definition. We denote the set of all non-negative step functions by

$$E_{+} := \left\{ f : X \to \mathbb{R} \, \middle| \, f \ge 0 \,, \, f \text{ step function} \right\}.$$
(9)

Theorem 2 (Approximating measurable functions by step functions). Let (X, \mathcal{A}) be a measurable space. Then $f \in \mathcal{M}(X, \mathbb{R})$ iff there exists a sequence $(f_n)_{n \in \mathbb{N}}$ of step functions $f_n : X \to \mathbb{R}$ with $f = \lim_{n \to \infty} f_n$ (pointwise on X). If $f \in \mathcal{M}+(X)$, then the sequence can be chosen monotone $(f_n \nearrow f)$, and if f is a bounded function, then the sequence can be chosen such that the convergence is uniform on X.

Definition 8 (Definition and properties of Lebesgue integral).

Let (X, \mathcal{A}, μ) be a measure space.

1. Let $f \in E_+$ ($f \ge 0$, f step function), with $f = \sum_{n=1}^N a_n \mathbb{1}_{A_n}$, $A_n \in \mathcal{A}$, $a_n \in \mathbb{R}$. Then

$$\int_{X} f \, \mathrm{d}\mu := \int_{X} f(x) \, \mathrm{d}\mu(x) := \sum_{n=1}^{N} a_n \mu(A_n) \in [0, \infty]$$
(10)

is the $(\mu$ -)integral of f over X. It is independent of the representation in (8).

2. Let $f \in \overline{\mathcal{M}}_+(X)$ $(f : X \to [0, \infty]$, measurable), and let $(f_n)_{n \in \mathbb{N}} \subset E_+$ be an approximating sequence as in Theorem 2. Then

$$\int_X f \,\mathrm{d}\mu := \int_X f(x) \,\mathrm{d}\mu(x) := \lim_{n \to \infty} \left(\int_X f_n(x) \,\mathrm{d}\mu(x) \right) \in [0, \infty] \tag{11}$$

is the $(\mu$ -)integral of f over X. The limit is well-defined, since the sequence $(\int_X f_n d\mu)_{n \in \mathbb{N}} \subset [0, \infty]$ is non-decreasing. The limit is independent of the chosen sequence $(f_n)_{n \in \mathbb{N}}$.

3. For $f: X \to \overline{\mathbb{R}}$, let $f_{\pm} := \max\{\pm f, 0\}$ (so $f = f_{+} - f_{-}, |f| = f_{+} + f_{-}$). Then f is $(\mu$ -)integrable over $X :\Leftrightarrow f \in \overline{\mathcal{M}}(X)$ and $\int_{X} f_{+} d\mu < \infty$, $\int_{X} f_{-} d\mu < \infty$. In this case,

$$\int_X f \,\mathrm{d}\mu := \int_X f(x) \,\mathrm{d}\mu(x) := \int_X f_+ \,\mathrm{d}\mu - \int_X f_- \,\mathrm{d}\mu \in \mathbb{R}$$
(12)

is the $(\mu$ -)integral of f over X. We denote the set of integrable functions by

$$\mathcal{L}^{1} := \mathcal{L}^{1}(X) := \mathcal{L}^{1}(\mu) := \mathcal{L}^{1}(X,\mu) := \mathcal{L}^{1}(X,\mathcal{A},\mu) := \left\{ f : X \to \mathbb{R} \mid f \ \mu\text{-integrable} \right\},$$
$$\overline{\mathcal{L}^{1}} := \overline{\mathcal{L}^{1}}(X) := \overline{\mathcal{L}^{1}}(\mu) := \overline{\mathcal{L}^{1}}(X,\mu) := \overline{\mathcal{L}^{1}}(X,\mathcal{A},\mu) := \left\{ f : X \to \overline{\mathbb{R}} \mid f \ \mu\text{-integrable} \right\}.$$

- 4. For $A \in \mathcal{A}$, and $f \in \mathcal{L}^1$ (or $f \in \overline{\mathcal{L}^1}$), let $\int_A f \, \mathrm{d}\mu := \int_X f \mathbb{1}_A \, \mathrm{d}\mu$.
- 5. Properties of the integral:
 - (a) For $f \in \overline{\mathcal{L}^1}$, $f \ge 0$, one has: $\int_X f \, \mathrm{d}\mu = 0 \Leftrightarrow f = 0 \ \mu$ -a.e.
 - (b) The map $f \mapsto \int_X f \, d\mu$ from $\overline{\mathcal{L}^1}$ to \mathbb{R} is linear and monotone.

(c) For $f \in \overline{\mathcal{L}^1}$,

$$\int_{X} f \,\mathrm{d}\mu \Big| \le \int_{X} |f| \,\mathrm{d}\mu \quad \text{(triangle inequality)}. \tag{13}$$

(d) For $f \in \overline{\mathcal{L}^1}$, $f \ge 0$, and all $\varepsilon > 0$,

$$\mu(\{f \ge \varepsilon\}) \le \frac{1}{\varepsilon} \int_X f \, \mathrm{d}\mu \quad \text{(Chebyshev's inequality)}. \tag{14}$$

Proposition 2 (Riemann versus Lebesgue interal in $\mathbb{R}).$

For $f: [a,b] \to \mathbb{R}$ $(a,b \in \mathbb{R}, a < b)$ Riemann-integrable, denote $\int_a^b f(x) dx$ the Riemann-integral of f over [a,b].

1. For $f : [a, b] \to \mathbb{R}$ Riemann-integrable there exists $g : \mathbb{R} \to \mathbb{R}$ measurable, with f = ga.e. on [a, b] such that

$$\int_{a}^{b} f(x) \, dx = \int_{[a,b]} g(x) \, \mathrm{d}\lambda^{1}(x) \,. \tag{15}$$

2. Let $f:[0,\infty) \to \mathbb{R}$ be measurable, and continuous on $(0,\infty)$. Then

$$\int_{\mathbb{R}} f \mathbb{1}_{[1,\infty)} \,\mathrm{d}\lambda^1 = \lim_{n \to \infty} \int_{1}^n f(x) \,dx \,, \tag{16}$$

$$\int_{\mathbb{R}} f \mathbb{1}_{[0,1]} \, \mathrm{d}\lambda^1 = \lim_{n \to \infty} \int_{1/n}^1 f(x) \, dx \,. \tag{17}$$

In particular,

$$\int_{[0,1]} x^a \,\mathrm{d}\lambda^1(x) < \infty \iff a > -1\,,\tag{18}$$

$$\int_{[1,\infty)} x^b \,\mathrm{d}\lambda^1(x) < \infty \iff b < -1.$$
⁽¹⁹⁾

Also,

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2} = \lim_{R \to \infty} \left(\int_{[0,R]} \frac{\sin x}{x} \, \mathrm{d}\lambda^1(x) \right),\tag{20}$$

$$\int_{\mathbb{R}} e^{-x^2} \,\mathrm{d}\lambda^1(x) = \sqrt{\pi}\,. \tag{21}$$

In what follows, let (X, \mathcal{A}, μ) be any measure space.

Definition 9 (Essential supremum). For a measurable function $f: X \to \overline{\mathbb{R}}$ the essential supremum of f is

$$\operatorname{ess\,sup} f = \operatorname{ess\,sup}_X f = \inf \{ s \in \overline{\mathbb{R}} \, | \, f(x) \le s \ \mu \text{-}a.e \}$$
$$= \inf \{ \sup_{x \in X \setminus N} f(x) \, \big| \, N \subset X, N \ \mu \text{-}null \ set \} .$$
(22)

Definition 10 (The semi-normed spaces $\mathcal{L}^p(X), p \in [1, \infty]$).

(i) For $p \in [1, \infty)$, let

$$\mathcal{L}^{p} := \mathcal{L}^{p}(X) := \mathcal{L}^{p}(\mu) := \mathcal{L}^{p}(X,\mu) := \mathcal{L}^{p}(X,\mathcal{A},\mu)$$
$$:= \left\{ f : X \to \mathbb{C} \mid f \in \mathcal{M}(X,\mathbb{C}), \int_{X} |f|^{p} \,\mathrm{d}\mu < \infty \right\}$$
(23)

and, for $f \in \mathcal{L}^p(X)$, let

$$||f||_p := \left(\int_X |f|^p \,\mathrm{d}\mu < \infty\right)^{1/p}.$$
 (24)

(ii) For $p = \infty$, let

$$\mathcal{L}^{\infty} := \mathcal{L}^{\infty}(X) := \mathcal{L}^{\infty}(\mu) := \mathcal{L}^{\infty}(X,\mu) := \mathcal{L}^{\infty}(X,\mathcal{A},\mu)$$
$$:= \left\{ f : X \to \mathbb{C} \mid f \in \mathcal{M}(X,\mathbb{C}), \operatorname{ess\,sup}_{X}|f| < \infty \right\},$$
(25)

and, for $f \in \mathcal{L}^{\infty}(X)$, let

$$||f||_{\infty} := \operatorname{ess\,sup}_X |f| \,. \tag{26}$$

Then, for all $p \in [1, \infty]$, $\|\cdot\|_p$ is a semi-norm on $\mathcal{L}^p(X)$: $\|f\|_p = 0 \Leftrightarrow f \sim_{a.e.} 0$ (which does not mean f = 0).

Theorem 3 (Minkowski and (generalised) Hölder inequalities).

- (i) (Minkowski) Let $p \in [1, \infty]$, then $||f + g||_p \le ||f||_p + ||g||_p$ for all $f, g \in \mathcal{L}^p(X)$.
- (ii) (Hölder) Let $p, q \in [1, \infty]$, with $\frac{1}{p} + \frac{1}{q} = 1$. Then, for all $f \in \mathcal{L}^p(X), g \in \mathcal{L}^q(X)$,

$$\int_{X} |fg| \,\mathrm{d}\mu \le \|f\|_{p} \|g\|_{q} \,. \tag{27}$$

(*iii*) (Generalied Hölder) Let $n \in \mathbb{N}$ $(n \geq 2)$, and let $p_1, \ldots, p_n \in [1, \infty]$, and let $p \in [1, \infty]$ satisfy $\frac{1}{p} = \sum_{j=1}^{n} \frac{1}{p_j}$. Then, for all $f_j \in \mathcal{L}^{p_j}(X)$, $j = 1, \ldots, n$,

$$\left\|\prod_{j=1}^{n} f_{j}\right\|_{p} \leq \prod_{j=1}^{n} \|f_{j}\|_{p_{j}}.$$
(28)

(iv) (Interpolation in \mathcal{L}^p -spaces). Let $1 \leq p < r < q \leq \infty$, $f \in \mathcal{L}^p(X) \cap \mathcal{L}^q(X)$. Let $\theta \in (0,1)$ with $\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$. Then $f \in \mathcal{L}^r(X)$, and

$$||f||_{r} \le ||f||_{p}^{\theta} ||f||_{q}^{1-\theta}.$$
(29)

Hence, for $f: X \to \mathbb{C}$ measurable, the set

$$\Gamma_f := \{ p \in [1, \infty] \, | \, f \in \mathcal{L}^p(X) \} \subset \mathbb{R}$$
(30)

is an interval.

(v) Let $p \in [1,\infty]$, $f \in \mathcal{L}^p(X) \cap \mathcal{L}^\infty(X)$. Then $f \in \bigcap_{q \ge p} \mathcal{L}^q(X)$, and $\lim_{q \to \infty} ||f||_q = ||f||_{\infty}$.

Theorem 4 (The normed spaces $L^p(X)$, $p \in [1, \infty]$).

For $p \in [1, \infty]$, the relation $\sim_{a.e.}$ defines an equivalence relation on $\mathcal{L}^p(X)$, and $\|\cdot\|_p$ defines a norm on the quotient vector space $L^p(X)$, which makes $(L^p(X), \|\cdot\|_p)$ a Banach space. For p = 2, $L^2(X)$ is a Hilbert space, with inner/scalar product $\langle f, g \rangle := \int_X \overline{f(x)}g(x) \, \mathrm{d}\mu(x)$.

Remark 2. By abuse of notation we will call $f \in L^p(X)$ functions when we should really be talking about equivalence classes (this abuse of notation/language is well established).

Theorem 5 (a.e. convergent subsequences).

Let $p \in [1,\infty]$, and assume $(f_j)_{j\in\mathbb{N}} \subset L^p(X)$, $f \in L^p(X)$, satisfy $\lim_{j\to\infty} ||f_j - f||_p = 0$. Then there exists a subsequence $(f_{j_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} f_{j_k}(x) = f(x)$ a.e., that is, the subsequence $(f_{j_k})_{k\in\mathbb{N}}$ converges pointwise to f for μ -almost every $x \in X$.

Theorem 6 (Denseness of step functions in $L^p(X)$).

Let $p \in [1, \infty)$, then the linear subspace of step functions,

$$E := \operatorname{span}\{\mathbb{1}_A \mid A \in \mathcal{A}, \mu(A) < \infty\}$$

$$= \{g : X \to \mathbb{C} \mid g = \sum_{n=1}^N a_n \mathbb{1}_{A_n}, N \in \mathbb{N}, A_1, \dots, A_N \in \mathcal{A}, \mu(A_j) < \infty, a_1, \dots, a_N \in \mathbb{C}\}$$
(31)

is dense in $L^p(X)$: For all $f \in L^p(X)$ and all $\varepsilon > 0$, there exists $g \in E$ such that $\|f - g\|_p < \varepsilon$.

Definition 11 (Locally integrable functions). Let (X, \mathcal{T}) be a topological space, and let μ be a measure on $(X, \sigma(\mathcal{T}))$. (Example: \mathbb{R}^d with Lebesque(-Borel) measure.) For $p \in [1, \infty]$, we denote

$$L^{p}_{\text{loc}}(X) := \left\{ f : X \to \mathbb{C} \mid f \in \mathcal{M}(X, \mathbb{C}), \ f \in L^{p}(K) \ \text{for all } K \subset X \ \text{compact} \right\}.$$
(32)

Theorem 7 (Monotone convergence / Beppo Levi). Let $(f_j)_{j \in \mathbb{N}}$, $f_j : X \to \mathbb{R}$, be a sequence of measurable functions with

$$0 \le f_1 \le f_2 \le f_3 \le \dots \tag{33}$$

Then, with $f(x) := \lim_{j \to \infty} f_j(x)$,

$$\lim_{j \to \infty} \int_X f_j \,\mathrm{d}\mu = \int_X f \,\mathrm{d}\mu \,. \tag{34}$$

The possibility that both sides are $+\infty$ is included.

Theorem 8 ((Lebesgue) Dominated convergence). Let $(f_j)_{j\in\mathbb{N}}$, $f_j : X \to \mathbb{R}$, be a sequence of measurable functions. Assume there exists $g \in L^1(X)$ such that $|f_j(x)| \leq g(x)$ for a.e. $x \in X$ and all $j \in \mathbb{N}$, and that $f(x) := \lim_{j\to\infty} f_j(x)$ exists a.e. on X. Then

$$\lim_{j \to \infty} \int_X f_j \,\mathrm{d}\mu = \int_X f \,\mathrm{d}\mu \,. \tag{35}$$

In this case both sides are finite.

Theorem 9 (Fatou's Lemma). Let $(f_j)_{j \in \mathbb{N}}$, $f_j : X \to \mathbb{R}$, be a sequence of measurable functions, with $f_j(x) \ge 0$ a.e. on X for all $j \in \mathbb{N}$. Then

$$\int_{X} \left(\liminf_{j \in \mathbb{N}} f_{j} \right) d\mu \leq \liminf_{j \in \mathbb{N}} \left(\int_{X} f_{j} d\mu \right).$$
(36)

Theorem 10 (Continuity and differentiability of parameter-dependent integrals). Let (M, d) be a metric space, (X, \mathcal{A}, μ) a measure space, and $f : M \times X \to \mathbb{R}$ a map satisfying

(i) The map $x \mapsto f(t, x)$ is integable for all $t \in M$. Let $F: M \to \mathbb{R}$ be given by $F(t) := \int_X f(t, x) d\mu(x)$.

1. Let $t_0 \in M$, and assume furthermore:

(ii) The map $t \mapsto f(t, x)$ is continuous at t_0 for all $x \in X$.

(iii) There exists integrable an function $g: X \to [0, \infty]$ such that $|f(t, x)| \leq g(x)$ for all $t \in M$ and $x \in X$.

Then F is continuous at t_0 :

$$\lim_{t \to t_0} F(t) = \lim_{t \to t_0} \left(\int_X f(t, x) \, \mathrm{d}\mu(x) \right) = \int_X \left(\lim_{t \to t_0} f(t, x) \right) \, \mathrm{d}\mu(x)$$
$$= \int_X f(t_0, x) \, \mathrm{d}\mu(x) = F(t_0) \,. \tag{37}$$

2. Let M = I ⊂ ℝ be an open interval, and assume (i) holds. Assume furthermore that
(ii') The map t → f(t, x) is differentiable on I for all x ∈ X.

(iii') There exists an integrable function $g: X \to [0, \infty]$ such that $\left|\frac{\partial f}{\partial t}(t, x)\right| \leq g(x)$ for all $t \in M$ and $x \in X$.

Then F is differentiable on I, the map $x \mapsto \frac{\partial f}{\partial t}(t,x)$ is integrable for all $t \in I$, and

$$\frac{d}{dt} \Big(\int_X f(t,x) \,\mathrm{d}\mu(x) \Big) = F'(t) = \frac{dF}{dt}(t) = \int_X \frac{\partial f}{\partial t}(t,x) \,\mathrm{d}\mu(x) \,. \tag{38}$$

Definition 12 (Product- σ -algebra).

Let $(X_j, \mathcal{A}_j), j = 1, \ldots, n$, be measurable spaces. The product- σ -algebra

$$\bigotimes_{j=1}^{n} \mathcal{A}_{j} := \mathcal{A}_{1} \otimes \ldots \otimes \mathcal{A}_{n} := \sigma(p_{1}, \ldots, p_{n})$$
(39)

(on $X := \bigotimes_{j=1}^{n} X_j$) is the smallest σ -algebra such that the projections $p_j : X \to X_j$, $x = (x_1, \ldots, x_n) \mapsto x_j$, are all measurable.

Example 4. $\mathcal{B}^d = \mathcal{B}^1 \otimes \ldots \otimes \mathcal{B}^1$ (*d* times). However, $\overline{\mathcal{B}^d} \supseteq \overline{\mathcal{B}^1} \otimes \ldots \otimes \overline{\mathcal{B}^1}$.

Theorem 11 (Product measure).

Let $(X_j, \mathcal{A}_j, \mu_j)$, j = 1, ..., n, be σ -finite (!) measure spaces, and let $X := \bigotimes_{j=1}^n X_j$. Then there exists a unique measure $\mu := \bigotimes_{j=1}^n \mu_j := \mu_1 \otimes ... \otimes \mu_n$ (called the product measure (of $\mu_1, ..., \mu_n$)) on $\mathcal{A} := \bigotimes_{j=1}^n \mathcal{A}_j$ such that

$$\left(\bigotimes_{j=1}^{n} \mu_{j}\right)\left(\bigotimes_{j=1}^{n} A_{j}\right) = \prod_{j=1}^{n} \mu_{j}(A_{j}) \quad for \ all \ A_{j} \in \mathcal{A}_{j}, j = 1, \dots, n \,.$$

$$\tag{40}$$

Furthermore, (X, \mathcal{A}, μ) is σ -finite.

Theorem 12 (Fubini-Tonelli).

Let $(X_j, \mathcal{A}_j, \mu_j)$, j = 1, 2, be σ -finite (!) measure spaces, and let $(X, \mathcal{A}, \mu) := (X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2)$. Let $f : X \to \mathbb{R}$ (or \mathbb{C}) be \mathcal{A} -measurable. Then is, for all $g \in \{\Re(f_+), \Re(f_-), \Im(f_+), \Im(f_-)\}$, the functions

$$X_1 \to [0,\infty] , \ x_1 \mapsto \int_{X_2} g(x_1, x_2) \,\mathrm{d}\mu_2(x_2) \ ,$$
 (41)

$$X_2 \to [0,\infty] , \ x_2 \mapsto \int_{X_1} g(x_1, x_2) \,\mathrm{d}\mu_1(x_1)$$
 (42)

 \mathcal{A}_1 -measurable, respectively, \mathcal{A}_2 -measurable. Furthermore,

1. (Tonelli) If $f \ge 0$ a.e. (that is, $f(X \setminus N) \subset [0, \infty], \mu(N) = 0$), then

$$\int_{X} f(x) d\mu(x) = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) d\mu_2(x_2) \right) d\mu_1(x_1)$$
$$= \int_{X_2} \left(\int_{X_1} f(x_1, x_2) d\mu_1(x_1) \right) d\mu_2(x_2).$$
(43)

Note: It is possible that all three integrals are $+\infty$.

2. (Fubini) If one of the three integrals

$$\int_{X} |f(x)| d\mu(x) , \int_{X_1} \left(\int_{X_2} |f(x_1, x_2)| d\mu_2(x_2) \right) d\mu_1(x_1) , \int_{X_2} \left(\int_{X_1} |f(x_1, x_2)| d\mu_1(x_1) \right) d\mu_2(x_2)$$
(44)

is finite, then they are all finite, and (43) holds.

Theorem 13 (Layer Cake Principle). Let (X, \mathcal{A}, μ) be a σ -finite measure space, and let $\mathcal{B}_{\geq 0}$ be the Borel-algebra of $\mathbb{R}_{\geq 0}$. Let ν be a measure on $\mathcal{B}_{\geq 0}$ such that $\phi(t) := \nu([0, t))$ is finite for all t > 0, and let $f : X \to \mathbb{R}_{\geq 0}$ be \mathcal{A} - $\mathcal{B}_{\geq 0}$ -measurable. Then

$$\int_{X} \phi(f(x)) \, \mathrm{d}\mu(x) = \int_{\mathbb{R}_{\geq 0}} \mu(\{x \in X \mid f(x) > t\}) \, \mathrm{d}\nu(t) \,. \tag{45}$$

Recall that $\mu_f(t) = \mu(\{f > t\})$ is the distribution function of f relative to μ . In particular, if $f \in \mathcal{L}^p(X)$, then (by choosing $d\nu(t) = pt^{p-1}d\lambda^1(t)$)

$$\int_{X} |f|^{p} d\mu = p \int_{\mathbb{R}_{\geq 0}} t^{p-1} \mu(\{|f| > t\}) d\lambda^{1}(t), \qquad (46)$$

and if $f \in \mathcal{L}^1(X)$ with $f \ge 0$, then (by choosing p = 1)

$$\int_{X} f \, \mathrm{d}\mu = \int_{\mathbb{R}_{\geq 0}} \mu(\{f > t\}) \, \mathrm{d}\lambda^{1}(t) \,. \tag{47}$$

Also (by choosing μ the Dirac measure δ_x at $x \in X$, and p = 1),

$$f(x) = \int_{\mathbb{R}_{\geq 0}} \mathbb{1}_{\{f > t\}}(x) \, \mathrm{d}\lambda^1(t) \quad \text{(Layer Cake Representation of } f\text{)}. \tag{48}$$

Theorem 14 (Transformation formula for λ^d).

Let $U \subset \mathbb{R}^d$ be open, and $\varphi : U \to \varphi(U) \subset \mathbb{R}^d$ a diffeomorphism. Then, for all $f \in \mathcal{L}^1(\varphi(U), \lambda^d)$,

$$\int_{\varphi(U)} f(y) \, \mathrm{d}\lambda^d(y) = \int_U f(\varphi(x)) \Big| \det(D\varphi(x)) \Big| \, \mathrm{d}\lambda^d(x) \,. \tag{49}$$

Lemma 1 (Notation and certain concrete integrals in \mathbb{R}^d).

- 1. For $x \in \mathbb{R}^d$, r > 0, we denote $B_r^d(x) := B_r(x) := \{y \in \mathbb{R}^d | |x y| < r\}$, and $\omega_d := \lambda^d(B_1(0)) = \lambda^d(\overline{B_1(0)})$. One has $\omega_d = \frac{\pi^{d/2}}{\Gamma(d/2+1)}$, with $\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt$, z > 0, the Gamma-function.
- 2. One has

$$\int_{B_1(0)} |x|^{\alpha} \,\mathrm{d}\lambda^d(x) < \infty \iff \alpha > -d\,, \tag{50}$$

$$\int_{\mathbb{R}^d \setminus B_1(0)} |x|^{\alpha} \, \mathrm{d}\lambda^d(x) < \infty \iff \alpha < -d \,, \tag{51}$$

$$\int_{\mathbb{R}^d} \frac{1}{(1+|x|)^{\alpha}} \,\mathrm{d}\lambda^d(x) < \infty \iff \alpha > -d.$$
(52)

Definition 13 (Spaces of differentiable functions on \mathbb{R}^d). Denote, for $k \in \mathbb{N}$,

$$C^{0}(\mathbb{R}^{d}) := C(\mathbb{R}^{d}) := C(\mathbb{R}^{d}, \mathbb{C}) := \left\{ f : \mathbb{R}^{d} \to \mathbb{C} \mid f \text{ is continuous} \right\},$$
(53)

$$C^{k}(\mathbb{R}^{d}) := \left\{ f : \mathbb{R}^{d} \to \mathbb{C} \mid f \text{ is } k \text{ times continuous differentiable} \right\},$$
(54)

$$C^{\infty}(\mathbb{R}^d) := \bigcap_{k \in \mathbb{N}} C^k(\mathbb{R}^d) , \qquad (55)$$

and define, for $f \in C(\mathbb{R}^d)$, the support of f by $\operatorname{supp}(f) := \overline{\{x \in \mathbb{R}^d \mid f(x) \neq 0\}}$. Denote, for $k \in \mathbb{N} \cup \{\infty\}$,

$$C_c^k(\mathbb{R}^d) := \left\{ f \in C^k(\mathbb{R}^d) \, \middle| \, \operatorname{supp}(f) \subset \mathbb{R}^d \text{ is compact } \right\}.$$
(56)

Theorem 15 (Denseness of $C_c^k(\mathbb{R}^d)$ in $L^p(\mathbb{R}^d)$).

- 1. The set $C_c(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ with respect to $\|\cdot\|_p$ for $1 \leq p < \infty$. More precisely: For all $f \in L^p(\mathbb{R}^d)$, $1 \leq p < \infty$, and all $\varepsilon > 0$ there exists $\phi \in C_c(\mathbb{R}^d)$ with $\|\phi - f\|_p < \varepsilon$. Note: The result fails in $L^\infty(\mathbb{R}^d)$.
- 2. The set $C_c^{\infty}(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ with respect to $\|\cdot\|_p$ for $1 \leq p < \infty$. Again, the result fails in $L^{\infty}(\mathbb{R}^d)$.
- 3. As a consequence, $C_c^k(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ with respect to $\|\cdot\|_p$ for $1 \leq p < \infty$, and all $k \in \mathbb{N} \cup \{\infty\}$.

Again, the result fails in $L^{\infty}(\mathbb{R}^d)$.

Remark 3 (Notation in \mathbb{R}^d). We will most often write $\int_{\mathbb{R}^d} f(x) dx$ or $\int f(x) dx$ or simply $\int f dx$ instead of $\int_{\mathbb{R}^d} f(x) d\lambda^d(x)$ from now on. Also, we will often use the notation $|A| := \lambda^d(A)$ for the Lebesgue(-Borel) measure of a (measurable) set $A \subset \mathbb{R}^d$. This way, for the distribution function of $f : \mathbb{R}^d \to \mathbb{R}$ (relative to Lebesgue measure λ^d) we have

$$(\lambda^d)_f(t) = \lambda^d(\{f > t\}) = \lambda^d(\{x \in \mathbb{R}^d \,|\, f(x) > t\}) = |\{f > t\}|.$$
(57)