

SoSe 2022
18. April 2022

This is an overview of material on Measure and Integration Theory (Ana3).

TO BE UPDATED - CHECK DATE AND VERSION

Measure and Integration Theory

Let X be a non-empty set (for example $X=\mathbb{R}^{d}$ or any subset of \mathbb{R}^{d}), and let $\mathcal{P}(X)$ be the family of all subsets of X (its power set).

Definition 1 (σ-algebra). A family of subsets of $X, \mathcal{A} \subset \mathcal{P}(X)$, is called a σ-algebra (on X) if and only if ('iff')
(i) $X \in \mathcal{A}$.
(ii) $A \in \mathcal{A} \Rightarrow X \backslash A \in \mathcal{A}$.
(iii) $\left(A_{j} \in \mathcal{A}\right.$ for all $\left.j \in \mathbb{N}\right) \Rightarrow \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A}$.

The pair (X, \mathcal{A}) is called a measurable space, and $A \subset X$ is measurable $: \Leftrightarrow A \in \mathcal{A}$.

Proposition 1 (Generated σ-algebras; Borel-(σ-)algebra).

(i) For any family $\mathcal{B} \subset \mathcal{P}(X)$ there exists a smallest σ-algebra $\sigma(\mathcal{B})$ containing \mathcal{B} (that is, $\sigma(\mathcal{B}) \supset \mathcal{B}$, and if \mathcal{C} is a σ-algebra with $\mathcal{C} \supset \mathcal{B}$, then $\mathcal{C} \supset \sigma(\mathcal{B})$), given by

$$
\begin{equation*}
\sigma(\mathcal{B}):=\bigcap_{\mathcal{A} \subset \mathcal{P}(X), \mathcal{A}} \underset{\sigma \text {-algebra }, \mathcal{A} \supset \mathcal{B}}{ } \mathcal{A} \tag{1}
\end{equation*}
$$

We call $\sigma(\mathcal{B})$ the σ-algebra generated by \mathcal{B}.
(ii) Let (X, \mathcal{T}) be a topological space (for example, a metric space (X, d) with the topology \mathcal{T}_{d} generated by the metric d). The σ-algebra $\sigma(\mathcal{T})$ is called the Borel- σ-algebra (or Borel-algebra) (on (X, \mathcal{T})), denoted $\mathcal{B}(X)$ (more correct would be: $\mathcal{B}(X, \mathcal{T})$), and $B \subset X$ is a Borel-set (or Borel or Borel-measurable) : $\Leftrightarrow B \in \mathcal{B}(X)$.
(iii) For a measurable space (X, \mathcal{A}) and a subset $B \subset X$ (not necessarily measurable), the induced σ-algebra (or trace- σ-algebra) on B is defined by $\mathcal{A}_{B}:=\{B \cap A \mid A \in \mathcal{A}\}$. If $B \in \mathcal{A}$, then $\mathcal{A}_{B} \subset \mathcal{A}$.

Example 1 (Borel-algebra on $\mathbb{R}^{d}, \mathbb{R}_{\geq 0}, \overline{\mathbb{R}}, \overline{\mathbb{R}}_{\geq 0}$). Let $X:=\mathbb{R}^{d}$ with the usual topology $\mathcal{T}_{\text {Eucl }}$, generated by the Euclidean metric $|\cdot|$. We denote $\mathcal{B}^{d}:=\mathcal{B}\left(\mathbb{R}^{d}\right):=\sigma\left(\mathcal{T}_{\text {Eucl }}\right)$ the Borel-algebra on \mathbb{R}^{d}, and write $\mathcal{B}:=\mathcal{B}^{1}$ when there is no risk of confusion. We denote $\mathcal{B}_{\geq 0}:=\mathcal{B}^{1} \mathbb{R}_{\geq 0}:=\left\{\mathbb{R}_{\geq 0} \cap A \mid A \in \mathcal{B}^{1}\right\}$. It is the Borel-algebra of $\mathbb{R}_{\geq 0}$ (with the topology on $\mathbb{R}_{\geq 0}$ the one induced from $\left.\mathbb{R}\right)$. For $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\} \cup\{+\infty\}$, we denote $\mathcal{B}(\overline{\mathbb{R}}):=$ $\sigma\left(\mathcal{B}^{1} \cup\{\{-\infty\}\} \cup\{\{+\infty\}\}\right)$. It is the Borel-algebra on $\overline{\mathbb{R}}$ for the usual topology on $\overline{\mathbb{R}}$. Finally, $\overline{\mathcal{B}}_{\geq 0}:=\left\{\overline{\mathbb{R}}_{\geq 0} \cap A \mid, A \in \mathcal{B}(\overline{\mathbb{R}})\right\}\left(=\mathcal{B}\left(\overline{\mathbb{R}}_{\geq 0}\right)\right)$.

Definition 2 ((Positive) measure).
(i) Let \mathcal{A} be a σ-algebra on X. A map $\mu: \mathcal{A} \rightarrow[0, \infty]$ is called a (positive) measure (on X, or on (X, \mathcal{A})) iff
(i) $\mu(\emptyset)=0$.
(ii) For all $A_{j} \in \mathcal{A}, j \in \mathbb{N}$, with $A_{j} \cap A_{k}=\emptyset$ for $j \neq k$:

$$
\begin{equation*}
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right) \quad(\sigma \text {-additivity }) . \tag{2}
\end{equation*}
$$

The triple (X, \mathcal{A}, μ) is called a measure space.
(ii) A measure μ (or, more correctly, a measure space (X, \mathcal{A}, μ)) is called finite (or bounded) iff $\mu(X)<\infty$, and σ-finite iff there exists $\left(X_{j}\right)_{j \in \mathbb{N}}, X_{j} \in \mathcal{A}, X=\cup_{j=1}^{\infty} X_{j}$, with $\mu\left(X_{j}\right)<\infty$ for all $j \in \mathbb{N}$.

Example 2 (Lebesgue-Borel measure on \mathbb{R}^{d}). There exists a unique measure, called the Lebesgue-Borel measure λ^{d}, on \mathcal{B}^{d} so that for all rectangles $Q:=X_{j=1}^{d}\left[a_{j}, b_{j}\right) \subset \mathbb{R}^{d}$, $-\infty \leq a_{j} \leq b_{j} \leq \infty$, holds

$$
\begin{equation*}
\lambda^{d}(Q)=\prod_{j=1}^{d}\left(b_{j}-a_{j}\right) \tag{3}
\end{equation*}
$$

Furthermore, λ^{d} is translation and rotation invariant, and σ-finite.
Definition $3((\mu-)$ Null sets; complete measure). Let (X, \mathcal{A}, μ) be a measure space.
(i) A subset $N \subset X$ is called $a(\mu$-)null set iff $N \in \mathcal{A}$ and $\mu(N)=0$.
(ii) (X, \mathcal{A}, μ) (or just μ) is called complete iff all subsets of null sets are null sets.

Theorem 1 (Completion of measure). Let (X, \mathcal{A}, μ) be a measure space. Then there exists a smallest complete measure space $(X, \overline{\mathcal{A}}, \bar{\mu})$ (called the completion of (X, \mathcal{A}, μ)) containing (X, \mathcal{A}, μ) (that is, $\overline{\mathcal{A}} \supset \mathcal{A},\left.\bar{\mu}\right|_{\mathcal{A}}=\mu$, and $\bar{\mu}$ is complete).
Example 3 (Lebesgue measure on \mathbb{R}^{d}). The completion of $\left(\mathbb{R}^{d}, \mathcal{B}^{d}, \lambda^{d}\right)$ (which is not in itself complete) is denoted ($\left.\mathbb{R}^{d}, \overline{\mathcal{B}^{d}}, \overline{\lambda^{d}}\right)$. Elements of $\overline{\mathcal{B}^{d}}$ are called Lebesgue-measurable (subsets of \mathbb{R}^{d}), and $\overline{\lambda^{d}}$ is called (d-dimensional) Lebesgue measure. One has

$$
\begin{equation*}
\overline{\mathcal{B}^{d}}=\left\{B \cup \widetilde{N} \mid B \in \mathcal{B}^{d}, \exists N \in \mathcal{B}^{d} \text { with } \lambda^{d}(N)=0, \widetilde{N} \subset N\right\} . \tag{4}
\end{equation*}
$$

Furthermore, $A \in \overline{\mathcal{B}^{d}}$ iff for all $\varepsilon>0$ there exists $U \subset \mathbb{R}^{d}$ open and $C \subset \mathbb{R}^{d}$ closed, with $C \subset A \subset U$, such that $\lambda^{d}(U \backslash C)<\varepsilon$.
Note, in particular, that $\mathcal{B}^{d} \subsetneq \overline{\mathcal{B}^{d}} \subsetneq \mathcal{P}\left(\mathbb{R}^{d}\right)$.

Definition 4 (Measurable maps and functions).

(i) Let $(X, \mathcal{A}),(Y, \mathcal{C})$ be measurable spaces. A map $f: X \rightarrow Y$ is called $(\mathcal{A}-\mathcal{C}$ - $)$ measurable iff $f^{-1}(C) \in \mathcal{A}$ for all $C \in \mathcal{C}$. We denote by $\mathcal{M}(X, Y)$ the set of all $\mathcal{A}-\mathcal{C}$-measurable maps. (More correct would be $\mathcal{M}((X, \mathcal{A}),(Y, \mathcal{C}))$.)
(ii) In the special case $(Y, \mathcal{C})=\left(\mathbb{R}, \mathcal{B}^{1}\right)$, we denote $\mathcal{M}(X):=\mathcal{M}(X, \mathbb{R})$ the set of all measurable functions $f: X \rightarrow \mathbb{R}$, and $\mathcal{M}_{+}(X):=\{f \in \mathcal{M}(X) \mid f \geq 0\}$. Note that $\mathcal{M}_{+}(X)=\mathcal{M}\left(X, \mathbb{R}_{\geq 0}\right)=\mathcal{M}\left((X, \mathcal{A}),\left(\mathbb{R}_{\geq 0}, \mathcal{B}_{\geq 0}\right)\right)$.
(iii) In the special case $(Y, \mathcal{C})=(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$, we denote $\overline{\mathcal{M}}(X):=\mathcal{M}(X, \overline{\mathbb{R}})$ the set of all measurable numerical (or extended real-valued) functions $f: X \rightarrow \overline{\mathbb{R}}$, and $\overline{\mathcal{M}}_{+}(X):=\{f \in \overline{\mathcal{M}}(X) \mid f \geq 0\}$. Again, $\overline{\mathcal{M}}_{+}(X)=\mathcal{M}\left(X, \overline{\mathbb{R}}_{\geq 0}\right)$.
(iv) We denote by $\mathcal{M}(X, \mathbb{C})$ the set of all complex functions $f: X \rightarrow \mathbb{C}$ such that $\Re(f), \Im(f) \in \mathcal{M}(X, \mathbb{R})$.

Remark 1. One has

$$
\begin{equation*}
\mathcal{M}(X)=\left\{f: X \rightarrow \mathbb{R} \mid f^{-1}((-\infty, a)) \in \mathcal{A} \text { for all } a \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

and similarly with $(-\infty, a)$ replaced with $(-\infty, a],(a, \infty)$, or $[a, \infty)$. Analogous statements hold for $\overline{\mathcal{M}}(X)$.
We denote, for $a \in \overline{\mathbb{R}}$,

$$
\begin{equation*}
\{f<a\}:=f^{-1}((-\infty, a))=\{x \in X \mid f(x) \in(-\infty, a)\} \tag{6}
\end{equation*}
$$

and similarly for other types of intervals.

Definition 5 (Distribution function).

Let (X, \mathcal{A}, μ) be a measure space. For $f \in \overline{\mathcal{M}}(X)$, we call the function $\mu_{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mu_{f}(t):=\mu(\{f>t\})=\mu(\{x \in X \mid f(x)>t\}) \tag{7}
\end{equation*}
$$

the distribution function of f (relative to μ).
Definition 6 (Almost everywhere (a.e.); $f=g$ a.e.).
Let (X, \mathcal{A}, μ) be a measure space.
(i) A mathematical statement $Q=Q(x)$ (which is assumed to make sense for all $x \in X$) is said to hold (μ-) almost everywhere (a.e., or μ-a.e.) iff there exists a (μ-)null set N such that $Q(x)$ is true/holds for all $x \in X \backslash N$.
(ii) Let $f, g: X \rightarrow \mathbb{M}\left(\mathbb{M} \in\left\{\mathbb{R}, \mathbb{R}_{\geq 0}, \overline{\mathbb{R}}, \overline{\mathbb{R}}_{\geq 0}, \mathbb{C}\right\}\right)$ be measurable, then $f=g$ a.e. iff $f(x)=g(x)$ a.e. This defines an equivalence relation $\sim_{\text {a.e. }}$ on $\mathcal{M}(X, \mathbb{M})$.

Definition 7 (Step functions).

Let (X, \mathcal{A}) be a measurable space. A function $f: X \rightarrow \mathbb{R}$ is called a step function iff there exists $N \in \mathbb{N}, A_{1}, \ldots, A_{N} \in \mathcal{A}$, and $a_{1}, \ldots, a_{N} \in \mathbb{R}$ such that

$$
\begin{equation*}
f=\sum_{n=1}^{N} a_{n} \mathbb{1}_{A_{n}} . \tag{8}
\end{equation*}
$$

Here, $\mathbb{1}_{B}$ is the characteristic (or indicator) function of (the set) B, given by $\mathbb{1}_{B}(x)=1$ if $x \in B$, and equal 0 otherwise ($x \notin B$).
Note that step functions are measurable by definition. We denote the set of all non-negative step functions by

$$
\begin{equation*}
E_{+}:=\{f: X \rightarrow \mathbb{R} \mid f \geq 0, f \text { step function }\} . \tag{9}
\end{equation*}
$$

Theorem 2 (Approximating measurable functions by step functions). Let (X, \mathcal{A}) be a measurable space. Then $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ iff there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of step functions $f_{n}: X \rightarrow \mathbb{R}$ with $f=\lim _{n \rightarrow \infty} f_{n}$ (pointwise on X). If $f \in \mathcal{M}+(X)$, then the sequence can be chosen monotone ($f_{n} \nearrow f$), and if f is a bounded function, then the sequence can be chosen such that the convergence is uniform on X.

Definition 8 (Definition and properties of Lebesgue integral).
Let (X, \mathcal{A}, μ) be a measure space.

1. Let $f \in E_{+}(f \geq 0$, f step function $)$, with $f=\sum_{n=1}^{N} a_{n} \mathbb{1}_{A_{n}}, A_{n} \in \mathcal{A}, a_{n} \in \mathbb{R}$. Then

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu:=\int_{X} f(x) \mathrm{d} \mu(x):=\sum_{n=1}^{N} a_{n} \mu\left(A_{n}\right) \in[0, \infty] \tag{10}
\end{equation*}
$$

is the $(\mu$-)integral of f over X. It is independent of the representation in (8).
2. Let $f \in \overline{\mathcal{M}}_{+}(X)\left(f: X \rightarrow[0, \infty]\right.$, measurable), and let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset E_{+}$be an approximating sequence as in Theorem 2, Then

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu:=\int_{X} f(x) \mathrm{d} \mu(x):=\lim _{n \rightarrow \infty}\left(\int_{X} f_{n}(x) \mathrm{d} \mu(x)\right) \in[0, \infty] \tag{11}
\end{equation*}
$$

is the (μ-)integral of f over X. The limit is well-defined, since the sequence $\left(\int_{X} f_{n} \mathrm{~d} \mu\right)_{n \in \mathbb{N}} \subset[0, \infty]$ is non-decreasing. The limit is independent of the chosen sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$.
3. For $f: X \rightarrow \overline{\mathbb{R}}$, let $f_{ \pm}:=\max \{ \pm f, 0\}$ (so $f=f_{+}-f_{-},|f|=f_{+}+f_{-}$). Then f is (μ-)integrable over $X: \Leftrightarrow f \in \overline{\mathcal{M}}(X)$ and $\int_{X} f_{+} \mathrm{d} \mu<\infty, \int_{X} f_{-} \mathrm{d} \mu<\infty$. In this case,

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu:=\int_{X} f(x) \mathrm{d} \mu(x):=\int_{X} f_{+} \mathrm{d} \mu-\int_{X} f_{-} \mathrm{d} \mu \in \mathbb{R} \tag{12}
\end{equation*}
$$

is the (μ-)integral of f over X. We denote the set of integrable functions by
$\mathcal{L}^{1}:=\mathcal{L}^{1}(X):=\mathcal{L}^{1}(\mu):=\mathcal{L}^{1}(X, \mu):=\mathcal{L}^{1}(X, \mathcal{A}, \mu):=\{f: X \rightarrow \mathbb{R} \mid f \mu$-integrable $\}$,
$\overline{\mathcal{L}^{1}}:=\overline{\mathcal{L}^{1}}(X):=\overline{\mathcal{L}^{1}}(\mu):=\overline{\mathcal{L}^{1}}(X, \mu):=\overline{\mathcal{L}^{1}}(X, \mathcal{A}, \mu):=\{f: X \rightarrow \overline{\mathbb{R}} \mid f \mu$-integrable $\}$.
4. For $A \in \mathcal{A}$, and $f \in \mathcal{L}^{1}$ (or $f \in \overline{\mathcal{L}^{1}}$), let $\int_{A} f \mathrm{~d} \mu:=\int_{X} f \mathbb{1}_{A} \mathrm{~d} \mu$.
5. Properties of the integral:
(a) For $f \in \overline{\mathcal{L}^{1}}, f \geq 0$, one has: $\int_{X} f \mathrm{~d} \mu=0 \Leftrightarrow f=0 \mu$-a.e.
(b) The map $f \mapsto \int_{X} f \mathrm{~d} \mu$ from $\overline{\mathcal{L}^{1}}$ to \mathbb{R} is linear and monotone.
(c) For $f \in \overline{\mathcal{L}^{1}}$,

$$
\begin{equation*}
\left|\int_{X} f \mathrm{~d} \mu\right| \leq \int_{X}|f| \mathrm{d} \mu \quad \text { (triangle inequality). } \tag{13}
\end{equation*}
$$

(d) For $f \in \overline{\mathcal{L}^{1}}, f \geq 0$, and all $\varepsilon>0$,

$$
\begin{equation*}
\mu(\{f \geq \varepsilon\}) \leq \frac{1}{\varepsilon} \int_{X} f \mathrm{~d} \mu \quad \text { (Chebyshev's inequality). } \tag{14}
\end{equation*}
$$

Proposition 2 (Riemann versus Lebesgue interal in \mathbb{R}).

For $f:[a, b] \rightarrow \mathbb{R}(a, b \in \mathbb{R}, a<b)$ Riemann-integrable, denote $\int_{a}^{b} f(x) d x$ the Riemannintegral of f over $[a, b]$.

1. For $f:[a, b] \rightarrow \mathbb{R}$ Riemann-integrable there exists $g: \mathbb{R} \rightarrow \mathbb{R}$ measurable, with $f=g$ a.e. on $[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{[a, b]} g(x) \mathrm{d} \lambda^{1}(x) . \tag{15}
\end{equation*}
$$

2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be measurable, and continuous on $(0, \infty)$. Then

$$
\begin{align*}
& \int_{\mathbb{R}} f \mathbb{1}_{[1, \infty)} \mathrm{d} \lambda^{1}=\lim _{n \rightarrow \infty} \int_{1}^{n} f(x) d x \tag{16}\\
& \int_{\mathbb{R}} f \mathbb{1}_{[0,1]} \mathrm{d} \lambda^{1}=\lim _{n \rightarrow \infty} \int_{1 / n}^{1} f(x) d x . \tag{17}
\end{align*}
$$

In particular,

$$
\begin{align*}
& \int_{[0,1]} x^{a} \mathrm{~d} \lambda^{1}(x)<\infty \Leftrightarrow a>-1 \tag{18}\\
& \int_{[1, \infty)} x^{b} \mathrm{~d} \lambda^{1}(x)<\infty \Leftrightarrow b<-1 \tag{19}
\end{align*}
$$

Also,

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}=\lim _{R \rightarrow \infty}\left(\int_{[0, R]} \frac{\sin x}{x} \mathrm{~d} \lambda^{1}(x)\right), \tag{20}\\
& \int_{\mathbb{R}} e^{-x^{2}} \mathrm{~d} \lambda^{1}(x)=\sqrt{\pi} \tag{21}
\end{align*}
$$

In what follows, let (X, \mathcal{A}, μ) be any measure space.
Definition 9 (Essential supremum). For a measurable function $f: X \rightarrow \overline{\mathbb{R}}$ the essential supremum of f is

$$
\begin{align*}
\operatorname{ess} \sup f=\operatorname{ess} \sup _{X} f & =\inf \{s \in \overline{\mathbb{R}} \mid f(x) \leq s \quad \mu \text {-a.e }\} \\
& =\inf \left\{\sup _{x \in X \backslash N} f(x) \mid N \subset X, N \text {-null set }\right\} . \tag{22}
\end{align*}
$$

Definition 10 (The semi-normed spaces $\mathcal{L}^{p}(X), p \in[1, \infty]$).
(i) For $p \in[1, \infty)$, let

$$
\begin{align*}
\mathcal{L}^{p} & :=\mathcal{L}^{p}(X):=\mathcal{L}^{p}(\mu):=\mathcal{L}^{p}(X, \mu):=\mathcal{L}^{p}(X, \mathcal{A}, \mu) \\
& :=\left\{f:\left.X \rightarrow \mathbb{C}\left|f \in \mathcal{M}(X, \mathbb{C}), \int_{X}\right| f\right|^{p} \mathrm{~d} \mu<\infty\right\} \tag{23}
\end{align*}
$$

and, for $f \in \mathcal{L}^{p}(X)$, let

$$
\begin{equation*}
\|f\|_{p}:=\left(\int_{X}|f|^{p} \mathrm{~d} \mu<\infty\right)^{1 / p} \tag{24}
\end{equation*}
$$

(ii) For $p=\infty$, let

$$
\begin{align*}
\mathcal{L}^{\infty} & :=\mathcal{L}^{\infty}(X):=\mathcal{L}^{\infty}(\mu):=\mathcal{L}^{\infty}(X, \mu):=\mathcal{L}^{\infty}(X, \mathcal{A}, \mu) \\
& :=\left\{f: X \rightarrow \mathbb{C}\left|f \in \mathcal{M}(X, \mathbb{C}), \operatorname{ess} \sup _{X}\right| f \mid<\infty\right\} \tag{25}
\end{align*}
$$

and, for $f \in \mathcal{L}^{\infty}(X)$, let

$$
\begin{equation*}
\|f\|_{\infty}:=\operatorname{ess} \sup _{X}|f| \tag{26}
\end{equation*}
$$

Then, for all $p \in[1, \infty],\|\cdot\|_{p}$ is a semi-norm on $\mathcal{L}^{p}(X):\|f\|_{p}=0 \Leftrightarrow f \sim_{\text {a.e. }} 0$ (which does not mean $f=0$).

Theorem 3 (Minkowski and (generalised) Hölder inequalities).

(i) (Minkowski) Let $p \in[1, \infty]$, then $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ for all $f, g \in \mathcal{L}^{p}(X)$.
(ii) (Hölder) Let $p, q \in[1, \infty]$, with $\frac{1}{p}+\frac{1}{q}=1$. Then, for all $f \in \mathcal{L}^{p}(X), g \in \mathcal{L}^{q}(X)$,

$$
\begin{equation*}
\int_{X}|f g| \mathrm{d} \mu \leq\|f\|_{p}\|g\|_{q} \tag{27}
\end{equation*}
$$

(iii) (Generalied Hölder) Let $n \in \mathbb{N}(n \geq 2)$, and let $p_{1}, \ldots, p_{n} \in[1, \infty]$, and let $p \in[1, \infty]$ satisfy $\frac{1}{p}=\sum_{j=1}^{n} \frac{1}{p_{j}}$. Then, for all $f_{j} \in \mathcal{L}^{p_{j}}(X), j=1, \ldots, n$,

$$
\begin{equation*}
\left\|\prod_{j=1}^{n} f_{j}\right\|_{p} \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{p_{j}} \tag{28}
\end{equation*}
$$

(iv) (Interpolation in \mathcal{L}^{p}-spaces). Let $1 \leq p<r<q \leq \infty, f \in \mathcal{L}^{p}(X) \cap \mathcal{L}^{q}(X)$. Let $\theta \in(0,1)$ with $\frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}$. Then $f \in \mathcal{L}^{r}(X)$, and

$$
\begin{equation*}
\|f\|_{r} \leq\|f\|_{p}^{\theta}\|f\|_{q}^{1-\theta} \tag{29}
\end{equation*}
$$

Hence, for $f: X \rightarrow \mathbb{C}$ measurable, the set

$$
\begin{equation*}
\Gamma_{f}:=\left\{p \in[1, \infty] \mid f \in \mathcal{L}^{p}(X)\right\} \subset \mathbb{R} \tag{30}
\end{equation*}
$$

is an interval.
(v) Let $p \in[1, \infty]$, $f \in \mathcal{L}^{p}(X) \cap \mathcal{L}^{\infty}(X)$. Then $f \in \cap_{q \geq p} \mathcal{L}^{q}(X)$, and $\lim _{q \rightarrow \infty}\|f\|_{q}=$ $\|f\|_{\infty}$.

Theorem 4 (The normed spaces $\left.L^{p}(X), p \in[1, \infty]\right)$.
 a norm on the quotient vector space $L^{p}(X)$, which makes $\left(L^{p}(X),\|\cdot\|_{p}\right)$ a Banach space. For $p=2, L^{2}(X)$ is a Hilbert space, with inner/scalar product $\langle f, g\rangle:=\int_{X} \overline{f(x)} g(x) \mathrm{d} \mu(x)$.

Remark 2. By abuse of notation we will call $f \in L^{p}(X)$ functions when we should really be talking about equivalence classes (this abuse of notation/language is well established).

Theorem 5 (a.e. convergent subsequences).
Let $p \in[1, \infty]$, and assume $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}(X), f \in L^{p}(X)$, satisfy $\lim _{j \rightarrow \infty}\left\|f_{j}-f\right\|_{p}=0$. Then there exists a subsequence $\left(f_{j_{k}}\right)_{k \in \mathbb{N}}$ with $\lim _{k \rightarrow \infty} f_{j_{k}}(x)=f(x)$ a.e., that is, the subsequence $\left(f_{j_{k}}\right)_{k \in \mathbb{N}}$ converges pointwise to f for μ-almost every $x \in X$.

Theorem 6 (Denseness of step functions in $L^{p}(X)$).
Let $p \in[1, \infty)$, then the linear subspace of step functions,

$$
\begin{align*}
E: & =\operatorname{span}\left\{\mathbb{1}_{A} \mid A \in \mathcal{A}, \mu(A)<\infty\right\} \tag{31}\\
& =\left\{g: X \rightarrow \mathbb{C} \mid g=\sum_{n=1}^{N} a_{n} \mathbb{1}_{A_{n}}, N \in \mathbb{N}, A_{1}, \ldots, A_{N} \in \mathcal{A}, \mu\left(A_{j}\right)<\infty, a_{1}, \ldots, a_{N} \in \mathbb{C}\right\}
\end{align*}
$$

is dense in $L^{p}(X)$: For all $f \in L^{p}(X)$ and all $\varepsilon>0$, there exists $g \in E$ such that $\|f-g\|_{p}<\varepsilon$.

Definition 11 (Locally integrable functions). Let (X, \mathcal{T}) be a topological space, and let μ be a measure on $(X, \sigma(\mathcal{T}))$. (Example: \mathbb{R}^{d} with Lebesque(-Borel) measure.) For $p \in$ $[1, \infty]$, we denote

$$
\begin{equation*}
L_{\mathrm{loc}}^{p}(X):=\left\{f: X \rightarrow \mathbb{C} \mid f \in \mathcal{M}(X, \mathbb{C}), f \in L^{p}(K) \text { for all } K \subset X \text { compact }\right\} . \tag{32}
\end{equation*}
$$

Theorem 7 (Monotone convergence / Beppo Levi). Let $\left(f_{j}\right)_{j \in \mathbb{N}}, f_{j}: X \rightarrow \mathbb{R}$, be a sequence of measurable functions with

$$
\begin{equation*}
0 \leq f_{1} \leq f_{2} \leq f_{3} \leq \ldots \tag{33}
\end{equation*}
$$

Then, with $f(x):=\lim _{j \rightarrow \infty} f_{j}(x)$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} f_{j} \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu \tag{34}
\end{equation*}
$$

The possibility that both sides are $+\infty$ is included.
Theorem 8 ((Lebesgue) Dominated convergence). Let $\left(f_{j}\right)_{j \in \mathbb{N}}, f_{j}: X \rightarrow \mathbb{R}$, be a sequence of measurable functions. Assume there exists $g \in L^{1}(X)$ such that $\left|f_{j}(x)\right| \leq g(x)$ for a.e. $x \in X$ and all $j \in \mathbb{N}$, and that $f(x):=\lim _{j \rightarrow \infty} f_{j}(x)$ exists a.e. on X.
Then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} f_{j} \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu \tag{35}
\end{equation*}
$$

In this case both sides are finite.
Theorem 9 (Fatou's Lemma). Let $\left(f_{j}\right)_{j \in \mathbb{N}}, f_{j}: X \rightarrow \mathbb{R}$, be a sequence of measurable functions, with $f_{j}(x) \geq 0$ a.e. on X for all $j \in \mathbb{N}$. Then

$$
\begin{equation*}
\int_{X}\left(\liminf _{j \in \mathbb{N}} f_{j}\right) \mathrm{d} \mu \leq \liminf _{j \in \mathbb{N}}\left(\int_{X} f_{j} \mathrm{~d} \mu\right) . \tag{36}
\end{equation*}
$$

Theorem 10 (Continuity and differentiability of parameter-dependent integrals). Let (M, d) be a metric space, (X, \mathcal{A}, μ) a measure space, and $f: M \times X \rightarrow \mathbb{R} a$ map satisfying
(i) The map $x \mapsto f(t, x)$ is integable for all $t \in M$.

Let $F: M \rightarrow \mathbb{R}$ be given by $F(t):=\int_{X} f(t, x) \mathrm{d} \mu(x)$.

1. Let $t_{0} \in M$, and assume furthermore:
(ii) The map $t \mapsto f(t, x)$ is continuous at t_{0} for all $x \in X$.
(iii) There exists integrable an function $g: X \rightarrow[0, \infty]$ such that $|f(t, x)| \leq g(x)$ for all $t \in M$ and $x \in X$.
Then F is continuous at t_{0} :

$$
\begin{align*}
\lim _{t \rightarrow t_{0}} F(t) & =\lim _{t \rightarrow t_{0}}\left(\int_{X} f(t, x) \mathrm{d} \mu(x)\right)=\int_{X}\left(\lim _{t \rightarrow t_{0}} f(t, x)\right) \mathrm{d} \mu(x) \\
& =\int_{X} f\left(t_{0}, x\right) \mathrm{d} \mu(x)=F\left(t_{0}\right) \tag{37}
\end{align*}
$$

2. Let $M=I \subset \mathbb{R}$ be an open interval, and assume (i) holds. Assume furthermore that
(ii') The map $t \mapsto f(t, x)$ is differentiable on I for all $x \in X$.
(iii') There exists an integrable function $g: X \rightarrow[0, \infty]$ such that $\left|\frac{\partial f}{\partial t}(t, x)\right| \leq g(x)$ for all $t \in M$ and $x \in X$.
Then F is differentiable on I, the map $x \mapsto \frac{\partial f}{\partial t}(t, x)$ is integrable for all $t \in I$, and

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{X} f(t, x) \mathrm{d} \mu(x)\right)=F^{\prime}(t)=\frac{d F}{d t}(t)=\int_{X} \frac{\partial f}{\partial t}(t, x) \mathrm{d} \mu(x) . \tag{38}
\end{equation*}
$$

Definition 12 (Product- σ-algebra).

Let $\left(X_{j}, \mathcal{A}_{j}\right), j=1, \ldots, n$, be measurable spaces. The product- σ-algebra

$$
\begin{equation*}
\bigotimes_{j=1}^{n} \mathcal{A}_{j}:=\mathcal{A}_{1} \otimes \ldots \otimes \mathcal{A}_{n}:=\sigma\left(p_{1}, \ldots, p_{n}\right) \tag{39}
\end{equation*}
$$

(on $X:=X_{j=1}^{n} X_{j}$) is the smallest σ-algebra such that the projections $p_{j}: X \rightarrow X_{j}$, $x=\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{j}$, are all measurable.
Example 4. $\mathcal{B}^{d}=\mathcal{B}^{1} \otimes \ldots \otimes \mathcal{B}^{1}$ (d times). However, $\overline{\mathcal{B}^{d}} \supsetneq \overline{\mathcal{B}^{1}} \otimes \ldots \otimes \overline{\mathcal{B}^{1}}$.
Theorem 11 (Product measure).
Let $\left(X_{j}, \mathcal{A}_{j}, \mu_{j}\right), j=1, \ldots, n$, be σ-finite (!) measure spaces, and let $X:=X_{j=1}^{n} X_{j}$. Then there exists a unique measure $\mu:=\otimes_{j=1}^{n} \mu_{j}:=\mu_{1} \otimes \ldots \otimes \mu_{n}$ (called the product measure (of $\left.\mu_{1}, \ldots, \mu_{n}\right)$) on $\mathcal{A}:=\otimes_{j=1}^{n} \mathcal{A}_{j}$ such that

Furthermore, (X, \mathcal{A}, μ) is σ-finite.

Theorem 12 (Fubini-Tonelli).

Let $\left(X_{j}, \mathcal{A}_{j}, \mu_{j}\right), j=1,2$, be σ-finite (!) measure spaces, and let $(X, \mathcal{A}, \mu):=\left(X_{1} \times\right.$ $X_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}, \mu_{1} \otimes \mu_{2}$). Let $f: X \rightarrow \overline{\mathbb{R}}$ (or \mathbb{C}) be \mathcal{A}-measurable. Then is, for all $g \in$ $\left\{\Re\left(f_{+}\right), \Re\left(f_{-}\right), \Im\left(f_{+}\right), \Im\left(f_{-}\right)\right\}$, the functions

$$
\begin{align*}
& X_{1} \rightarrow[0, \infty], x_{1} \mapsto \int_{X_{2}} g\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right), \tag{41}\\
& X_{2} \rightarrow[0, \infty], x_{2} \mapsto \int_{X_{1}} g\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \tag{42}
\end{align*}
$$

\mathcal{A}_{1}-measurable, respectively, \mathcal{A}_{2}-measurable. Furthermore,

1. (Tonelli) If $f \geq 0$ a.e. (that is, $f(X \backslash N) \subset[0, \infty], \mu(N)=0$), then

$$
\begin{align*}
\int_{X} f(x) \mathrm{d} \mu(x) & =\int_{X_{1}}\left(\int_{X_{2}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \\
& =\int_{X_{2}}\left(\int_{X_{1}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)\right) \mathrm{d} \mu_{2}\left(x_{2}\right) . \tag{43}
\end{align*}
$$

Note: It is possible that all three integrals are $+\infty$.
2. (Fubini) If one of the three integrals

$$
\begin{align*}
\int_{X}|f(x)| \mathrm{d} \mu(x), & \int_{X_{1}}\left(\int_{X_{2}}\left|f\left(x_{1}, x_{2}\right)\right| \mathrm{d} \mu_{2}\left(x_{2}\right)\right) \mathrm{d} \mu_{1}\left(x_{1}\right), \\
& \int_{X_{2}}\left(\int_{X_{1}}\left|f\left(x_{1}, x_{2}\right)\right| \mathrm{d} \mu_{1}\left(x_{1}\right)\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \tag{44}
\end{align*}
$$

is finite, then they are all finite, and (43) holds.
Theorem 13 (Layer Cake Principle). Let (X, \mathcal{A}, μ) be a σ-finite measure space, and let $\mathcal{B}_{\geq 0}$ be the Borel-algebra of $\mathbb{R}_{\geq 0}$. Let ν be a measure on $\mathcal{B}_{\geq 0}$ such that $\phi(t):=\nu([0, t))$ is finite for all $t>0$, and let $f: X \rightarrow \mathbb{R}_{\geq 0}$ be $\mathcal{A}-\mathcal{B}_{\geq 0}$-measurable. Then

$$
\begin{equation*}
\int_{X} \phi(f(x)) \mathrm{d} \mu(x)=\int_{\mathbb{R}_{\geq 0}} \mu(\{x \in X \mid f(x)>t\}) \mathrm{d} \nu(t) . \tag{45}
\end{equation*}
$$

Recall that $\mu_{f}(t)=\mu(\{f>t\})$ is the distribution function of f relative to μ. In particular, if $f \in \mathcal{L}^{p}(X)$, then (by choosing $\mathrm{d} \nu(t)=p t^{p-1} \mathrm{~d} \lambda^{1}(t)$)

$$
\begin{equation*}
\int_{X}|f|^{p} \mathrm{~d} \mu=p \int_{\mathbb{R}_{\geq 0}} t^{p-1} \mu(\{|f|>t\}) \mathrm{d} \lambda^{1}(t), \tag{46}
\end{equation*}
$$

and if $f \in \mathcal{L}^{1}(X)$ with $f \geq 0$, then (by choosing $p=1$)

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu=\int_{\mathbb{R}_{\geq 0}} \mu(\{f>t\}) \mathrm{d} \lambda^{1}(t) . \tag{47}
\end{equation*}
$$

Also (by choosing μ the Dirac measure δ_{x} at $x \in X$, and $p=1$),

$$
\begin{equation*}
\left.f(x)=\int_{\mathbb{R}_{\geq 0}} \mathbb{1}_{\{f>t\}}(x) \mathrm{d} \lambda^{1}(t) \quad \text { (Layer Cake Representation of } f\right) . \tag{48}
\end{equation*}
$$

Theorem 14 (Transformation formula for λ^{d}).
Let $U \subset \mathbb{R}^{d}$ be open, and $\varphi: U \rightarrow \varphi(U) \subset \mathbb{R}^{d}$ a diffeomorphism. Then, for all $f \in$ $\mathcal{L}^{1}\left(\varphi(U), \lambda^{d}\right)$,

$$
\begin{equation*}
\int_{\varphi(U)} f(y) \mathrm{d} \lambda^{d}(y)=\int_{U} f(\varphi(x))|\operatorname{det}(D \varphi(x))| \mathrm{d} \lambda^{d}(x) . \tag{49}
\end{equation*}
$$

Lemma 1 (Notation and certain concrete integrals in \mathbb{R}^{d}).

1. For $x \in \mathbb{R}^{d}, r>0$, we denote $B_{r}^{d}(x):=B_{r}(x):=\left\{y \in \mathbb{R}^{d}| | x-y \mid<r\right\}$, and $\omega_{d}:=\lambda^{d}\left(B_{1}(0)\right)=\lambda^{d}\left(\overline{B_{1}(0)}\right)$. One has $\omega_{d}=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)}$, with $\Gamma(z):=\int_{0}^{\infty} t^{z-1} e^{-t} d t$, $z>0$, the Gamma-function.
2. One has

$$
\begin{array}{r}
\int_{B_{1}(0)}|x|^{\alpha} \mathrm{d} \lambda^{d}(x)<\infty \Leftrightarrow \alpha>-d \\
\int_{\mathbb{R}^{d} \backslash B_{1}(0)}|x|^{\alpha} \mathrm{d} \lambda^{d}(x)<\infty \Leftrightarrow \alpha<-d \\
\int_{\mathbb{R}^{d}} \frac{1}{(1+|x|)^{\alpha}} \mathrm{d} \lambda^{d}(x)<\infty \Leftrightarrow \alpha>-d . \tag{52}
\end{array}
$$

Definition 13 (Spaces of differentiable functions on \mathbb{R}^{d}). Denote, for $k \in \mathbb{N}$,

$$
\begin{align*}
C^{0}\left(\mathbb{R}^{d}\right) & :=C\left(\mathbb{R}^{d}\right):=C\left(\mathbb{R}^{d}, \mathbb{C}\right):=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C} \mid f \text { is continuous }\right\}, \tag{53}\\
C^{k}\left(\mathbb{R}^{d}\right) & :=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C} \mid f \text { is } k \text { times continuous differentiable }\right\}, \tag{54}\\
C^{\infty}\left(\mathbb{R}^{d}\right) & :=\bigcap_{k \in \mathbb{N}} C^{k}\left(\mathbb{R}^{d}\right), \tag{55}
\end{align*}
$$

and define, for $f \in C\left(\mathbb{R}^{d}\right)$, the support of f by $\operatorname{supp}(f):=\overline{\left\{x \in \mathbb{R}^{d} \mid f(x) \neq 0\right\}}$. Denote, for $k \in \mathbb{N} \cup\{\infty\}$,

$$
\begin{equation*}
C_{c}^{k}\left(\mathbb{R}^{d}\right):=\left\{f \in C^{k}\left(\mathbb{R}^{d}\right) \mid \operatorname{supp}(f) \subset \mathbb{R}^{d} \text { is compact }\right\} . \tag{56}
\end{equation*}
$$

Theorem 15 (Denseness of $C_{c}^{k}\left(\mathbb{R}^{d}\right)$ in $L^{p}\left(\mathbb{R}^{d}\right)$).

1. The set $C_{c}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}\right)$ with respect to $\|\cdot\|_{p}$ for $1 \leqslant p<\infty$.

More precisely: For all $f \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leqslant p<\infty$, and all $\varepsilon>0$ there exists $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$ with $\|\phi-f\|_{p}<\varepsilon$. Note: The result fails in $L^{\infty}\left(\mathbb{R}^{d}\right)$.
2. The set $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}\right)$ with respect to $\|\cdot\|_{p}$ for $1 \leqslant p<\infty$.

Again, the result fails in $L^{\infty}\left(\mathbb{R}^{d}\right)$.
3. As a consequence, $C_{c}^{k}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}\right)$ with respect to $\|\cdot\|_{p}$ for $1 \leqslant p<\infty$, and all $k \in \mathbb{N} \cup\{\infty\}$.
Again, the result fails in $L^{\infty}\left(\mathbb{R}^{d}\right)$.
Remark 3 (Notation in \mathbb{R}^{d}). We will most often write $\int_{\mathbb{R}^{d}} f(x) d x$ or $\int f(x) \mathrm{d} x$ or simply $\int f \mathrm{~d} x$ instead of $\int_{\mathbb{R}^{d}} f(x) \mathrm{d} \lambda^{d}(x)$ from now on. Also, we will often use the notation $|A|:=\lambda^{d}(A)$ for the Lebesgue(-Borel) measure of a (measurable) set $A \subset \mathbb{R}^{d}$. This way, for the distribution function of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ (relative to Lebesgue measure λ^{d}) we have

$$
\begin{equation*}
\left(\lambda^{d}\right)_{f}(t)=\lambda^{d}(\{f>t\})=\lambda^{d}\left(\left\{x \in \mathbb{R}^{d} \mid f(x)>t\right\}\right)=|\{f>t\}| . \tag{57}
\end{equation*}
$$

