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Measure and Integration Theory

Let X be a non-empty set (for example X = Rd or any subset of Rd), and let P(X) be
the family of all subsets of X (its power set).

Definition 1 (σ-algebra). A family of subsets of X, A ⊂ P(X), is called a σ-algebra
(on X) if and only if (’iff’)

(i) X ∈ A.

(ii) A ∈ A ⇒ X \ A ∈ A.

(iii)
(
Aj ∈ A for all j ∈ N

)
⇒ ⋃∞

j=1Aj ∈ A.

The pair (X,A) is called a measurable space, and A ⊂ X is measurable :⇔ A ∈ A.

Proposition 1 (Generated σ-algebras; Borel-(σ-)algebra).

(i) For any family B ⊂ P(X) there exists a smallest σ-algebra σ(B) containing B (that
is, σ(B) ⊃ B, and if C is a σ-algebra with C ⊃ B, then C ⊃ σ(B)), given by

σ(B) :=
⋂

A⊂P(X),A σ-algebra,A⊃B
A . (1)

We call σ(B) the σ-algebra generated by B.

(ii) Let (X, T ) be a topological space (for example, a metric space (X, d) with the topology
Td generated by the metric d). The σ-algebra σ(T ) is called the Borel-σ-algebra (or
Borel-algebra) (on (X, T )), denoted B(X) (more correct would be: B(X, T )), and
B ⊂ X is a Borel-set (or Borel or Borel-measurable) :⇔ B ∈ B(X).

(iii) For a measurable space (X,A) and a subset B ⊂ X (not necessarily measurable), the
induced σ-algebra (or trace-σ-algebra) on B is defined by AB := {B ∩A |A ∈ A}.
If B ∈ A, then AB ⊂ A.
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Example 1 (Borel-algebra on Rd, R≥0, R, R≥0). Let X := Rd with the usual topology
TEucl, generated by the Euclidean metric | · |. We denote Bd := B(Rd) := σ(TEucl) the
Borel-algebra on Rd, and write B := B1 when there is no risk of confusion. We denote
B≥0 := B1

R≥0 := {R≥0 ∩ A |A ∈ B1}. It is the Borel-algebra of R≥0 (with the topology
on R≥0 the one induced from R). For R := R ∪ {−∞} ∪ {+∞}, we denote B(R) :=
σ(B1 ∪ {{−∞}} ∪ {{+∞}}). It is the Borel-algebra on R for the usual topology on R.
Finally, B≥0 := {R≥0 ∩ A |, A ∈ B(R)} ( = B(R≥0)).

Definition 2 ((Positive) measure).

(i) Let A be a σ-algebra on X. A map µ : A → [0,∞] is called a (positive) measure
(on X, or on (X,A)) iff

(i) µ(∅) = 0.
(ii) For all Aj ∈ A, j ∈ N, with Aj ∩ Ak = ∅ for j 6= k:

µ
( ∞⋃
j=1

Aj
)

=
∞∑
j=1

µ(Aj) (σ-additivity) . (2)

The triple (X,A, µ) is called a measure space.

(ii) A measure µ (or, more correctly, a measure space (X,A, µ)) is called finite (or
bounded) iff µ(X) <∞, and σ-finite iff there exists (Xj)j∈N, Xj ∈ A, X = ⋃∞

j=1Xj,
with µ(Xj) <∞ for all j ∈ N.

Example 2 (Lebesgue-Borel measure on Rd). There exists a unique measure, called
the Lebesgue-Borel measure λd, on Bd so that for all rectangles Q :=×d

j=1[aj, bj) ⊂ Rd,
−∞ ≤ aj ≤ bj ≤ ∞, holds

λd(Q) =
d∏
j=1

(bj − aj) . (3)

Furthermore, λd is translation and rotation invariant, and σ-finite.

Definition 3 ((µ-)Null sets; complete measure). Let (X,A, µ) be a measure space.

(i) A subset N ⊂ X is called a (µ-)null set iff N ∈ A and µ(N) = 0.

(ii) (X,A, µ) (or just µ) is called complete iff all subsets of null sets are null sets.

Theorem 1 (Completion of measure). Let (X,A, µ) be a measure space. Then there
exists a smallest complete measure space (X,A, µ) (called the completion of (X,A, µ))
containing (X,A, µ) (that is, A ⊃ A, µ|A = µ, and µ is complete).

Example 3 (Lebesgue measure on Rd). The completion of (Rd,Bd, λd) (which is not
in itself complete) is denoted (Rd,Bd, λd). Elements of Bd are called Lebesgue-measurable
(subsets of Rd), and λd is called (d−dimensional) Lebesgue measure. One has

Bd =
{
B ∪ Ñ

∣∣∣B ∈ Bd,∃N ∈ Bd with λd(N) = 0, Ñ ⊂ N
}
. (4)

Furthermore, A ∈ Bd iff for all ε > 0 there exists U ⊂ Rd open and C ⊂ Rd closed, with
C ⊂ A ⊂ U , such that λd(U \ C) < ε.
Note, in particular, that Bd ( Bd ( P(Rd).
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Definition 4 (Measurable maps and functions).

(i) Let (X,A), (Y, C) be measurable spaces. A map f : X → Y is called (A-C-)measurable
iff f−1(C) ∈ A for all C ∈ C. We denote byM(X, Y ) the set of all A-C-measurable
maps. (More correct would beM((X,A), (Y, C)).)

(ii) In the special case (Y, C) = (R,B1), we denote M(X) := M(X,R) the set of all
measurable functions f : X → R, and M+(X) := {f ∈ M(X) | f ≥ 0 }. Note that
M+(X) =M(X,R≥0) =M((X,A), (R≥0,B≥0)).

(iii) In the special case (Y, C) = (R,B(R)), we denote M(X) := M(X,R) the set of
all measurable numerical (or extended real-valued) functions f : X → R, and
M+(X) := {f ∈M(X) | f ≥ 0 }. Again,M+(X) =M(X,R≥0).

(iv) We denote by M(X,C) the set of all complex functions f : X → C such that
<(f),=(f) ∈M(X,R).

Remark 1. One has

M(X) =
{
f : X → R

∣∣∣ f−1
(
(−∞, a)

)
∈ A for all a ∈ R

}
, (5)

and similarly with (−∞, a) replaced with (−∞, a], (a,∞), or [a,∞). Analogous statements
hold forM(X).
We denote, for a ∈ R,

{f < a} := f−1
(
(−∞, a)

)
= {x ∈ X | f(x) ∈ (−∞, a) } , (6)

and similarly for other types of intervals.

Definition 5 (Distribution function).
Let (X,A, µ) be a measure space. For f ∈ M(X), we call the function µf : R→ R given
by

µf (t) := µ({f > t}) = µ
(
{x ∈ X | f(x) > t }

)
(7)

the distribution function of f (relative to µ).

Definition 6 (Almost everywhere (a.e.); f = g a.e.).
Let (X,A, µ) be a measure space.

(i) A mathematical statement Q = Q(x) (which is assumed to make sense for all x ∈ X)
is said to hold (µ-) almost everywhere (a.e., or µ-a.e.) iff there exists a (µ-)null set
N such that Q(x) is true/holds for all x ∈ X \N .

(ii) Let f, g : X → M (M ∈ {R,R≥0,R,R≥0,C}) be measurable, then f = g a.e. iff
f(x) = g(x) a.e. This defines an equivalence relation ∼a.e. onM(X,M).

Definition 7 (Step functions).
Let (X,A) be a measurable space. A function f : X → R is called a step function iff there
exists N ∈ N, A1, . . . , AN ∈ A, and a1, . . . , aN ∈ R such that

f =
N∑
n=1

an1An . (8)
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Here, 1B is the characteristic (or indicator) function of (the set) B, given by 1B(x) = 1
if x ∈ B, and equal 0 otherwise (x 6∈ B).
Note that step functions are measurable by definition. We denote the set of all non-negative
step functions by

E+ :=
{
f : X → R

∣∣∣ f ≥ 0 , f step function
}
. (9)

Theorem 2 (Approximating measurable functions by step functions). Let (X,A)
be a measurable space. Then f ∈M(X,R) iff there exists a sequence (fn)n∈N of step func-
tions fn : X → R with f = limn→∞ fn (pointwise on X). If f ∈ M+(X), then the
sequence can be chosen monotone (fn ↗ f), and if f is a bounded function, then the
sequence can be chosen such that the convergence is uniform on X.

Definition 8 (Definition and properties of Lebesgue integral).
Let (X,A, µ) be a measure space.

1. Let f ∈ E+ (f ≥ 0, f step function), with f = ∑N
n=1 an1An, An ∈ A, an ∈ R. Then

ˆ
X

f dµ :=
ˆ
X

f(x) dµ(x) :=
N∑
n=1

anµ(An) ∈ [0,∞] (10)

is the (µ-)integral of f over X. It is independent of the representation in (8).

2. Let f ∈ M+(X) (f : X → [0,∞], measurable), and let (fn)n∈N ⊂ E+ be an appro-
ximating sequence as in Theorem 2. Then

ˆ
X

f dµ :=
ˆ
X

f(x) dµ(x) := lim
n→∞

(ˆ
X

fn(x) dµ(x)
)
∈ [0,∞] (11)

is the (µ-)integral of f over X. The limit is well-defined, since the sequence
(
´
X
fn dµ)n∈N ⊂ [0,∞] is non-decreasing. The limit is independent of the chosen

sequence (fn)n∈N.

3. For f : X → R, let f± := max{±f, 0} (so f = f+ − f−, |f | = f+ + f−). Then f
is (µ-)integrable over X :⇔ f ∈ M(X) and

´
X
f+ dµ < ∞,

´
X
f− dµ < ∞. In this

case,
ˆ
X

f dµ :=
ˆ
X

f(x) dµ(x) :=
ˆ
X

f+ dµ−
ˆ
X

f− dµ ∈ R (12)

is the (µ-)integral of f over X. We denote the set of integrable functions by

L1 := L1(X) := L1(µ) := L1(X,µ) := L1(X,A, µ) :=
{
f : X → R

∣∣∣ f µ-integrable } ,
L1 := L1(X) := L1(µ) := L1(X,µ) := L1(X,A, µ) := {f : X → R | f µ-integrable } .

4. For A ∈ A, and f ∈ L1 (or f ∈ L1), let
´
A
f dµ :=

´
X
f1A dµ.

5. Properties of the integral:

(a) For f ∈ L1, f ≥ 0, one has:
´
X
f dµ = 0⇔ f = 0 µ-a.e.

(b) The map f 7→
´
X
f dµ from L1 to R is linear and monotone.
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(c) For f ∈ L1,
∣∣∣ˆ

X

f dµ
∣∣∣ ≤ ˆ

X

|f | dµ (triangle inequality) . (13)

(d) For f ∈ L1, f ≥ 0, and all ε > 0,

µ({f ≥ ε}) ≤ 1
ε

ˆ
X

f dµ (Chebyshev’s inequality) . (14)

Proposition 2 (Riemann versus Lebesgue interal in R).
For f : [a, b] → R (a, b ∈ R, a < b) Riemann-integrable, denote

´ b
a
f(x) dx the Riemann-

integral of f over [a, b].

1. For f : [a, b]→ R Riemann-integrable there exists g : R→ R measurable, with f = g
a.e. on [a, b] such that

ˆ b

a

f(x) dx =
ˆ

[a,b]
g(x) dλ1(x) . (15)

2. Let f : [0,∞)→ R be measurable, and continuous on (0,∞). Then
ˆ
R
f1[1,∞) dλ1 = lim

n→∞

ˆ n

1
f(x) dx , (16)

ˆ
R
f1[0,1] dλ1 = lim

n→∞

ˆ 1

1/n
f(x) dx . (17)

In particular,
ˆ

[0,1]
xa dλ1(x) <∞ ⇔ a > −1 , (18)

ˆ
[1,∞)

xb dλ1(x) <∞ ⇔ b < −1 . (19)

Also,
ˆ ∞

0

sin x
x

dx = π

2 = lim
R→∞

( ˆ
[0,R]

sin x
x

dλ1(x)
)
, (20)

ˆ
R
e−x

2 dλ1(x) =
√
π . (21)

In what follows, let (X,A, µ) be any measure space.

Definition 9 (Essential supremum). For a measurable function f : X → R the essen-
tial supremum of f is

ess supf = ess supXf = inf{s ∈ R | f(x) ≤ s µ-a.e }
= inf

{
sup

x∈X\N
f(x)

∣∣∣N ⊂ X,N µ-null set
}
. (22)

Definition 10 (The semi-normed spaces Lp(X), p ∈ [1,∞]).
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(i) For p ∈ [1,∞), let

Lp := Lp(X) := Lp(µ) := Lp(X,µ) := Lp(X,A, µ)

:=
{
f : X → C

∣∣∣ f ∈M(X,C) ,
ˆ
X

|f |p dµ <∞
}

(23)

and, for f ∈ Lp(X), let

‖f‖p :=
(ˆ

X

|f |p dµ <∞
)1/p

. (24)

(ii) For p =∞, let

L∞ := L∞(X) := L∞(µ) := L∞(X,µ) := L∞(X,A, µ)
:=
{
f : X → C

∣∣∣ f ∈M(X,C) , ess supX |f | <∞
}
, (25)

and, for f ∈ L∞(X), let

‖f‖∞ := ess supX |f | . (26)

Then, for all p ∈ [1,∞], ‖ · ‖p is a semi-norm on Lp(X): ‖f‖p = 0 ⇔ f ∼a.e. 0
(which does not mean f = 0).

Theorem 3 (Minkowski and (generalised) Hölder inequalities).

(i) (Minkowski) Let p ∈ [1,∞], then ‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp(X).

(ii) (Hölder) Let p, q ∈ [1,∞], with 1
p

+ 1
q

= 1. Then, for all f ∈ Lp(X), g ∈ Lq(X),
ˆ
X

|fg| dµ ≤ ‖f‖p‖g‖q . (27)

(iii) (Generalied Hölder) Let n ∈ N (n ≥ 2), and let p1, . . . , pn ∈ [1,∞], and let p ∈ [1,∞]
satisfy 1

p
= ∑n

j=1
1
pj
. Then, for all fj ∈ Lpj (X), j = 1, . . . , n,

∥∥∥ n∏
j=1

fj
∥∥∥
p
≤

n∏
j=1
‖fj‖pj

. (28)

(iv) (Interpolation in Lp-spaces). Let 1 ≤ p < r < q ≤ ∞, f ∈ Lp(X) ∩ Lq(X). Let
θ ∈ (0, 1) with 1

r
= θ

p
+ 1−θ

q
. Then f ∈ Lr(X), and

‖f‖r ≤ ‖f‖θp ‖f‖1−θ
q . (29)

Hence, for f : X → C measurable, the set

Γf := {p ∈ [1,∞] | f ∈ Lp(X)} ⊂ R (30)

is an interval.

(v) Let p ∈ [1,∞], f ∈ Lp(X) ∩ L∞(X). Then f ∈ ∩q≥pLq(X), and limq→∞ ‖f‖q =
‖f‖∞.
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Theorem 4 (The normed spaces Lp(X), p ∈ [1,∞]).
For p ∈ [1,∞], the relation ∼a.e. defines an equivalence relation on Lp(X), and ‖·‖p defines
a norm on the quotient vector space Lp(X), which makes (Lp(X), ‖ · ‖p) a Banach space.
For p = 2, L2(X) is a Hilbert space, with inner/scalar product 〈f, g〉 :=

´
X
f(x)g(x) dµ(x).

Remark 2. By abuse of notation we will call f ∈ Lp(X) functions when we should really
be talking about equivalence classes (this abuse of notation/language is well established).

Theorem 5 (a.e. convergent subsequences).
Let p ∈ [1,∞], and assume (fj)j∈N ⊂ Lp(X), f ∈ Lp(X), satisfy limj→∞ ‖fj − f‖p = 0.
Then there exists a subsequence (fjk)k∈N with limk→∞ fjk(x) = f(x) a.e., that is, the
subsequence (fjk)k∈N converges pointwise to f for µ-almost every x ∈ X.

Theorem 6 (Denseness of step functions in Lp(X)).
Let p ∈ [1,∞), then the linear subspace of step functions,

E : = span{1A |A ∈ A, µ(A) <∞} (31)

= {g : X → C | g =
N∑
n=1

an1An , N ∈ N, A1, . . . , AN ∈ A, µ(Aj) <∞, a1, . . . , aN ∈ C}

is dense in Lp(X): For all f ∈ Lp(X) and all ε > 0, there exists g ∈ E such that
‖f − g‖p < ε.

Definition 11 (Locally integrable functions). Let (X, T ) be a topological space, and
let µ be a measure on (X, σ(T )). (Example: Rd with Lebesque(-Borel) measure.) For p ∈
[1,∞], we denote

Lploc(X) :=
{
f : X → C

∣∣∣ f ∈M(X,C) , f ∈ Lp(K) for all K ⊂ X compact
}
. (32)

Theorem 7 (Monotone convergence / Beppo Levi). Let (fj)j∈N, fj : X → R, be a
sequence of measurable functions with

0 ≤ f1 ≤ f2 ≤ f3 ≤ . . . . (33)

Then, with f(x) := limj→∞ fj(x),

lim
j→∞

ˆ
X

fj dµ =
ˆ
X

f dµ . (34)

The possibility that both sides are +∞ is included.

Theorem 8 ((Lebesgue) Dominated convergence). Let (fj)j∈N, fj : X → R, be a
sequence of measurable functions. Assume there exists g ∈ L1(X) such that |fj(x)| ≤ g(x)
for a.e. x ∈ X and all j ∈ N, and that f(x) := limj→∞ fj(x) exists a.e. on X.
Then

lim
j→∞

ˆ
X

fj dµ =
ˆ
X

f dµ . (35)

In this case both sides are finite.

Theorem 9 (Fatou’s Lemma). Let (fj)j∈N, fj : X → R, be a sequence of measurable
functions, with fj(x) ≥ 0 a.e. on X for all j ∈ N. Then

ˆ
X

(
lim inf
j∈N

fj
)

dµ ≤ lim inf
j∈N

(ˆ
X

fj dµ
)
. (36)
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Theorem 10 (Continuity and differentiability of parameter-dependent inte-
grals). Let (M,d) be a metric space, (X,A, µ) a measure space, and f : M ×X → R a
map satisfying
(i) The map x 7→ f(t, x) is integable for all t ∈M .
Let F : M → R be given by F (t) :=

´
X
f(t, x) dµ(x).

1. Let t0 ∈M , and assume furthermore:
(ii) The map t 7→ f(t, x) is continuous at t0 for all x ∈ X.
(iii) There exists integrable an function g : X → [0,∞] such that |f(t, x)| ≤ g(x) for
all t ∈M and x ∈ X.
Then F is continuous at t0:

lim
t→t0

F (t) = lim
t→t0

( ˆ
X

f(t, x) dµ(x)
)

=
ˆ
X

(
lim
t→t0

f(t, x)
)

dµ(x)

=
ˆ
X

f(t0, x) dµ(x) = F (t0) . (37)

2. Let M = I ⊂ R be an open interval, and assume (i) holds. Assume furthermore that
(ii’) The map t 7→ f(t, x) is differentiable on I for all x ∈ X.
(iii’) There exists an integrable function g : X → [0,∞] such that |∂f

∂t
(t, x)| ≤ g(x)

for all t ∈M and x ∈ X.
Then F is differentiable on I, the map x 7→ ∂f

∂t
(t, x) is integrable for all t ∈ I, and

d

dt

( ˆ
X

f(t, x) dµ(x)
)

= F ′(t) = dF

dt
(t) =

ˆ
X

∂f

∂t
(t, x) dµ(x) . (38)

Definition 12 (Product-σ-algebra).
Let (Xj,Aj), j = 1, . . . , n, be measurable spaces. The product-σ-algebra

n⊗
j=1
Aj := A1 ⊗ . . .⊗An := σ(p1, . . . , pn) (39)

(on X :=×n

j=1Xj) is the smallest σ-algebra such that the projections pj : X → Xj,
x = (x1, . . . , xn) 7→ xj, are all measurable.

Example 4. Bd = B1 ⊗ . . .⊗ B1 (d times). However, Bd ) B1 ⊗ . . .⊗ B1.

Theorem 11 (Product measure).
Let (Xj,Aj, µj), j = 1, . . . , n, be σ-finite (!) measure spaces, and let X :=×n

j=1Xj. Then
there exists a unique measure µ := ⊗nj=1µj := µ1 ⊗ . . .⊗ µn (called the product measure
(of µ1, . . . , µn)) on A := ⊗nj=1Aj such that

( n⊗
j=1

µj
)( n×

j=1
Aj
)

=
n∏
j=1

µj(Aj) for all Aj ∈ Aj, j = 1, . . . , n . (40)

Furthermore, (X,A, µ) is σ-finite.
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Theorem 12 (Fubini-Tonelli).
Let (Xj,Aj, µj), j = 1, 2, be σ-finite (!) measure spaces, and let (X,A, µ) := (X1 ×
X2,A1 ⊗ A2, µ1 ⊗ µ2). Let f : X → R (or C) be A-measurable. Then is, for all g ∈
{<(f+),<(f−),=(f+),=(f−)}, the functions

X1 → [0,∞] , x1 7→
ˆ
X2

g(x1, x2) dµ2(x2) , (41)

X2 → [0,∞] , x2 7→
ˆ
X1

g(x1, x2) dµ1(x1) (42)

A1-measurable, respectively, A2-measurable. Furthermore,

1. (Tonelli) If f ≥ 0 a.e. (that is, f(X \N) ⊂ [0,∞], µ(N) = 0), then
ˆ
X

f(x) dµ(x) =
ˆ
X1

( ˆ
X2

f(x1, x2) dµ2(x2)
)

dµ1(x1)

=
ˆ
X2

( ˆ
X1

f(x1, x2) dµ1(x1)
)

dµ2(x2) . (43)

Note: It is possible that all three integrals are +∞.

2. (Fubini) If one of the three integrals
ˆ
X

|f(x)| dµ(x) ,
ˆ
X1

( ˆ
X2

|f(x1, x2)| dµ2(x2)
)

dµ1(x1) ,
ˆ
X2

(ˆ
X1

|f(x1, x2)| dµ1(x1)
)

dµ2(x2) (44)

is finite, then they are all finite, and (43) holds.

Theorem 13 (Layer Cake Principle). Let (X,A, µ) be a σ-finite measure space, and
let B≥0 be the Borel-algebra of R≥0. Let ν be a measure on B≥0 such that φ(t) := ν([0, t))
is finite for all t > 0, and let f : X → R≥0 be A-B≥0-measurable. Then

ˆ
X

φ(f(x)) dµ(x) =
ˆ
R≥0

µ({x ∈ X | f(x) > t}) dν(t) . (45)

Recall that µf (t) = µ({f > t}) is the distribution function of f relative to µ.
In particular, if f ∈ Lp(X), then (by choosing dν(t) = ptp−1dλ1(t))

ˆ
X

|f |p dµ = p

ˆ
R≥0

tp−1µ({|f | > t}) dλ1(t) , (46)

and if f ∈ L1(X) with f ≥ 0, then (by choosing p = 1)
ˆ
X

f dµ =
ˆ
R≥0

µ({f > t}) dλ1(t) . (47)

Also (by choosing µ the Dirac measure δx at x ∈ X, and p = 1),

f(x) =
ˆ
R≥0

1{f>t}(x) dλ1(t) (Layer Cake Representation of f) . (48)
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Theorem 14 (Transformation formula for λd).
Let U ⊂ Rd be open, and ϕ : U → ϕ(U) ⊂ Rd a diffeomorphism. Then, for all f ∈
L1(ϕ(U), λd), ˆ

ϕ(U)
f(y) dλd(y) =

ˆ
U

f(ϕ(x))
∣∣∣ det(Dϕ(x))

∣∣∣ dλd(x) . (49)

Lemma 1 (Notation and certain concrete integrals in Rd).

1. For x ∈ Rd, r > 0, we denote Bd
r (x) := Br(x) := {y ∈ Rd | |x − y| < r}, and

ωd := λd(B1(0)) = λd(B1(0)). One has ωd = πd/2

Γ(d/2+1) , with Γ(z) :=
´∞

0 tz−1e−t dt,
z > 0, the Gamma-function.

2. One has ˆ
B1(0)
|x|α dλd(x) <∞ ⇔ α > −d , (50)

ˆ
Rd\B1(0)

|x|α dλd(x) <∞ ⇔ α < −d , (51)
ˆ
Rd

1
(1 + |x|)α dλd(x) <∞ ⇔ α > −d . (52)

Definition 13 (Spaces of differentiable functions on Rd). Denote, for k ∈ N,

C0(Rd) := C(Rd) := C(Rd,C) :=
{
f : Rd → C

∣∣∣ f is continuous
}
, (53)

Ck(Rd) :=
{
f : Rd → C

∣∣∣ f is k times continuous differentiable
}
, (54)

C∞(Rd) :=
⋂
k∈N

Ck(Rd) , (55)

and define, for f ∈ C(Rd), the support of f by supp(f) := {x ∈ Rd | f(x) 6= 0}. Denote,
for k ∈ N ∪ {∞},

Ck
c (Rd) :=

{
f ∈ Ck(Rd)

∣∣∣ supp(f) ⊂ Rd is compact
}
. (56)

Theorem 15 (Denseness of Ck
c (Rd) in Lp(Rd)).

1. The set Cc(Rd) is dense in Lp(Rd) with respect to ‖ · ‖p for 1 6 p <∞.
More precisely: For all f ∈ Lp(Rd), 1 6 p <∞, and all ε > 0 there exists φ ∈ Cc(Rd)
with ‖φ− f‖p < ε. Note: The result fails in L∞(Rd).

2. The set C∞c (Rd) is dense in Lp(Rd) with respect to ‖ · ‖p for 1 6 p <∞.
Again, the result fails in L∞(Rd).

3. As a consequence, Ck
c (Rd) is dense in Lp(Rd) with respect to ‖ · ‖p for 1 6 p < ∞,

and all k ∈ N ∪ {∞}.
Again, the result fails in L∞(Rd).

Remark 3 (Notation in Rd). We will most often write
´
Rd f(x) dx or

´
f(x) dx or

simply
´
fdx instead of

´
Rd f(x) dλd(x) from now on. Also, we will often use the notation

|A| := λd(A) for the Lebesgue(-Borel) measure of a (measurable) set A ⊂ Rd. This way,
for the distribution function of f : Rd → R (relative to Lebesgue measure λd) we have

(λd)f (t) = λd({f > t}) = λd({x ∈ Rd | f(x) > t}) = |{f > t}| . (57)
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