Numerik I (Zentralübung)

Problem Sheet 4

Question 1

(a) Determine a suitable algebraic system for computing the quadratic spline s of a function f: [a, b] → ℝ corresponding to the points a = x₀ < x₁ < ... < x_n = b. That is, determine a suitable matrix A ∈ ℝ^{n×n} and a vector g = (g₀, g₁, ... g_{n-1}) ∈ ℝⁿ (in terms of f(x_i) and x_i) such that

$$A(s'(x_0), s'(x_1), \dots, s'(x_{n-1}))^t = g,$$

with the additional condition that $s'(x_n) = 0$.

(b) Calculate the quadratic spline for the function $f: [0,3] \to \mathbb{R}$, $f(x) = x^2$, where h = 1 (so $x_i = i$ for $0 \le i \le 3$).

Question 2

Let

$$\Delta = \{a = x_0 < x_1 < \ldots < x_n = b\}$$

be a decomposition of a given interval [a, b]. Let $C^1_{\Delta}[a, b]$ denote the space of continuous functions on [a, b] that are piecewise differentiable with respect to Δ (i.e. differentiable on every interval (x_{i-1}, x_i) for $1 \le i \le n$).

Recall that for a piecewise differentiable $g \in C^1_{\Delta}[a, b]$,

$$||g'||_2 := \left(\sum_{i=1}^n \int_{x_{i-1}}^{x_i} |g'(x)|^2 \, \mathrm{d}x\right)^{1/2}.$$

Suppose $f \in C^1_{\Delta}[a, b]$, and let $s_f \in S_{\Delta,1}$ be the piecewise linear spline that interpolates f at the points x_i That is, we have $s_f(x_i) = f(x_i)$ for $0 \le i \le n$.

(a) Show that

$$\int_{a}^{b} \left(f'(x) - s'_{f}(x) \right) s'_{f}(x) \, \mathrm{d}x = 0 \, .$$

[4 + 2 = 6 points]

[2+3+2=7 points]

(b) Show that

$$||f' - s'_f||_2^2 = ||f'||_2^2 - ||s'_f||_2^2$$

Remark. Note that this also shows that $||s'_f||_2 \leq ||f'||_2$. Hence, for any given values $y_0, \ldots, y_n \in \mathbb{R}$, the linear spline function $s(x_i) = y_i$ solves the Variational Problem

$$||f'||_2 \to \min$$
 for $f \in C^1_{\Delta}[a, b]$ where $f(x_i) = y_i$ for $0 \le i \le n$.

(c) Show that for any arbitrary linear spline function $s \in S_{\Delta,1}$, we have

$$||f' - s'_f||_2 \le ||f' - s'||_2.$$

Question 3

Compute the natural cubic spline function $s \colon [0,2] \to \mathbb{R}$ for the following data:

x_i	0	1	2
y_i	1	2	0

Question 4

Suppose we have a decomposition

$$\Delta = \{ 0 = x_0 < x_1 < \ldots < x_n = 1 \}$$

of the interval [0, 1] such that all the points are equi-distant. So $x_i = x_{i-1} + h$ for each $1 \le i \le n$, where h = 1/n.

We wish to approximate the function

$$f: [0,1] \to \mathbb{R}, \quad f(x) = \sin(2\pi x)$$

on this interval with a cubic spline function $s \in S_{\Delta,3}$ with natural boundary conditions.

How large must n be, so that the difference between s and f on the entire interval [0, 1] is less than 10^{-2} ?

Deadline for handing in: 15:30 Thursday 19 November 2015

Please put solutions in one of the designated Numerik I boxes on the 1st floor (near the library)

Homepage:www.mathematik.uni-muenchen.de/~soneji/numerik.php

[3 points]

[4 points]