Numerik I (Zentralübung)

Problem Sheet 3

Question 1

[4 points]

Prove **Corollary 4.21** from the lectures: let $n \in \mathbb{N}_0$, and let $t_1, \ldots, t_{n+1} \in [-1, 1]$ be the zeroes of the (n + 1)th Tschebyscheff polynomial of the first kind, T_{n+1} . Let $a, b \in \mathbb{R}$, a < b, and define $\varphi \colon [-1, 1] \to [a, b]$ by

$$\varphi(t) := \frac{b-a}{2}t + \frac{a+b}{2} \quad \left(t \in [-1,1]\right).$$

Then we have

$$\min_{x_0,\dots,x_n\in[a,b]} \max_{x\in[a,b]} |(x-x_0)\dots(x-x_n)| = \max_{x\in[a,b]} |(x-\varphi(t_1))\dots(x-\varphi(t_{n+1}))| \\
= \frac{(b-a)^{n+1}}{2\cdot 4^n}.$$

Question 2

(a) Let $I = [a, b] \subset \mathbb{R}$ be an interval, and let $a = x_0 < x_1 < x_2 < \ldots < x_n = b$ be distinct points. Now define, for $x \in I$,

$$\omega_{n+1}(x) := (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n)$$

Moreover, let h_{max} denote the maximal distance of two neighbouring points. That is,

$$h_{\max} := \max_{1 \le i \le n} |x_i - x_{i-1}|.$$

Show that for any $x \in I$ we have

$$|\omega_{n+1}(x)| = \prod_{k=0}^{n} |x - x_k| \le n! h_{\max}^{n+1}$$

(b) We now wish to approximate the function

$$f: [0, \frac{\pi}{2}] \to \mathbb{R}$$
 , $f(x) = \sin(2x)$

with an interpolation polynomial.

Compute an *x*-independent upper bound for the interpolation error when using the equidistant (equally-spaced) points

$$x_k = \frac{k\pi}{2n}$$
 , $k = 0, \dots, n$

in the case n = 5.

[2 + 2 + 2 = 6 points]

(c) Now suppose the inner points $0 < x_1 < \ldots < x_4 < \pi/2$ are not equidistant. Determine a suitable maximal distance h_{max} of two neighbouring points, so that the interpolation error (independent of x) is no more than 10^{-2} .

Question 3

Compute the interpolation polynomial corresponding to the following table in the form $p(x) = \sum_{i=0}^{n} a_i x^i$.

x_k	-2	-1	0	1
$f(x_k)$	4	1	6	7
$f'(x_k)$		1	5	

Question 4

[2 + 4 = 6 points]

[4 points]

Let $I = [a, b] \subset \mathbb{R}$ be an interval, let $\Delta := \{x_0, \ldots, x_n\} \subset I$ be a set of distinct points in I, and $S_{\Delta,1}$ be the set of corresponding piecewise linear spline functions

$$s\colon I\to\mathbb{R}$$
.

(That is, if $x_i < x_j$ are two neighbouring points in Δ , then s is linear on the interval $[x_i, x_j]$.)

For a function $f \in C([a, b])$, let $s_f \in S_{\Delta,1}$ be the piecewise linear spline that interpolates f at the points x_k . That is, we have

$$s_f(x_k) = f(x_k) \quad \forall 0 \le k \le n$$

(a) Show that for each spline $s \in S_{\Delta,1}$ we have:

$$\|s_f - s\|_{\infty} \le \|f - s\|_{\infty}.$$

Here, $||f||_{\infty} = \max_{x \in I} |f(x)|$ denotes the maximum-norm for continuous functions.

(b) We define the minimal distance of the function f from the splines in $S_{\Delta,1}$ as:

$$\operatorname{dist}_{S_{\Delta,1}}(f) := \min_{s \in S_{\Delta,1}} \|f - s\|_{\infty}.$$

Show that the following inequality holds:

$$\operatorname{dist}_{S_{\Delta,1}}(f) \le \|f - s_f\|_{\infty} \le 2\operatorname{dist}_{S_{\Delta,1}}(f).$$

Sketch a situation in which the left hand inequality holds strictly.

(That is, where $\operatorname{dist}_{S_{\Delta,1}}(f) < \|f - s_f\|_{\infty}$.)

Deadline for handing in: 15:30 Thursday 12 November 2015

Please put solutions in one of the designated Numerik I boxes on the 1st floor (near the library)

Homepage: www.mathematik.uni-muenchen.de/~soneji/numerik.php