PDG II (Tutorium)

Tutorial 8

In the following, U always denotes an open, bounded subset of \mathbb{R}^n . Let $f \colon \mathbb{R}^N \to \mathbb{R}$ be a continuous function and define, for maps $u \colon U \to \mathbb{R}^N$, the variational integral

$$F(u,U) := \int_U f(u(x)) \,\mathrm{d}x \,.$$

Exercise 1

Suppose $f \ge 0$ and $1 \le p \le \infty$. Suppose (u_j) , $u \subset L^p(U; \mathbb{R}^N)$, and $u_j \to u$ strongly in $L^p(U; \mathbb{R}^N)$. Prove that

$$\liminf_{j \to \infty} F(u_j, U) \ge F(u, U) \,.$$

(i.e. *F* is strongly lower semicontinuous in $L^p(U; \mathbb{R}^N)$.)

Exercise 2

Suppose (u_i) , $u \in L^{\infty}(U; \mathbb{R}^N)$, and $u_i \to u$ strongly in $L^{\infty}(U; \mathbb{R}^N)$. Prove that

$$F(u_j, U) \to F(u, U)$$
.

In fact, with these assumptions, we even have $(f \circ u_j) \to (f \circ u)$ strongly in $L^{\infty}(\Omega)$. Can you show this too?

Exercise 3

Now assume that f satisfies the growth condition

$$|f(v)| \le C(1+|v|^p) \quad \text{for all } v \in \mathbb{R}^N$$

for some exponent $1 \le p < \infty$ and a fixed constant C > 0. Suppose $(u_j), u \subset L^p(U; \mathbb{R}^N)$, and $u_j \to u$ strongly in $L^p(U; \mathbb{R}^N)$. Prove that $F(u_j, U) \to F(u, U)$.