PDG II (Tutorium)

Tutorial 7

In the following, U always denotes an open, bounded subset of \mathbb{R}^n with smooth boundary.

Exercise 1

This exercise concerns the proof of Theorem 2.4 ("Energy estimate") from the lectures (see lectures for notation.)

- (a) Give an explicit expression for α .
- (b) With the choice of ε given in the lectures, find an explicit expression for C, β and γ .
- (c) Can one improve upon the constant γ by making a different choice for ε ?
- (d) Which expression for γ does one get if one does *not* use Poincaré's inequality?
- (e) Let

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} + cu$$

be uniformly elliptic. Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form B[,] satisfies the hypotheses of the Lax-Milgram Theorem, provided

$$c(x) \ge -\mu, \quad (x \in U).$$

Note: "Explicit expression" in this context means a function of a^{ij}, b^i, c, θ , and possibly other data.

Exercise 2

This exercise concerns the proof of Theorem 2.13 in the lectures (for notation, see the lectures): Prove the claim that $v - K^*v = 0$ if and only if v is a weak solution of

$$\begin{cases} L^* v = 0 & \text{in } U, \\ v = 0 & \text{on } \partial U. \end{cases}$$

Exercise 3

Let $A: H \to H$ be a bounded operator on a Hilbert space H, and assume that there exists $\beta > 0$ such that

 $||Au|| \ge \beta ||u||, \quad u \in H.$

Prove that $\operatorname{Ran}(A)$ is closed.

Exercise 4

A function $u \in H^2_0(U)$ is a weak solution to the boundary-value problem for the *biharmonic* equation

$$\begin{cases} \Delta^2 u = f & \text{in } U, \\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U, \end{cases}$$
(1)

provided

$$\int_{U} \Delta u \Delta v \, dx = \int_{U} f v \, dx$$

for all $v \in H_0^2(U)$. Given $f \in L^2(U)$ prove that there exists a unique weak solution of (1).