PDG II (Tutorium)

Tutorial 3

In the following, $U \subset \mathbb{R}^n$ will always denote an open set.

Exercise 1

Prove in detail that:

- (a) $(D^{\alpha}u_j) \subset L^p(U)$ is a Cauchy sequence in $L^p(U)$ for all $|\alpha| \leq k$ if and only if (u_j) is a Cauchy sequence in $W^{k,p}(U)$.
- (b) $D^{\alpha}u_j \to D^{\alpha}u$ in $L^p(U)$ for all $|\alpha| \leq k$ if and only if $u_j \to u$ in $W^{k,p}(U)$.

Exercise 2

Assume U is bounded. Do some of the missing details in the proof of Theorem 1.10 in the Lecture:

- (a) Let $U_i = \{x \in U : \operatorname{dist}(x, \partial U) > 1/i\}$ $(i \in \mathbb{N})$. Prove that U_i is open, and that $U = \bigcup_{i=1}^{\infty} U_i$.
- (b) Prove that $V_i := U_{i+3} \setminus \overline{U_{i+1}}$ is open, and that there exists V_0 open, with $V_0 \subset \subset U$, such that $U = \bigcup_{i=0}^{\infty} V_i$.

Exercise 3

Assume U is bounded. A particular argument was used several times in the Lecture. Prove it (for notation, see the Lecture):

(a) In the proof of Theorem 1.11: the inequality $(v = \sum_{i=0}^{N} \zeta_i v_i, |\alpha| \le k)$

$$\|D^{\alpha}v - D^{\alpha}u\|_{L^{p}(U)} \le C \sum_{i=0}^{N} \|v_{i} - u\|_{W^{k,p}(V_{i})} \quad (\le C(N+1)\delta).$$

(b) In the proof of Theorem 1.12 ("local to global"): the inequality

$$\|\overline{u}\|_{W^{1,p}(\mathbb{R}^n)} \le C \|u\|_{W^{1,p}(U)} \quad (\overline{u} = \sum_{i=0}^N \zeta_i \overline{u}_i).$$

Exercise 4

Assume U is bounded. Do some of the missing details in the proof of Theorem 1.12 in the Lecture (for notation, see the Lecture):

(a) For the case of ∂U flat, $u \in C^1(\overline{B}^+)$, \overline{u} its C^1 -extension to B: the inequality

$$\|\overline{u}\|_{W^{1,p}(B)} \le C \|u\|_{W^{1,p}(B^+)}.$$

- (b) "Straightening of the boundary": prove that $\Phi = \Psi^{-1}$ and $\det D\Phi = \det D\Psi = 1$.
- (c) After having straightened the boundary, and defined the extension \overline{u} of u via Ψ and Φ : The inequality

$$\|\overline{u}\|_{W^{1,p}(W)} \le C \|u\|_{W^{1,p}(U)}.$$

Exercise 5

Assume U is bounded. Do some of the missing details in the proof of Theorem 1.12 in the Lecture (for notation, see the Lecture):

After having defined Eu for all $u \in W^{1,p}(U)$ via approximation, prove that:

- (a) Eu is independent of the choice of the approximating sequence.
- (b) $E: W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$ is linear.
- (c) E is bounded (linear operator) on $W^{1,p}(U)$:

 $\exists C > 0 : \forall u \in W^{1,p}(U) : \|Eu\|_{W^{1,p}(\mathbb{R}^n)} \le C \|u\|_{W^{1,p}(U)}.$