PDG II (Tutorium)

Tutorial 12

Exercise 1

This exercise concerns the proof of Theorem 2.42 from the lecture (see lecture for notation.)

- (a) Prove that $B[u, u] = \sum_{k=1}^{\infty} d_k^2 \lambda_k$.
- (b) Prove that

$$\min\left\{B[u,u]:\ u\in H_0^1(U),\ \|u\|_{L^2(U)}=1\right\}=\min_{\substack{u\in H_0^1(U)\\u\neq 0}}\frac{B[u,u]}{\|u\|_{L^2(U)}^2}.$$

- (c) Prove that $\int_U u^+ u^- dx = 0$ and $B[u^+, u^-] = B[u^-, u^+] = 0$.
- (d) Prove that $B[\cdot, \cdot]$ defines a scalar product on $H_0^1(U)$.
- (e) Prove that the resulting norm is equivalent to the $H_0^1(U)$ -norm.
- (f) Prove that if $u = \sum_{k=1}^{m} (u, w_k) w_k$ and w_k , k = 1, ..., m, solve $Lw_k = \lambda_1 w_k$ weakly, then u solves $Lu = \lambda_1 u$ weakly.

Exercise 2

This exercise concerns the proof of Theorem 2.39 from the lecture (see lecture for notation.)

- (a) Prove that $\ker(S) = \{0\}$.
- (b) Prove that all eigenvalues of S are positive.
- (c) Why is $\lambda_1 > 0$?

Exercise 3

Remaining non-discussed questions from all previous tutorial sheets.