PDG II (Tutorium)

Tutorial 11

Exercise 1

This exercise concerns the proof of Theorem 2.30 from the lecture (see lecture for notation.) Recall that $v = -D_k^{-h}(\zeta^2 D_k^h u)$. Prove that v = 0 on ∂U in the trace sense (hence $v \in H_0^1(U)$).

Exercise 2

This exercise concerns the proof of Theorem 2.30 (see also Theorem 2.26; for notation, see the lecture). Let

$$U = B(0, 1) \cap \mathbb{R}^n_+,$$

$$V = B(0, 1/2) \cap \mathbb{R}^n_+,$$

and let $u \in W^{1,p}(U)$.

(a) Prove that, for all i = 1, ..., n - 1 (i.e. $i \neq n$):

$$\int_{V} |D_{i}^{h}u|^{p} dx \leq \int_{U} |u_{x_{i}}|^{p} dx \quad \text{(for } |h| \text{ small enough)}.$$

(b) Prove that if $u \in L^p(V)$ and if, for some $i \in \{1, ..., n-1\}$, there exists C > 0 such that $\|D_i^h u\|_{L^p(V)} \leq C$ for all 0 < |h| < 1/2, then the weak derivative u_{x_i} exists, $u_{x_i} \in L^p(V)$, and $\|u_{x_i}\|_{L^p(V)} \leq C$.

Exercise 3

This exercise concerns the proof of Theorem 2.30 from the lecture (see lecture for notation.) Recall that $\tilde{u}(y) = u(\Psi(y))$.

- (a) Prove that $\tilde{u} \in H^1(\tilde{U})$.
- (b) Prove that $\tilde{u} = 0$ on $\partial \tilde{U} \cap \{y_n = 0\}$ in the trace sense.
- (c) Prove that \tilde{u} is a weak solution of $\tilde{L}\tilde{u} = \tilde{f}$ in \tilde{U} , with $\tilde{f}(y) = f(\Psi(y))$ and

$$\tilde{L}\tilde{u} = -\sum_{l,k=1}^{n} \left(\tilde{a}^{kl} \tilde{u}_{y_k} \right)_{y_l} + \sum_{k=1}^{n} \tilde{b}^k \tilde{u}_{y_k} + \tilde{c}\tilde{u},$$

and with \tilde{a}^{kl} , \tilde{b}^k , \tilde{c} as in the lecture.

- (d) Prove that $\tilde{a}^{kl} \in C^1(\tilde{U})$.
- (e) Prove that \tilde{L} is uniformly elliptic in \tilde{U} .

Exercise 4

This exercise concerns the proof of Theorem 2.32 from the lecture (see lecture for notation.)

- (a) Prove that $\tilde{u} = 0$ in the trace sense along $\{x_n = 0\}$.
- (b) Prove that \tilde{u} is a weak solution of $\tilde{L}\tilde{u} = \tilde{f}$ in U.
- (c) Show that

$$D^{\gamma}Lu = a^{nn}D^{\beta}u + R$$

where R is a sum of terms involving at most j derivatives of u with respect to x_n and at most k + 3 derivatives in total.