Übungsblatt 5 28.06.2016

21. Sei $\Omega \subseteq \mathbb{R}^n$ offen, $1 \leq p < \infty$, $u \in W^1_p(\Omega)$ reell. Zeige: $u^+ := \max\{u, 0\} \in W^1_p(\Omega)$.

Hinweis: Für $\varepsilon > 0$ betrachte $F_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$, $F_{\varepsilon}(t) := (\sqrt{t^2 + \varepsilon^2} - \varepsilon) \mathbb{1}_{(0,\infty)}(t)$, und $F_{\varepsilon} \circ u$ für $\varepsilon \to 0$, zunächst für $u \in C^{\infty} \cap W^1_p(\Omega)$.

22. Sei $\Omega \subseteq \mathbb{R}^n$ offen, $m \in \mathbb{N}_0$, $p \in [1, \infty)$. Für $u \in W_{p,0}(\Omega)$ sei

$$Eu := \begin{cases} u & \text{auf } \Omega, \\ 0 & \text{auf } \mathbb{R}^n \setminus \Omega. \end{cases}$$

Zeige, dass $Eu\in W^m_p(\mathbb{R}^n)$ $(u\in W^m_{p,0}(\Omega))$, und dass $E\colon W^m_{p,0}(\Omega)\to W^m_p(\mathbb{R}^n)$ isometrisch ist.

23. Seien $\Omega \subseteq \mathbb{R}^n$ offen, $0 \in \Omega$, $1 \le p < \infty$, $m \in \mathbb{N}$ mit mp < n, $q > p^* := \frac{np}{n-mp}$. Sei R > 0, so dass $B[0, 2R] \subseteq \Omega$. Sei $m - \frac{n}{p} < \gamma \le -\frac{n}{q}$, und $u \in C^{\infty}(\Omega \setminus \{0\})$ mit

$$u(x) := |x|^{\gamma} \quad (0 < |x| < R), \quad u(x) := 0 \quad (|x| > 2R).$$

Zeige, dass $u \in W_p^m(\Omega)$, aber $u \notin L_q(\Omega)$.

24. Sei $\sigma > 3$, $\Omega := \{(x_1, x_2) \in \mathbb{R}^2; \ 0 < x_1 < 1, 0 < x_2 < x_1^{\sigma+1}\}$. Sei $u : \Omega \to \mathbb{R}$ definiert durch

$$u(x_1, x_2) := \frac{x_1}{x_1^2 + x_2^2}.$$

Zeige, dass u nicht beschränkt ist, und dass $u \in W_2^2(\Omega)$.

25. Sei $\omega \in (0, 2\pi)$. Wir definieren $\Omega_{\omega} := \{(r, \varphi) \in (0, \infty) \times (0, 2\pi); \ 0 < r < 1, \ 0 < \varphi < \omega\}$ in Polarkoordinaten. Sei $u : \Omega_{\omega} \to \mathbb{R}$ in Polarkoordinaten gegeben durch $u(r, \varphi) := r^{\frac{\pi}{\omega}} \sin(\frac{\pi}{\omega}\varphi)$. Zeige, dass $u \in W_2^1(\Omega_{\omega})$. Gilt auch $u \in W_2^2(\Omega_{\omega})$?