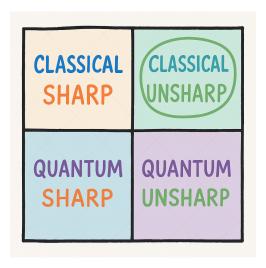
From Sharp to Unsharp Exploring the Frontiers of Quantum Logic Lecture III

Roberto Giuntini^{1,2}

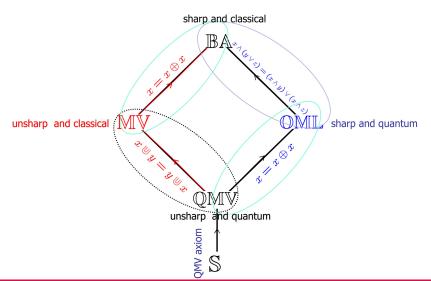
¹University of Cagliari ALOPHIS GROUP - Applied Logic, Philosophy and History of Science

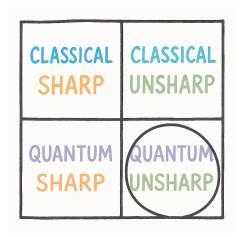
²Institute for Advanced Study, Technische Universität München

SPONSORED BY THE

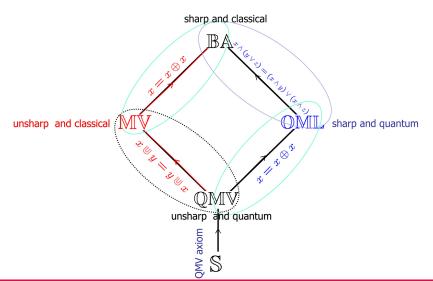


THE CLASSICAL UNSHARP UNIVERSE





THE SHARP AND THE UNSHARP UNIVERSES



TWO CLASSICAL ROOTS

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $\bullet x \wedge x' = 0.$
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

Quantum unsharp universe

Both principles may fail:

$$x \wedge x' = 0, \qquad x \cap y \neq y \cap x$$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras

TWO CLASSICAL ROOTS

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $x \wedge x' = 0$.
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

Quantum unsharp universe

Both principles may fail:

$$x \wedge x' = 0, \qquad x \cap y \neq y \cap x$$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras

R. Giuntini

TWO CLASSICAL ROOTS

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $x \wedge x' = 0$.
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

Quantum unsharp universe

Both principles may fail:

$$x \wedge x' = 0, \qquad x \cap y \neq y \cap x$$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras

TWO CLASSICAL ROOTS

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $x \wedge x' = 0$.
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

Quantum unsharp universe

Both principles may fail:

$$x \wedge x' = 0, \qquad x \cap y \neq y \cap x$$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras

Two classical roots

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $x \wedge x' = 0$.
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

QUANTUM UNSHARP UNIVERSE

• Both principles may fail:

$$x \wedge x' = 0,$$
 $x \cap y \neq y \cap x$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras.

Two classical roots

- Classical sharp (Boolean algebras)
 - Based on Law of Non-Contradiction:
 - $x \wedge x' = 0$.
- Classical unsharp (MV-algebras)
 - Based on Łukasiewicz's Law: $x \cap y = y \cap x$.

QUANTUM UNSHARP UNIVERSE

• Both principles may fail:

$$x \wedge x' = 0, \qquad x \cap y \neq y \cap x$$

• **Generalization:** Quantum MV-algebras (QMV-algebras) extend both Boolean and MV-algebras.

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

FROM PROJECTORS TO EFFECTS

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

SHARP QUANTUM EVENTS

- Represented by projectors P on a Hilbert space: $P^2 = P = P^*$.
- Yes/No properties. Possible values: $\{0,1\}$.
- Algebraic structure: Orthomodular Lattices (Quantum Logic).

Unsharp quantum events

- Represented by effects.
- Possible (eigen-)values of effects: $[0,1] \subseteq \mathbb{R}$.
- Algebraic structure: QMV-algebras

Unsharp quantum mechanics (Ludwig, Kraus, Mittelstaedt, Busch)

The notion of quantum event is liberalized.

The set $\Pi(\mathcal{H})$ is replaced by the set of all effects of \mathcal{H} (denoted by $\mathcal{E}(\mathcal{H})$), where an effect of \mathcal{H} is a bounded linear operator \mathcal{E} that satisfies the following condition:

$$\mathbb{O} \leq E \leq \mathbb{I}$$
,

where $R \leq S$ iff S - E is a **positive semidefinite** operator.

Unsharp quantum mechanics: Effects of a Hilbert space

- The spectrum Spec(E) is contained in $[0,1] \subset \mathbb{R}$.
- There are some effects E such that

$$E^2 \neq E$$
.

Thus,

$$\Pi(\mathcal{H}) \subset \mathcal{E}(\mathcal{H}).$$

Unsharp quantum mechanics: Effects of a Hilbert space

Take

$$E = \begin{pmatrix} \frac{7}{16} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{16} \end{pmatrix}.$$

E is an effect.

The spectrum of E is $\{0.625, 0.135723\}$ and

$$E^2 \neq E$$

Unsharp quantum mechanics: Effects of a Hilbert space

Take

$$E = \begin{pmatrix} \frac{7}{16} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{16} \end{pmatrix}.$$

E is an effect.

The spectrum of E is $\{0.625, 0.135723\}$ and

$$E^2 \neq E$$

.

• Can the set $\mathcal{E}(\mathcal{H})$ of all effects be equipped with an algebraic structure?

• $\mathcal{E}(\mathcal{H})$ can be partially ordered:

 $E \le F$ iff F - E is a **positive semidefinite** operator.

• $\mathcal{E}(\mathcal{H})$ can be equipped with an involution operation ':

$$E'=\mathbb{I}-E$$
.

Theorem

 $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is a regular involutive bounde poset, i.e. an involutive bounded poset that satisfies the regularity condition:

$$\forall E, F \in \mathcal{E}(\mathcal{H})$$
: if $E \leq E'$ and $F \leq F'$, then $E \leq F'$

However, $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is **not** a lattice.

• $\mathcal{E}(\mathcal{H})$ can be equipped with an involution operation ':

$$E'=\mathbb{I}-E$$
.

Theorem

 $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is a regular involutive bounde poset, i.e. an involutive bounded poset that satisfies the regularity condition:

$$\forall E, F \in \mathcal{E}(\mathcal{H})$$
: if $E \leq E'$ and $F \leq F'$, then $E \leq F'$.

However, $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is **not** a lattice.

• $\mathcal{E}(\mathcal{H})$ can be equipped with an involution operation ':

$$E' = \mathbb{I} - E$$
.

Theorem

 $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is a regular involutive bounde poset, i.e. an involutive bounded poset that satisfies the regularity condition:

$$\forall E, F \in \mathcal{E}(\mathcal{H})$$
: if $E \leq E'$ and $F \leq F'$, then $E \leq F'$.

However, $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ is **not** a lattice.

Kripkean interlude

Let us consider the following accessibility relation:

$$E \not\perp F$$
 iff $E \not\leq F'$.

The relation $\not\perp$ is symmetric but, in general, **not** reflexive. It may happen that $F \perp F$.

However, $\not\perp$ is serial: $\forall E \exists F (E \not\perp F)$.

If $\not\perp$ is restricted to the set of all of all projectors, $\not\perp$ is reflexive.

Kripke Frame	Accessibility Rel.	Modal System	Modal Axiom
$\langle \mathcal{E}(H), \not\perp \rangle$	Symmetric and Serial	D	$\Box p ightarrow \Diamond p$
	Symmetric and Reflexive	Т	$\Box p ightarrow p$

Kripkean interlude

Let us consider the following accessibility relation:

$$E \not\perp F$$
 iff $E \not\leq F'$.

The relation $\not\perp$ is symmetric but, in general, **not** reflexive. It may happen that $F \perp F$.

However, $\not\perp$ is serial: $\forall E \exists F (E \not\perp F)$.

If $\not\perp$ is restricted to the set of all of all projectors, $\not\perp$ is reflexive.

Kripke Frame	Accessibility Rel.	Modal System	Modal Axiom
$\langle \mathcal{E}(H), \not\perp \rangle$	Symmetric and Serial	D	$\Box p ightarrow \Diamond p$
	Symmetric and Reflexive	Т	$\Box p ightarrow p$

Kripkean interlude

Let us consider the following accessibility relation:

$$E \not\perp F$$
 iff $E \not\leq F'$.

The relation $\not\perp$ is symmetric but, in general, **not** reflexive. It may happen that $F \perp F$.

However, $\not\perp$ is serial: $\forall E \exists F (E \not\perp F)$.

If $\not\perp$ is restricted to the set of all of all projectors, $\not\perp$ is reflexive.

Kripke Frame	Accessibility Rel.	Modal System	Modal Axiom
$\langle \mathcal{E}(H), \not\perp \rangle$	Symmetric and Serial	D	$\Box p ightarrow \Diamond p$
$\langle \Pi(\mathcal{H}), \not\perp \rangle$	Symmetric and Reflexive	Т	$\Box ho ightarrow ho$

There are effects *E* that violate both the non contradiction and the excluded-middle law:

$$E \wedge E' \neq \mathbb{O}$$
 and $E \vee E' \neq \mathbb{I}$

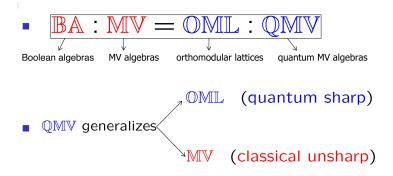
PROJECTORS AS SHARP EFFECTS

THEOREM

Let $\langle \mathcal{E}(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I} \rangle$ be the involutive bounded poset of all effect of a Hilbert space \mathcal{H} . The following conditions are equivalent $\forall F \in \mathcal{E}(\mathcal{H})$:

- F is a projector $(E^2 = E)$.
- $F \wedge F' = \mathbb{O}$

Why QMV



A supplement algebra (S-algebra) is a structure $\mathcal{M} = (M, \oplus, ', 1, 0)$ of type $\langle 2, 1, 0, 0 \rangle$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras

A supplement algebra (S-algebra) is a structure $\mathcal{M} = (M, \oplus, ', 1, 0)$ of type (2, 1, 0, 0) s.t. $\forall x, y, z \in S$:

• (S1)
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$
;

- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras.

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S-algebras

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S-algebras

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras.

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras

A supplement algebra (S-algebra) is a structure

$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 of type $(2, 1, 0, 0)$ s.t. $\forall x, y, z \in S$:

- (S1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- (S2) $x \oplus y = y \oplus x$;
- (S3) (x')' = x;
- (S4) $x \oplus x' = 1$;
- (S5) $x \oplus 0 = x$;
- (S6) $x \oplus 1 = 1$.

S :=the variety of all S -algebras.

Let
$$\mathcal{M}=\left(M\,,\oplus\,,\,{}'\,,1,0\right)$$
 be an S-algebra:

- $\bullet \qquad x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$ (pseudo-inf; generalized Sasaki projection);
- $x \cup y := (x \odot y') \oplus y;$ (pseudo-sup)
- $x \leq y$ iff $x \cap y = x$.

Let
$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 be an S-algebra:

- $x \cap y := (x \oplus y') \odot y$ (pseudo-inf; generalized Sasaki projection);
- $x \cup y := (x \odot y') \oplus y;$ (pseudo-sup)
- $x \leq y$ iff $x \cap y = x$.

Let
$$\mathcal{M}=(M\,,\oplus\,,\,{}'\,,1,0)$$
 be an S-algebra:

- $\bullet \qquad x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$ (pseudo-inf; generalized Sasaki projection);
- $x \cup y := (x \odot y') \oplus y;$ (pseudo-sup)
- $x \leq y$ iff $x \cap y = x$.

Let
$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 be an S-algebra:

- $x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$ (pseudo-inf; generalized Sasaki projection);
- $x \cup y := (x \odot y') \oplus y;$ (pseudo-sup)
- $x \leq y$ iff $x \cap y = x$.

Let
$$\mathcal{M} = (M, \oplus, ', 1, 0)$$
 be an S-algebra:

- $x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$ (pseudo-inf; generalized Sasaki projection);
- $x \cup y := (x \odot y') \oplus y;$ (pseudo-sup)
- $x \leq y$ iff $x \cap y = x$.

Recall:

$$\mathbb{MV} := \mathbb{S} + \text{Lukasiewicz axiom}$$
$$x \cap y = y \cap x.$$

QMV-algebras = S + QMV-axiom

$$x \oplus ((x' \cap y) \cap (z \cap x')) = (x \oplus y) \cap (x \oplus z)$$

QMV := the variety of all QMV-algebras

Recall:

$$\mathbb{MV} := \mathbb{S} + \text{Lukasiewicz axiom}$$
$$x \cap y = y \cap x.$$

$$QMV$$
-algebras = $S + QMV$ -axiom

$$x \oplus ((x' \cap y) \cap (z \cap x')) = (x \oplus y) \cap (x \oplus z)$$

QMV := the variety of all QMV-algebras

Recall:

$$\mathbb{MV} := \mathbb{S} + \text{Lukasiewicz axiom}$$
$$x \cap y = y \cap x.$$

$$QMV$$
-algebras = $S + QMV$ -axiom

$$x \oplus ((x' \cap y) \cap (z \cap x')) = (x \oplus y) \cap (x \oplus z)$$

 \mathbb{QMV} := the variety of all QMV-algebras

# of elements	# of non-isomorphic QMV-algebras
1	1
2	1
3	1
4	4
5	5
6	16
7	21
8	88
9	127
10	817

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := \begin{cases} E + F, & \text{if } E + F \in E(\mathcal{H}) \\ \mathbb{I}, & \text{otherwise,} \end{cases}$$

where + is the usual operator-sum.

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := \begin{cases} E + F, & \text{if } E + F \in E(\mathcal{H}) \\ \mathbb{I}, & \text{otherwise,} \end{cases}$$

where + is the usual operator-sum.

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := \begin{cases} E + F, & \text{if } E + F \in E(\mathcal{H}) \\ \mathbb{I}, & \text{otherwise,} \end{cases}$$

where + is the usual operator-sum.

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := egin{cases} E + F, & ext{if } E + F \in E(\mathcal{H}); \\ \mathbb{I}, & ext{otherwise}, \end{cases}$$

where + is the usual operator-sum.

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := egin{cases} E + F, & ext{if } E + F \in E(\mathcal{H}); \\ \mathbb{I}, & ext{otherwise}, \end{cases}$$

where + is the usual operator-sum.

$$\mathcal{E}(\mathcal{H}) := (\mathcal{E}(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$$

- $E(\mathcal{H})$ is the set of all effects of \mathcal{H} ;
- for any $E, F \in E(\mathcal{H})$:

$$E \oplus F := egin{cases} E + F, & ext{if } E + F \in E(\mathcal{H}); \\ \mathbb{I}, & ext{otherwise}, \end{cases}$$

where + is the usual operator-sum.

• $E' := \mathbb{I} - E$.

The Standard QMV-algebra(s)

Theorem

 $\mathcal{E}(\mathcal{H}) := (E(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$ is a QMV-algebra that is not an MV-algebra, since, in general, $E \cap F \neq F \cap E$.

$$E \prec F$$
 iff $E \cap F = E$.

THEOREM

 $\mathcal{E}(\mathcal{H}) := (E(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$ is a QMV-algebra that is not an MV-algebra, since, in general, $E \cap F \neq F \cap E$.

Let us define

$$E \prec F$$
 iff $E \cap F = E$.

 $(E(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I})$ is a (regular) involutive bounded poset that is not a lattice.

THEOREM

 $\mathcal{E}(\mathcal{H}) := (E(\mathcal{H}), \oplus, ', \mathbb{O}, \mathbb{I})$ is a QMV-algebra that is not an MV-algebra, since, in general, $E \cap F \neq F \cap E$.

Let us define

$$E \prec F$$
 iff $E \cap F = E$.

 $(E(\mathcal{H}), \leq, ', \mathbb{O}, \mathbb{I})$ is a (regular) involutive bounded poset that is **not** a lattice.

Let us consider the following effects (in the matrix-representation) on the Hilbert space \mathbb{R}^2 :

$$E = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \quad F = \begin{pmatrix} \frac{3}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \quad G = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$$

It is not hard to see that $G \leq E, F$.

Suppose, by contradiction, that $L = E \wedge F$ exists in $\mathcal{E}(\mathbb{R}^2)$. An easy computation shows that L must be equal to G. Let

$$M = \begin{pmatrix} \frac{7}{16} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{16} \end{pmatrix}.$$

Then, M is an effect such that $M \leq E, F$; however, $M \not\leq L = G$, which is a contradiction.

•
$$x \odot y := (x' \oplus y')';$$

•
$$x \cap y := (x \oplus y') \odot y$$
;

•
$$x \cup y := (x \odot y') \oplus y = (x' \cap y')'$$
.

•
$$x \leq y$$
 if and only if $x \cap y = x$.

- $x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$;
- $x \cup y := (x \odot y') \oplus y = (x' \cap y')'$.
- $x \leq y$ if and only if $x \cap y = x$.

- $x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$;
- $x \cup y := (x \odot y') \oplus y = (x' \cap y')'$.
- $x \leq y$ if and only if $x \cap y = x$.

- $x \odot y := (x' \oplus y')';$
- $x \cap y := (x \oplus y') \odot y$;
- $x \cup y := (x \odot y') \oplus y = (x' \cap y')'$.
- $x \leq y$ if and only if $x \cap y = x$.

- • is associative and commutative;
- $x \odot x' = 0$;
- $x \odot 1 = x \text{ and } x \odot 0 = 0;$
- $x \cap 1 = 1 \cap x = x$;
- $x \cap 0 = 0 \cap x = 0$;
- $x \cap x = x$; (idempotency);
- $(x \cap y)' = x' \cup y'$ and $(x \cup y)' = x' \cap y'$;
- $x \le y$ implies $x = y \cap x$;

- • is associative and commutative;
- $x \odot x' = 0$;
- $x \odot 1 = x \text{ and } x \odot 0 = 0;$
- \bullet $x \cap 1 = 1 \cap x = x$:
- $x \cap 0 = 0 \cap x = 0$;
- $x \cap x = x$; (idempotency);
- $(x \cap y)' = x' \cup y'$ and $(x \cup y)' = x' \cap y'$;
- $x \le y$ implies $x = y \cap x$;

- • is associative and commutative;
- $x \odot x' = 0$;
- $x \odot 1 = x \text{ and } x \odot 0 = 0;$
- $x \cap 1 = 1 \cap x = x$;
- $x \cap 0 = 0 \cap x = 0$;
- $x \cap x = x$; (idempotency);
- $(x \cap y)' = x' \cup y'$ and $(x \cup y)' = x' \cap y'$;
- $x \le y$ implies $x = y \cap x$;

- • is associative and commutative;
- $x \odot x' = 0$;
- $x \odot 1 = x \text{ and } x \odot 0 = 0;$
- $x \cap 1 = 1 \cap x = x$;
- $x \cap 0 = 0 \cap x = 0$;
- $x \cap x = x$; (idempotency);
- $(x \cap y)' = x' \cup y'$ and $(x \cup y)' = x' \cap y'$;
- $x \le y$ implies $x = y \cap x$;

- $(x \cap y) \cap z = (x \cap y) \cap (y \cap z)$ (weak associativity)
- $x \cap (y \cup x) = x$; (weak absorption)
- $x \cup (y \cap x) = x$. (weak absorption)
- $(M, \leq, ', 0, 1)$ is an involutive bounded poset:
 - (M, \leq) is a poset with maximum (0) and minimum (1);
 - x"=x;
 - $\forall x, y \in M$: if $x \leq y$, then $y' \leq x'$;

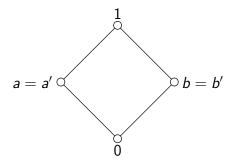
- $(x \cap y) \cap z = (x \cap y) \cap (y \cap z)$ (weak associativity)
- $x \cap (y \cup x) = x$; (weak absorption)
- $x \cup (y \cap x) = x$. (weak absorption)
- $(M, \leq, ', 0, 1)$ is an involutive bounded poset:
 - (M, \leq) is a poset with maximum (0) and minimum (1);
 - x"=x;
 - $\forall x, y \in M$: if $x \leq y$, then $y' \leq x'$;

- $(x \cap y) \cap z = (x \cap y) \cap (y \cap z)$ (weak associativity)
- $x \cap (y \cup x) = x$; (weak absorption)
- $x \cup (y \cap x) = x$. (weak absorption)
- $(M, \leq, ', 0, 1)$ is an involutive bounded poset:
 - (M, \leq) is a poset with maximum (0) and minimum (1);
 - x"=x;
 - $\forall x, y \in M$: if $x \leq y$, then $y' \leq x'$;

- $(x \cap y) \cap z = (x \cap y) \cap (y \cap z)$ (weak associativity)
- $x \cap (y \cup x) = x$; (weak absorption)
- $x \uplus (y \cap x) = x$. (weak absorption)
- $(M, \leq, ', 0, 1)$ is an involutive bounded poset:
 - (M, \preceq) is a poset with maximum (0) and minimum (1);
 - x"=x;
 - $\forall x, y \in M$: if $x \leq y$, then $y' \leq x'$;

THE DIAMOND

The smallest genuine QMV-algebra is the "diamond" where, apart from the obvious conditions, the operation \oplus is defined as follows: $a \oplus a = a \oplus b = b \oplus b = 1$.



QMVs as non-commutative MV-algebras

QMV-algebras can be thought of as non-commutative (w.r.t n, U) generalizations of MV-algebras since

$$MV = QMV + (x \cap y = y \cap x)$$

ORTHOMODULAR LATTICES AS IDEMPOTENT QMV-ALGEBRAS

Orthomodular lattices can be thought of as idempotent (with respect to \oplus) QMV-algebras .

THEOREM

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M: x \oplus x = x$.

$$OML = QMV + (x = x \oplus x)$$

ORTHOMODULAR LATTICES AS IDEMPOTENT QMV-ALGEBRAS

Orthomodular lattices can be thought of as idempotent (with respect to \oplus) QMV-algebras .

Theorem

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M : x \oplus x = x$.

$$OML = QMV + (x = x \oplus x)$$

ORTHOMODULAR LATTICES AS IDEMPOTENT QMV-ALGEBRAS

Orthomodular lattices can be thought of as idempotent (with respect to \oplus) QMV-algebras .

Theorem

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M : x \oplus x = x$.

$$OML = OMV + (x = x \oplus x)$$

QMV AND BA

$$\mathbb{OML} = \mathbb{QMV} + (x = x \oplus x)$$

$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x = x \oplus x)$$

QMV AND BA

$$\mathbb{OML} = \mathbb{QMV} + (x = x \oplus x)$$

$$\mathbb{BA} = \mathbb{MV} + (x = x \oplus x)$$

ORTHOMODULAR LATTICES AS SHARP QMV-ALGEBRAS

Orthomodular lattices can be thought of as sharp QMV-algebras

THEOREM

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M: x \cap x' = 0$.

$$OML = QMV + (x \cap x' = 0)$$

ORTHOMODULAR LATTICES AS SHARP QMV-ALGEBRAS

Orthomodular lattices can be thought of as sharp QMV-algebras

THEOREM

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M: x \cap x' = 0$.

$$OML = QMV + (x \cap x' = 0)$$

ORTHOMODULAR LATTICES AS SHARP QMV-ALGEBRAS

Orthomodular lattices can be thought of as sharp QMV-algebras

THEOREM

A QMV-algebra \mathcal{M} is an orthomodular lattice if and only if $\forall x \in M: x \cap x' = 0$.

$$\mathbb{OML} = \mathbb{QMV} + (x \cap x' = 0)$$

$$\mathbb{BA} = \mathbb{MV} + (x = x \oplus x)$$

$$OML = QMV + (x = x \oplus x)$$

$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x \cap x' = 0)$$

$$OML = QMV + (x \cap x' = 0)$$

$$\mathbb{BA} = \mathbb{OML} + (distributivity)$$

$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x = x \oplus x)$$

$$\mathbf{OML} = \mathbf{QMV} + (x = x \oplus x)$$

$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x \cap x' = 0)$$

$$OML = QMV + (x \cap x' = 0)$$

$$\mathbb{BA} = \mathbb{OML} + (distributivity)$$

$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x = x \oplus x)$$

$$\mathbf{OML} = \mathbf{QMV} + (x = x \oplus x)$$

$$\mathbb{BA} = \mathbb{MV} + (x \cap x' = 0)$$

$$\mathbb{OML} = \mathbb{QMV} + (x \cap x' = 0)$$

$$\mathbb{B}\mathbb{A} = \mathbb{OML} + (distributivity)$$

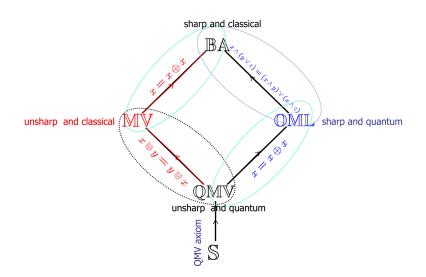
$$\mathbb{B}\mathbb{A} = \mathbb{M}\mathbb{V} + (x = x \oplus x)$$

$$\mathbf{OML} = \mathbf{QMV} + (x = x \oplus x)$$

$$\mathbb{BA} = \mathbb{MV} + (x \cap x' = 0)$$

$$\mathbb{OML} = \mathbb{QMV} + (x \cap x' = 0)$$

$$\mathbb{BA} = \mathbb{OML} + (distributivity)$$



THE STANDARD MV-ALGEBRA

Recall:

 $HSP(\mathcal{M}_{[0,1]}):=$ the variety generated by the standard MV-algebra $\mathcal{M}_{[0,1]}$.

THEOREM (CHANG 1958; CHANG 1959)

$$\mathbb{MV} = HSP(\mathcal{M}_{[0,1]}).$$

THE STANDARD MV-ALGEBRA

Recall:

 $HSP(\mathcal{M}_{[0,1]}):=$ the variety generated by the standard MV-algebra $\mathcal{M}_{[0,1]}$.

THEOREM (CHANG 1958; CHANG 1959)

$$\mathbb{MV} = \mathit{HSP}(\mathcal{M}_{[0,1]}).$$

The Standard QMV-algebra

What about the standard QMV-algebras $\mathcal{E}(\mathcal{H})$?

EH:= the variety generated by the class of all standard QMV-algebras.

The Standard QMV-algebra

What about the standard QMV-algebras $\mathcal{E}(\mathcal{H})$?

EH:= the variety generated by the class of all standard QMV-algebras.

THE STANDARD QMV-ALGEBRA

THEOREM

EH C QMV

There is an equation that holds in the variety of all QMV-algebras of effects but fails in the variety of **all** QMV-algebras.

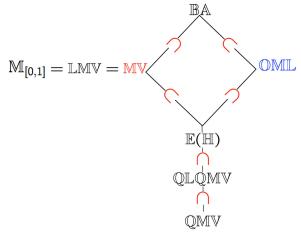
The standard QMV-algebra

THEOREM

EH C QMV

There is an equation that holds in the variety of all QMV-algebras of effects but fails in the variety of **all** QMV-algebras.

SUMMING UP



OPEN PROBLEMS

• Is the the variety \mathbb{EH} (finitely) axiomatizable?

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:
 - ▶ Fuzzy logics in **technology** (practical importance).
- QMV-algebras stand at the intersection: a unifying

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:
 - ▶ Fuzzy logics in **technology** (practical importance).
- QMV-algebras stand at the intersection: a unifying

ŁUKASIEWICZ' PROPHECY REVISITED

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:
 - ▶ Fuzzy logics in **technology** (practical importance).
 - ▶ Quantum theory as empirical indeterminism.
- QMV-algebras stand at the intersection: a unifying framework for the fuzzy and the quantum.

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:

 - ▶ Quantum theory as empirical indeterminism.
- QMV-algebras stand at the intersection: a unifying framework for the fuzzy and the quantum.

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:

 - ▶ Quantum theory as empirical indeterminism.
- QMV-algebras stand at the intersection: a unifying framework for the fuzzy and the quantum.

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:
 - ▶ Fuzzy logics in technology (practical importance).
 - Quantum theory as empirical indeterminism.
- QMV-algebras stand at the intersection: a unifying

ŁUKASIEWICZ' PROPHECY REVISITED

Łukasiewicz (1920)

Three-valued logic has above all theoretical importance as an endeavour to construct a system of non-Aristotelian logic. Its practical importance will be seen only when the consequences of the indeterministic philosophy can be compared with empirical data.

- Today, both conditions are met:
 - ▶ Fuzzy logics in **technology** (practical importance).
 - ▶ Quantum theory as empirical indeterminism.
- QMV-algebras stand at the intersection: a unifying framework for the fuzzy and the quantum.

References

- C. C. Chang, A new proof of the completeness of Łukasiewicz axioms, TAMS **93** (1958), 467–490.
- R. Cignoli, I. D'Ottaviano, D. Mundici, *Algebraic Foundations of Many-Valued Reasoning*, Kluwer, Dordrecht, 2000.
- M. Luisa Dalla Chiara, R. G., R. Greechie, *Reasoning in Quantum Theory*, Kluwer, Dordrecht, 2004.
- R. G., Weakly linear quantum MV-algebras, Algebra Universalis **53** (2005), 45–72.
- R. G., S. Pulmannovà, *Ideals and congruences in effect algebras and QMV algebras*, Communications in Algebra **28** (2000), 1567-1592.

THE END?

No... this is just the beginning!

THANK YOU

