From Sharp to Unsharp Exploring the Frontiers of Quantum Logic Lecture I

Roberto Giuntini^{1,2}

¹University of Cagliari ALOPHIS GROUP - Applied Logic, Philosophy and History of Science

²Institute for Advanced Study, Technische Universität München

SPONSORED BY THE

- In these three lectures we shall move back and forth between **logic** and **physics**.
- Our aim is to understand how **algebraic structures** can model reasoning as well as physical phenomena.

SETTING THE STAGE

- In these three lectures we shall move back and forth between logic and physics.
- Our aim is to understand how **algebraic structures** can model reasoning as well as physical phenomena.

From Algebraic models to Physical Theories

- Algebraic structures play a central role both in the formalization of logic and in the description of physical systems.
- Boolean algebras provide the standard model of classical reasoning and classical physics (deterministic, two-valued).
- Łukasiewicz algebras (Multi-valued algebras (MV-algebras))
 generalize the classical setting to many values, while still
 retaining a part of the "classical" flavour (distributivity).
- Quantum theory suggests going further: it naturally gives rise to non-Boolean lattices, where the link between logic and physics becomes much less straightforward.
- Which non-Boolean structures should be "logicized" as the most suitable candidates for the logic of quantum mechanics?

From algebraic models to physical theories

- Algebraic structures play a central role both in the formalization of logic and in the description of physical systems.
- Boolean algebras provide the standard model of classical reasoning and classical physics (deterministic, two-valued).
- Łukasiewicz algebras (Multi-valued algebras (MV-algebras))
 generalize the classical setting to many values, while still
 retaining a part of the "classical" flavour (distributivity).
- Quantum theory suggests going further: it naturally gives rise to non-Boolean lattices, where the link between logic and physics becomes much less straightforward.
- Which non-Boolean structures should be "logicized" as the most suitable candidates for the logic of quantum mechanics?

From Algebraic models to Physical Theories

- Algebraic structures play a central role both in the formalization of logic and in the description of physical systems.
- Boolean algebras provide the standard model of classical reasoning and classical physics (deterministic, two-valued).
- Łukasiewicz algebras (Multi-valued algebras (MV-algebras)) generalize the classical setting to many values, while still retaining a part of the "classical" flavour (distributivity).
- Quantum theory suggests going further: it naturally gives
- Which non-Boolean structures should be "logicized" as the

From algebraic models to physical theories

- Algebraic structures play a central role both in the formalization of logic and in the description of physical systems.
- Boolean algebras provide the standard model of classical reasoning and classical physics (deterministic, two-valued).
- Łukasiewicz algebras (Multi-valued algebras (MV-algebras))
 generalize the classical setting to many values, while still
 retaining a part of the "classical" flavour (distributivity).
- Quantum theory suggests going further: it naturally gives rise to non-Boolean lattices, where the link between logic and physics becomes much less straightforward.
- Which non-Boolean structures should be "logicized" as the most suitable candidates for the logic of quantum mechanics?

From algebraic models to physical theories

- Algebraic structures play a central role both in the formalization of logic and in the description of physical systems.
- Boolean algebras provide the standard model of classical reasoning and classical physics (deterministic, two-valued).
- Łukasiewicz algebras (Multi-valued algebras (MV-algebras))
 generalize the classical setting to many values, while still
 retaining a part of the "classical" flavour (distributivity).
- Quantum theory suggests going further: it naturally gives rise to non-Boolean lattices, where the link between logic and physics becomes much less straightforward.
- Which non-Boolean structures should be "logicized" as the most suitable candidates for the logic of quantum mechanics?

THE LEITMOTIV

- To address our guiding question, we will start from a more fundamental distinction that permeates both classical and quantum domains: the contrast between sharp and unsharp.
- This distinction will act as our Leitmotiv, recurring throughout the three lectures.

SHARP vs. UNSHARP

non-contradiction law

violation of the non-contradiction law

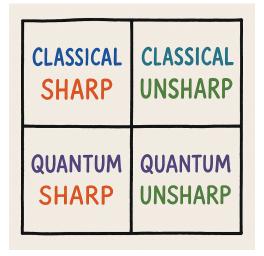
Classical / classical-like

- *Sharp facet:* crisp boundaries.
- Unsharp facet: Emerging from vagueness, approximation, and the gradual nature of information.

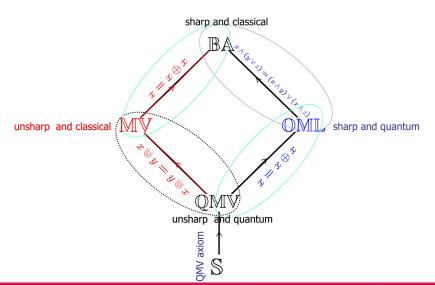
Quantum / Quantum-like

- Sharp facet: ideal yes/no events; precise tests in principle.
- Unsharp facet: effects of noise, disturbance, and limited resolution.

THE SHARP AND THE UNSHARP UNIVERSES



THE SHARP AND THE UNSHARP UNIVERSES



LECTURE I

- Introduction
- Mathematical interlude: Lattice theory and Universal algebra
- The classical sharp universe
- The classical unsharp universe

LECTURE II

- The classical unsharp universe (continued)
- The quantum sharp universe

LECTURE III

- The quantum sharp universe (continued)
- The quantum unsharp universe

LECTURE I

- Introduction
- Mathematical interlude: Lattice theory and Universal algebra
- The classical sharp universe
- The classical unsharp universe

LECTURE II

- The classical unsharp universe (continued)
- The quantum sharp universe

LECTURE III

- The quantum sharp universe (continued)
- The quantum unsharp universe

LECTURE I

- Introduction
- Mathematical interlude: Lattice theory and Universal algebra
- The classical sharp universe
- The classical unsharp universe

LECTURE II

- The classical unsharp universe (continued)
- The quantum sharp universe

LECTURE III

- The quantum sharp universe (continued)
- The quantum unsharp universe

REFERENCES (LECTURE I)

- S. Burris, H.P. Sankappanavar, *A Course in Universal Algebra*. Springer, 1981.
- R. Cignoli, I. D'Ottaviano, D. Mundici, *Algebraic Foundations of Many-Valued Reasoning*, Kluwer, Dordrecht, 2000.
- M. Luisa Dalla Chiara, R. G., R. Greechie, *Reasoning in Quantum Theory*, Kluwer, 2004.
- J.M. Font, Abstract Algebraic Logic: An Introductory Textbook. Springer, 2016.
- G. Grätzer, Lattice Theory: Foundation, Birkhäuser, 2011.
- G. Kalmbach, *Orthomodular Lattices*, Academic Press, 1983.

In these lectures I will also make use of tools coming from automated theorem proving and universal algebra:

A. Prover9 and Mace4 (W. McCune).

Prover9 is a resolution/paramodulation automated theorem prover for first-order and equational logic. Mace4 searches for finite structures satisfying first-order and equational statements (the same kind of statement that Prover9 accepts).

https://www.cs.unm.edu/ mccune/mace4/

B. Prover9–Mace4 interface (P. Jipsen & M. Maróti)
GitHub implementation with convenient interfaces for algebraic computations.
https://github.com/mmaroti/prover9-mace4

In these lectures I will also make use of tools coming from automated theorem proving and universal algebra:

A. Prover9 and Mace4 (W. McCune).

Prover9 is a resolution/paramodulation automated theorem prover for first-order and equational logic. Mace4 searches for finite structures satisfying first-order and equational statements (the same kind of statement that Prover9 accepts).

https://www.cs.unm.edu/ mccune/mace4/

B. Prover9–Mace4 interface (P. Jipsen & M. Maróti) GitHub implementation with convenient interfaces for algebraic computations. https://github.com/mmaroti/prover9-mace4

Automatic reasoning and algebraic software

C. UACalc

The Universal Algebra Calculator (R. Freese, E. Kiss & M. Valeriote): a Java tool for universal algebra. https://www.uacalc.org/

E. MUC(My Ugly Code) (R.G.)
Custom scripts written by me — not pretty, but they seem to work!

AUTOMATIC REASONING AND ALGEBRAIC SOFTWARE

C. UACalc

The Universal Algebra Calculator (R. Freese, E. Kiss & M. Valeriote): a Java tool for universal algebra. https://www.uacalc.org/

E. MUC(My Ugly Code) (R.G.)

Custom scripts written by me — not pretty, but they seem to work!

DEFINITION (POSET)

A partially ordered set (poset) is a structure

$$\mathcal{B}=(B,\leq),$$

where: $B \neq \emptyset$ and \leq is a partial order relation on B. In other words, \leq satisfies the following conditions for all $x, y, z \in B$:

- (I) $x \le x$ (reflexivity);
- (II) $x \le y$ and $y \le x$ implies x = y (antisymmetry);
- (III) $x \le y$ and $y \le z$ implies $x \le z$ (transitivity).

--→Poset Notebook

DEFINITION (BOUNDED POSET)

A bounded poset is a structure

$$\mathcal{B} = (B, \leq, 0, 1),$$

where:

- (I) (B, \leq) is a poset;
- (II) 0 and 1 are special elements of B: the minimum and the maximum with respect to \leq . In other words, for all $x \in B$:

$$0 \le x$$
 and $x \le 1$.

--→Poset Notebook

DEFINITION (LATTICE)

A lattice is a poset $\mathcal{B} = (B, \leq)$ in which any pair of elements x, y has a meet (infimum) $x \wedge y$ and a join (supremum) $x \vee y$ such that:

- (I) $x \land y \le x, y$, and $\forall z \in B$: $z \le x, y$ implies $z \le x \land y$ (\land is the greatest lower bound (inf));
- (II) $x, y \le x \lor y$, and $\forall z \in B : x, y \le z$ implies $x \lor y \le z$ (\lor is the *lowest upper bound* (sup)).

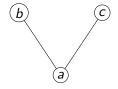
In any lattice the following condition holds:

$$x \le y \text{ iff } x \land y = x \text{ iff } x \lor y = y.$$

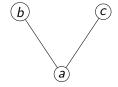
DEFINITION (LATTICE [EQUIVALENT DEFINITION])

A lattice is a structure $\mathcal{B} = (B, \wedge, \vee)$ of type (2, 2) s.t. $\forall x, y, z \in B$:

- $x \wedge (y \vee x) = x;$ $x \vee (y \wedge x) = x$ (absorption).



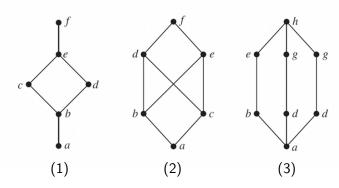
The pair $\{b, c\}$ has **meet** (a) but no common upper bound in the set, so their join does not exist.



The pair $\{b, c\}$ has **meet** (a) but no common upper bound in the set, so their join does not exist.



(1) and (3) are lattices; (2) is a poset that is not a lattice.



(1) and (3) are lattices; (2) is a poset that is not a lattice.

# of elements	# of non-isomorphic lattices
1	1
2	1
3	1
4	2
5	5
6	15
7	53
8	222
9	1078
10	5994
11	37622
12	262776
13	2018305
14	16873364
15	152233518
16	1471613387
17	15150569446
18	165269824761
19	1901910625578
20	23003059864006

DEFINITION (INVOLUTIVE BOUNDED POSET)

A involutive bounded poset (lattice) is a structure

$$\mathcal{B} = (B, \le, ', 0, 1)$$
 where:

- (I) $(B, \leq, 0, 1)$ is a bounded poset (lattice);
- (II) ' is a 1-ary operation (involution) s.t. $\forall x, y \in B$:
 - x = x'' (double negation);
 - $x \le y$ implies $y' \le x'$ (contraposition).

The class of all involutive bounded lattices \mathbb{IBL} is an equational class (= variety).

Contraposition $(x \le y \text{ implies } y' \le x')$ is equivalent to the equation $(x \vee y)' = x' \wedge y'$.

The class of all involutive bounded lattices IBL is an equational class (= variety).

We will consider only regular involutive bounded posets.

DEFINITION (REGULARITY)

A involutive bounded poset (lattice) $\mathcal{B} = (B, <, ', 0, 1)$ is regular iff $\forall x, y \in B$:

$$x \le x'$$
 and $y \le y'$ implies $x \le y'$.

A lattice is regular iff

$$\forall x, y \in B : x \wedge x' \leq y \vee y'.$$

Thus, the regularity condition is equational.

(Regular) Involutive bounded lattices

# of elements	# of non-isomorphic involutive bounded lattices
1	1
2	1
3	1
4	2
5	2
6	6
7	7
8	24
9	31
10	120
11	171
12	746

--- (Regular) Involutive bounded lattices

DEFINITION (ORTHOLATTICE)

An ortholattice is a bounded involutive lattice

$$\mathcal{B} = (B, \wedge, \vee, ', 0, 1)$$
 s.t. $\forall x \in B$:

- $\mathbf{0} \times \wedge x' = \mathbf{0}$ (non-contradiction principle);
- 2 $x \lor x' = 1$ (excluded-middle principle).

The operation ' of an ortholattice is called orthocomplementation (shortly orthocomplement).

DEFINITION (ORTHOLATTICE)

An ortholattice is a bounded involutive lattice

$$\mathcal{B} = (B, \wedge, \vee, ', 0, 1)$$
 s.t. $\forall x \in B$:

- ② $x \lor x' = 1$ (excluded-middle principle).

The operation ' of an ortholattice is called orthocomplementation (shortly orthocomplement).

non-contradiction = sharpness

The class of all ortholattices \mathbb{OL} is an equational class (variety).

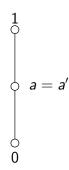
 $\mathbb{OL} = \mathbb{IBL} + \text{noncontradiction}$

Ortholattices

# of elements	# of non-isomorphic ortholattices
1	1
2	1
3	0
4	1
5	0
6	2
7	0
8	5
9	0
10	15
11	0
12	60

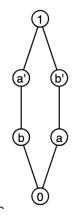
-->Ortholattices

 \mathcal{D}_3



$$\mathcal{D}_3 \in \mathbb{IBL}$$
 but $a \wedge a' = a \neq 0$.

The benzene ring \mathcal{OL}_6



DEFINITION

An orthomodular lattice is an ortholattice A s.t.:

$$\forall x, y \in A$$
: if $x \leq y$ then $y = x \vee (x' \wedge y)$

For all $x, y \in B$:

$$x \cap y := (x \vee y') \wedge y.$$

 $x \cap y$ is called the Sasaki projector of x onto y.

THEOREM

Let A be an ortholattice. The following conditions are equivalent:

- \bullet A is orthomodular;
- $\forall x, y \in A : \text{if } x \leq y \text{ and } x' \land y = 0, \text{ then } x = y;$
- $\forall x, y \in A : x \lor y = ((x \lor y) \land y') \lor y;$ (orthomodular equation)
- **1** The benzene ring is **not** a sub-ortholattice of A.

By (4), the class \mathbb{OML} of all orthomodular lattices is a variety.

Orthomodular lattices

# of elements	# of non-isomorphic ortholattices
1	1
2	1
3	0
4	1
5	0
6	1
7	0
8	2
9	0
10	2
11	0
12	3

--- Orthomodular lattices --- Orthomodular lattices Prover9

DEFINITION (BOOLEAN ALGEBRA)

A Boolean algebra is an ortholattice $\mathcal{B} = (B, \wedge, \vee, ', 0, 1)$ s.t. $\forall x, y, z \in B$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 (distributivity)

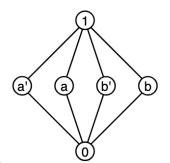
Both non-contradiction and distributivity hold. The class of all Boolean algebras $\mathbb{B}\mathbb{A}$ is an equational class (variety).

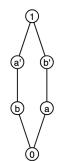
$$\mathbb{B}\mathbb{A} = \mathbb{OL} \ + \ \text{distributivity}$$

$\mathbb{B}\mathbb{A}\subset\mathbb{OML}\subset\mathbb{OL}$

 $\mathbb{BA} \subset \mathbb{OML}$

 $OML \subset OL$





The smallest Boolean algebra:

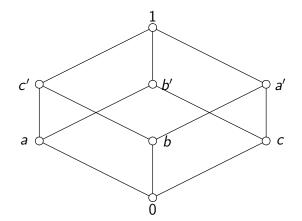
$$\mathfrak{B}_{2} = (\{0,1\}, \wedge, \vee, ', 0, 1),$$

X	У	$x \wedge y$	X	У	$x \lor y$		
0	0	0	0	0	0	X	χ'
0	1	0	0	1	1	0	1
1	0	0	1	0	1	1	0
1	1	1	1	1	1		

The smallest Boolean algebra:

$$\mathfrak{B}_2 = (\{0,1\}, \wedge, \vee, ', 0, 1),$$

X	y	$x \wedge y$	X	y	$x \lor y$		
0	0	0	0	0	0	X	x'
0	1	0	0	1	1		1
1	0	0	1	0	1	1	0
1	1	1	1	1	1		



Given a set U, we can define for any $A \in \mathcal{P}(U)$, the characteristic function (crisp set) associated to A:

$$\chi_A:\ U\to\{0,1\}$$

such that $\forall x \in U$:

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A; \\ 0, & \text{otherwise.} \end{cases}$$

Let $U^{\{0,1\}}$ be the set of all crisp sets of U. $U^{\{0,1\}}$ can be endowed with the following pointwise operations:

- $\forall x \in U : (\chi_A \wedge \chi_B)(x) := \chi_A(x) \wedge \chi_B(x)$
- $\forall x \in U : (\chi_A)'(x) := 1 \chi_A(x)$
- $\forall x \in U : f_0(x) := 0.$

It turns out that $(U^{\{0,1\}}, \wedge, ', f_0)$ is a Boolean algebra that is isomorphic to the set-Boolean algebra based on $\mathcal{P}(U)$.

Mathematical interlude: Universal Algebra

DEFINITION

Fix a signature τ (a set of operation symbols, each with an assigned arity).

An algebra of type τ is a structure

$$\mathcal{A} = \langle A, (f^{\mathcal{A}})_{f \in \tau} \rangle$$

where:

- A is a nonempty set (the universe);
- for each $f \in \tau$ of arity n, $f^{\mathcal{A}} : A^n \to A$ is an n-ary operation.

Example

• Involutive bounded lattices, Ortholattices and Boolean algebras are all algebras of the same type.

Let $\{A_i\}_{i\in I}$ be a family of algebras of the same type.

DEFINITION

The direct product

$$\prod_{i\in I} \mathcal{A}_i$$

is the algebra with universe

$$\prod_{i\in I}A_i=\{(a_i)_{i\in I}:a_i\in A_i\},$$

and with each basic operation f defined coordinatewise:

$$f^{\prod \mathcal{A}_i}\big((a_i^1)_{i\in I},\ldots,(a_i^n)_{i\in I}\big)=\big(f^{\mathcal{A}_i}(a_i^1,\ldots,a_i^n)\big)_{i\in I}.$$

Let $\{A_i\}_{i\in I}$ be a family of algebras and $\prod_{i\in I} A_i$ their direct product.

DEFINITION

For each $j \in I$, the canonical projection is the homomorphism

$$\pi_j: \prod_{i\in I} A_i \to A_j, \qquad \pi_j((a_i)_{i\in I}) = a_j.$$

Remark.

- π_j simply "forgets all coordinates except the *j*-th."
- Each π_j is a surjective homomorphism.

Let $\{A_i\}_{i\in I}$ be a family of algebras of the same type.

DEFINITION

An algebra \mathcal{B} is a subdirect product of $\{A_i : i \in I\}$ iff there exists an embedding

$$f:\mathcal{B}\hookrightarrow\prod_{i\in I}\mathcal{A}_i$$

such that, for every $i \in I$, the composition

$$\pi_j \circ f : \mathcal{B} \to \mathcal{A}_j$$

is surjective, where π_i is the canonical projection.

Remark.

- π_j simply "forgets all coordinates except the j-th."
- Each π_i is a surjective homomorphism. $\langle \neg \rangle \langle \neg \rangle \langle \neg \rangle \langle \neg \rangle \langle \neg \rangle$

Mathematical interlude: Universal Algebra

Let $\{A_i\}_{i\in I}$ be a family of algebras of the same type.

DEFINITION

An algebra \mathcal{B} is a subdirect product of $\{A_i : i \in I\}$ iff there exists an embedding

$$f:\mathcal{B}\hookrightarrow\prod_{i\in I}\mathcal{A}_i$$

such that, for every $i \in I$, the composition

$$\pi_j \circ f : \mathcal{B} \to \mathcal{A}_j$$

is surjective, where π_i is the canonical projection.

Remark.

- \bullet π_j simply "forgets all coordinates except the j-th."
- Each π_i is a surjective homomorphism.

Intuition.

- The direct product $\prod_{i \in I} A_i$ satisfies exactly the equations that hold in each factor A_i .
- A subdirect product $B \hookrightarrow \prod_{i \in I} A_i$ is a *subalgebra* that still projects onto every A_i via the canonical projections.

Preservation of equations.

- If an identity $s \approx t$ holds in all factors A_i , then it also holds in the product.
- Since \mathcal{B} covers every factor (all $\pi_i \circ f$ are surjective),

Key idea: A subdirect product is "smaller" than the product but is an *equational mirror* of the factors.

Mathematical interlude: Universal Algebra

Varieties

- A variety is a class of algebras of the same type defined by equations.
- By Birkhoff's HSP Theorem, varieties are closed under:
 - Homomorphic images (H),
 - Subalgebras (S),
 - Direct products (P).

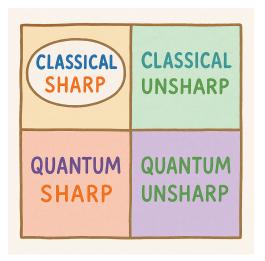
Subdirect products.

- Subdirect products are special subalgebras of products that "project" onto each factor.
- They preserve exactly the same equations as the factors.

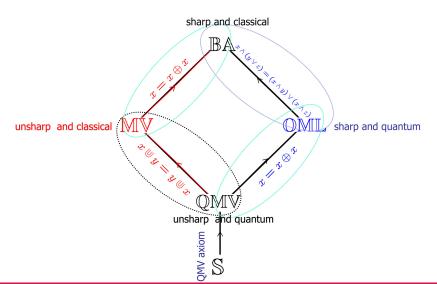
Birkhoff's Subdirect Representation Theorem. Every algebra in a variety is a subdirect product of *subdirectly irreducible* algebras of the same variety.

PART I: THE CLASSICAL SHARP UNIVERSE THE CLASSICAL UNHARP UNIV

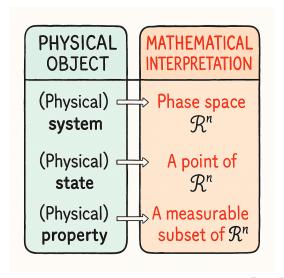
Part I: The classical sharp universe



THE CLASSICAL SHARP UNIVERSE



CLASSICAL MECHANICS



The structure of classical sharp properties

Classical pure states represent *pieces of information* (about the physical system) that are maximal and logically complete. They are:

- maximal because they represent a maximum of information that cannot be consistently extended to a richer knowledge in the framework of the theory;
- logically complete because they semantically decide any property. For any p and X,

$$p \in X$$
 or $p \in X^c$.

Let S be a (classical) physical system.

$$S \Rightarrow \mathfrak{R}^n$$

Let P be an *experimental proposition* about S, asserting that a given *physical quantity* (*observable*) has a certain value: For instance:

"the value of position in the x-direction lies in a certain interval"

 $P \Rightarrow X_P := \text{the set of all states for which } P \text{ holds}.$

CLASSICAL SHARP PROPERTIES

• The (measurable) subsets of \Re^n are good mathematical representatives of experimental propositions (properties).

When a state $p \in \Re^n$ belongs to a property X, we can say that the system in state p verifies both X and the corresponding property.

CLASSICAL SHARP PROPERTIES

• The (measurable) subsets of \Re^n are good mathematical representatives of experimental propositions (properties).

When a state $p \in \Re^n$ belongs to a property X, we can say that the system in state p verifies both X and the corresponding property.

What about the **structure** of all properties?

The **power set** of any set gives rise to a Boolean algebra and the set of all **measurable subsets** of \Re^n is a Boolean algebra as well.

What about the **structure** of all properties?

The **power set** of any set gives rise to a Boolean algebra and the set of all **measurable subsets** of \Re^n is a Boolean algebra as well

What about the **structure** of all properties?

The **power set** of any set gives rise to a Boolean algebra and the set of all **measurable subsets** of \Re^n is a Boolean algebra as well.

$$(P(\mathfrak{R}^n), \cap, \cup, {}^c, 0, 1),$$

where:

- • ∩, ∪, c are the set-theoretic operations intersection, union, relative complement, respectively;
- 0 is the empty set (\emptyset) , while 1 is the total set (\mathfrak{R}^n) .
- $P(\mathfrak{R}^n)$ is partially ordered by the relation of inclusion (\subseteq).

THEOREM (STONE'S THEOREM, 1936)

Every Boolean algebra is isomorphic to a **field of sets** (i.e. a Boolean algebra of subsets of some set, with the usual set-theoretic operations of union, intersection, and complement).

Intuition.

Every Boolean algebra can be thought of as a set-theoretic Boolean algebra, without any loss of generality.

THEOREM (STONE'S THEOREM, 1936)

Every Boolean algebra is isomorphic to a **field of sets** (i.e. a Boolean algebra of subsets of some set, with the usual set-theoretic operations of union, intersection, and complement).

Intuition.

Every Boolean algebra can be thought of as a set-theoretic Boolean algebra, without any loss of generality.

$$\bullet \cap \Longrightarrow AND (\land)$$

$$\bullet$$
 \cup \Longrightarrow OR (\lor)

$$\circ$$
 c \Longrightarrow NOT (\neg)

$$ullet$$
 \emptyset \Longrightarrow False

•
$$\mathfrak{R}^n \implies Truth$$

The structure of classical sharp properties

$$\bullet \cap \Longrightarrow AND (\land)$$

$$\bullet \cup \Longrightarrow OR(\lor)$$

$$\circ$$
 $\stackrel{\mathsf{c}}{\Longrightarrow}$ NOT (\neg)

$$ullet$$
 \emptyset \Longrightarrow False

$$\bullet \mathfrak{R}^n \implies Truth$$

$$\bullet \cap \Longrightarrow AND (\land)$$

$$\bullet \cup \Longrightarrow OR(\lor)$$

$$\circ$$
 $\stackrel{c}{\Longrightarrow}$ NOT (\neg)

$$\bullet \emptyset \implies False$$

$$\bullet \mathfrak{R}^n \implies Truth$$

THEOREM

Every Boolean algebra is the subdirect product of two-element Boolean algebras \mathfrak{B}_2 .

In other words:

$$\models_{\mathtt{BA}} s \approx t \quad \text{iff} \quad \models_{\mathfrak{B}_2} s \approx t,$$

where \mathbb{BA} is the equational class (= variety) of all Boolean algebras.

THEOREM

Every Boolean algebra is the subdirect product of two-element Boolean algebras \mathfrak{B}_2 .

In other words:

$$\models_{\mathtt{BA}} s \approx t \quad \text{iff} \quad \models_{\mathfrak{B}_2} s \approx t,$$

where \mathbb{BA} is the equational class (= variety) of all Boolean algebras.

The importance of being \mathfrak{B}_2

THEOREM

Every Boolean algebra is the subdirect product of two-element Boolean algebras \mathfrak{B}_2 .

In other words:

$$\models_{\mathbb{B}^{\Lambda}} s \approx t$$
 iff $\models_{\mathfrak{B}_{\Lambda}} s \approx t$,

where $\mathbb{B}\mathbb{A}$ is the equational class (= variety) of all Boolean algebras.

The importance of being \mathfrak{B}_2

THEOREM

Every Boolean algebra is the subdirect product of two-element Boolean algebras \mathfrak{B}_2 .

In other words:

$$\models_{\mathbb{B}^{\Lambda}} s \approx t$$
 iff $\models_{\mathfrak{B}_{\Lambda}} s \approx t$,

where $\mathbb{B}\mathbb{A}$ is the equational class (= variety) of all Boolean algebras.

The importance of being \mathfrak{B}_2

THEOREM

Every Boolean algebra is the subdirect product of two-element Boolean algebras \mathfrak{B}_2 .

In other words:

$$\models_{\mathbb{B}^{\Lambda}} s \approx t$$
 iff $\models_{\mathfrak{B}_{\Lambda}} s \approx t$,

where $\mathbb{B}\mathbb{A}$ is the equational class (= variety) of all Boolean algebras.

A sentence α is a classical tautology iff α is valid in \mathfrak{B}_2 .

Halmos: a (classical) logician is the dual of a (Boolean) algebraist.

A sentence α is a classical tautology iff α is valid in \mathfrak{B}_2 .

Halmos: a (classical) logician is the dual of a (Boolean) algebraist.

A sentence α is a classical tautology iff α is valid in \mathfrak{B}_2 .

Halmos: a (classical) logician is the dual of a (Boolean) algebraist.

A sentence α is a classical tautology iff α is valid in \mathfrak{B}_2 .

Halmos: a (classical) logician is the dual of a (Boolean) algebraist.

THE CLASSICAL SHARP UNIVERSE

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic \implies Classical Propositional Logic

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic

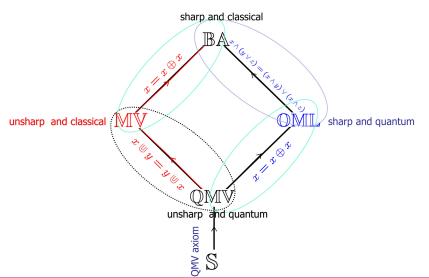
- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic

THE CLASSICAL SHARP UNIVERSE

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic

THE CLASSICAL SHARP UNIVERSE

- Universe \implies (Reduced to) $\{0,1\}$
- Algebra \Longrightarrow Boolean Algebras (Reduced to \mathfrak{B}_2)
- Logic ⇒ Classical Propositional Logic



NTRODUCTION PART I: THE CLASSICAL SHARP UNIVERSE THE CLASSICAL UNHARP UNIV

PHILOSOPHICAL PRELUDE

- In 1920, Łukasiewicz published his two-page article On three-valued logic.
- Motivation: escape the determinism implied by bivalence.
 - If every sentence is either true or false, then the future is already determined.
 - But our intuition about contingency suggests otherwise.

Łukasiewicz (1920)

NTRODUCTION PART I: THE CLASSICAL SHARP UNIVERSE **THE CLASSICAL UNHARP UNI**

PHILOSOPHICAL PRELUDE

- In 1920, Łukasiewicz published his two-page article On three-valued logic.
- Motivation: escape the determinism implied by bivalence.
 - If every sentence is either true or false, then the future is already determined.
 - But our intuition about contingency suggests otherwise.

Eukasiewicz (1920)

PART I: THE CLASSICAL SHARP UNIVERSE THE CLASSICAL UNHARP UNIV

PHILOSOPHICAL PRELUDE

- In 1920, Łukasiewicz published his two-page article On three-valued logic.
- Motivation: escape the determinism implied by bivalence.
 - If every sentence is either true or false, then the future is already determined.
 - But our intuition about contingency suggests otherwise.

Eukasiewicz (1920)

PHILOSOPHICAL PRELUDE

- In 1920, Łukasiewicz published his two-page article *On three-valued logic*.
- Motivation: escape the determinism implied by bivalence.
 - If every sentence is either true or false, then the future is already determined.
 - But our intuition about contingency suggests otherwise.

Eukasiewicz (1920)

PHILOSOPHICAL PRELUDE

- In 1920, Łukasiewicz published his two-page article On three-valued logic.
- Motivation: escape the determinism implied by bivalence.
 - If every sentence is either true or false, then the future is already determined.
 - But our intuition about contingency suggests otherwise.

Lukasiewicz (1920)

• Łukasiewicz foresaw only a *theoretical* role for many-valued logics.

- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, ...).
- Today: fuzzy and quantum approaches converge in the unsharp view Quantum MV-algebras (QMV-algebras) belong to this frontier.

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics)
 - Quantum theory gave empirical meaning to
- Today: fuzzy and quantum approaches converge in the

FROM PROPHECY TO REALITY

- Łukasiewicz foresaw only a *theoretical* role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, ...).
- Today: fuzzy and quantum approaches converge in the unsharp view Quantum MV-algebras (QMV-algebras) belong to this frontier.

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to
- Today: fuzzy and quantum approaches converge in the

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, . . .).
- Today: fuzzy and quantum approaches converge in the unsharp view Quantum MV-algebras (QMV-algebras) belong to this frontier.

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, ...).
- Today: fuzzy and quantum approaches converge in the

FROM PROPHECY TO REALITY

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, ...).
- Today: fuzzy and quantum approaches converge in the unsharp view Quantum MV-algebras (QMV-algebras) belong to this frontier.

- Łukasiewicz foresaw only a theoretical role for many-valued logics.
- Yet, two surprising developments occurred:
 - Fuzzy logics (natural heirs of Łukasiewicz' logics) entered technology: washing machines, cameras, control systems.
 - Quantum theory gave empirical meaning to indeterminism: no-go theorems and experimental tests (Bell, Aspect, ...).
- Today: fuzzy and quantum approaches converge in the unsharp view Quantum MV-algebras (QMV-algebras) belong to this frontier.

- Boolean algebras: algebraic semantics of classical logic.
- MV-algebras: (Chang, 1958) fuzzy (non-idempotent) generalization of Boolean algebras.
 - Capture Łukasiewicz infinite-valued logic
 - Provide algebraic semantics for graded truth-values.

- Boolean algebras: algebraic semantics of classical logic.
- MV-algebras: (Chang, 1958) fuzzy (non-idempotent) generalization of Boolean algebras.
 - Capture Łukasiewicz infinite-valued logic
 - Provide algebraic semantics for graded truth-values.

- Boolean algebras: algebraic semantics of classical logic.
- MV-algebras: (Chang, 1958) fuzzy (non-idempotent) generalization of Boolean algebras.
 - Capture Łukasiewicz infinite-valued logic
 - Provide algebraic semantics for graded truth-values.

- Boolean algebras: algebraic semantics of classical logic.
- MV-algebras: (Chang, 1958) fuzzy (non-idempotent) generalization of Boolean algebras.
 - Capture Łukasiewicz infinite-valued logic
 - Provide algebraic semantics for graded truth-values.

- Boolean algebras: algebraic semantics of classical logic.
- MV-algebras: (Chang, 1958) fuzzy (non-idempotent) generalization of Boolean algebras.
 - Capture Łukasiewicz infinite-valued logic
 - Provide algebraic semantics for graded truth-values.

References (Lecture I)

- S. Burris, H.P. Sankappanavar, *A Course in Universal Algebra*. Springer, 1981.
- R. Cignoli, I. D'Ottaviano, D. Mundici, *Algebraic Foundations of Many-Valued Reasoning*, Kluwer, Dordrecht, 2000.
- M. Luisa Dalla Chiara, R. G., R. Greechie, *Reasoning in Quantum Theory*, Kluwer, 2004.
- J.M. Font, Abstract Algebraic Logic: An Introductory Textbook. Springer, 2016.
- 🔋 G. Grätzer, Lattice Theory: Foundation, Birkhäuser, 2011.
- G. Kalmbach, Orthomodular Lattices, Academic Press, 1983.

...TO BE CONTINUED in LECTURE II

