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1 TOPOLOGICAL VECTOR SPACES 3

1 Topological Vector Spaces

1.1 Basic Definitions and Properties

As in Analysis I-111, we write K to denote R or C.

The central topic of (linear) Functional Analysis is the investigation and representation
of continuous linear functionals, i.e. of continuous linear functions f : X — K, where
X is a vector space over K. To know what continuity of f means, we need to specify
topologies on X and K. On K, we will always consider the standard topology (induced
by | - |), unless another topology is explicitly specified. While one will, in general, want
to study many diLerent vector spaces X with many diLerent topologies 7, 7 should at
least be compatible with the linear structure on X, giving rise to the following definition:

Definition 1.1. Let X be a vector space over K and let 7 be a topology on X. Then
the topological space (X, 7) is called a topological vector space if, and only if, addition
and scalar multiplication are continuous, i.e. if, and only if, the maps

+: X x X —X, (Xy)—XxX+Yy, (1.1a)
O Kx X — X, (AX)— AX, (1.1b)

are continuous (with respect to the respective product topology).

Example 1.2. (a) Every normed vector space (X, || - ||) over K is a topological vector
space: Let (X)kmomand (Yk)k mobe sequences in X with limg_ . Xk = x € X and
limg_ Yk =y € X. Then lim_ (X + k) = X +y by [Phil6b, (2.20a)], showing
continuity of addition. Now let (A )k mnbe a sequence in K such that limy _ . Ax =
A € K. Then (JA|)x mois bounded by some M € Ry and

| AkXk—=AX|| < || AXk—AkX||F || AX—=AX|| < M ||x—X]|+[Ac—A] ||X]| = 0 for k — oo,

showing limy _ «(AxXk) = AX and the continuity of scalar multiplication. We will
see in Sec. 1.2 below that, for dim X < oo, the norm topology on X is the only T,
topology on X that makes X into a topological vector space (but cf. (b) below).

(b) Let X be a vector space over K. With the indiscrete topology, X is always a
topological vector space (the continuity of addition and scalar multiplication is
trivial). If X # {0}, then the indiscrete space is not T, and, hence, not metrizable
(cf. [Phil6b, Sec. 3.1]). If X # {0}, then, with the discrete topology, X is never a
topological vector space: While addition is continuous (since X x X is also discrete),
scalar multiplication is not: Let 0 # x € X. Then, while {x} C X is open, the
preimage P := (-)71({x}) is not open in KxX: Let (A,y) € P, i.e. Ay = x. If P were
open, then there had to be an open neighborhood O of A such that O x {y} C P,
in contradiction to A being the unique element of K such that Ay = x.
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©)

(d)

Let (Q, A, 1) be a measure space. Then, for each 0 < p < oo, both £P(p) and
LP() are topological vector spaces: First, let 1 < p < oo. Then LP(p) is a special
case of (a), and, for, £LP(1) one observes that the arguments of (a) still work if the
norm is replaced by a seminorm (since seminormed spaces are still first countable,
cf. [Phil6b, Th. 2.8]). If there exists a nonempty p-null set, then £P(Y) is not
T, (in particular, not metrizable), cf. [Phil7, Def. and Rem. 2.41]. Now consider
0 <p < 1. We know from [Phil7, Def. and Rem. 2.41] that £P(}) is a pseudometric
space, where the pseudometric dj, is defined by

Em| [
dp: LP(W) x LP(W) — Ry, dp(F,9) := NF(f —9), Np(F):= QIf!pdu :

and LP(u) is the corresponding (factor) metric space. Like metric spaces, pseu-
dometric spaces are first countable and we can show continuity using sequences
according to [Phil6b, Th. 2.8]. Let (fk)xmmand (gk)k mnbe sequences in L£P(p) with
limg_ o fx =F € LP(W) and limg_ g =g € LP(W). Then

[ [T$hi17, (2.51a)]
dp(f + gk, T +0) = N} fie + g — (F +0) < NP (fc — ) + NF(gk — 9)

= dp(fi, F) + dp(9k, 9) — 0 for k — oo,

showing continuity of addition. Now let (Ax)xmnbe a sequence in K such that
limg_ o Ak = A € K. Then (|A«|)x mois bounded by some M € Ry and

dp (AT, AT) < %%(fk, M) + dp()\kf’%
= kFe — Af Edll + F— Af Edu
Q Q
< MPdy(Fi, F) + [ A — AP NE(F) = 0 for k — oo,

showing limy _ (Acfx) = AF and the continuity of scalar multiplication. As for
p > 1, if there exists a nonempty p-null set, then £P(p) is not T, (in particular,
not metrizable), again cf. [Phil7, Def. and Rem. 2.41]. We will see in Ex. 1.11(b)
that, for 0 < p < 1, balls in LP([0, 1], £, A!), where £! denotes the usual o-algebra
of Lebesgue-measurable sets and A denotes Lebesgue measure, are not convex. In
particular, the metric d, is not generated by any norm on LP([0, 1], £, AY).

Consider X = KR = F(R,K), i.e. the set of functions f : R — K, with the
product topology 7 (i.e. the topology of pointwise convergence). We know from
[Phil6b, Ex. 1.53(c)] that 7 is not metrizable (however, 7 is T, by [Phil6b, Prop.
3.5(b)]). We show that (X,7) is a topological vector space over K: According
to [Phil6b, Ex. 2.12(c)], we have to show that, for each f,g : R — K, each
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A€ K,and eacht € R, (f,g) — f(t) + g(t) is continuous at (f,q), (A, ) — AF(t)
is continuous at (A, T). Due to the continuity of the maps + : K x K — K,
-1 Kx K— K, given (& R™, there exist neighborhoods Ug, Uy, Uy of T(t), g(t),
and A, respectively, such that

v FWEBFO+o) v BAAF(D)
Z+W & , Zc .
(2.w) [T Uy - g (o) ixuy D .

Letting V¢ := 17 '(Ug), Vg 1= 11y *(Ug), We obtain

_ ] ]
.V F(O) +3(t) € Baf(t) +9(0) ,
(f.9) V>V

proving continuity of addition on X. We also have

- O [
Vv uf(t) € BoAf(t) ,
(1, F) O =< Ve

proving continuity of scalar multiplication.

In certain situations, the following notation has already been used in both Analysis and
Linear Algebra:

Notation 1.3. Let X be a vector space over K, let A C P(X) (where P(X) denotes
the power set of X), A,B C X, x € X, and A € K. Define

Xx+A:={x+a:acA} (1.2a)
A+B:={a+b:acA beB}, (1.2b)

M :={Aa:acA}, (1.2c)
x+A:={x+A: Ac A} (1.2d)

Note that, in general, the familiar arithmetic laws do not hold for set arithmetic: For
example, if X # {0}, then X — X = X # {0}; if 0 # x € X, A := {—x,x}, then
OcA+A but0&Z2A, ie. 2AZA+A.

Proposition 1.4. Let (X, 7) be a topological vector space over K.
(a) For each a € X and each A € K\ {0}, the maps
Ta, Myt X — X, Ta(X):=x+a, MyX):=Ax, (1.3)

are homeomorphisms, where T, 1 = T_,, M;l = My-1.
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(b) T is both translation-invariant and scaling-invariant, i.e. the following holds for
each O C X:

1 1 1 1
O open <& Y O+ aopen & Y AO open
alxl A KY{0}

(c) Let x,ae X, U C X, A€ K\ {0}. Then U is a neighborhood of x if, and only if,
a+ U is a neighborhood of a + x, and if, and only if, AU is a neighborhood of Ax.

(d) Let x,a € X, B C P(X). Then B is a local base at x (see [Phil6b, Def. 1.38]) if,
and only if, a+ B is a local base at a + X.

Proof. (a): T, and M, are clearly bijective with the provided inverses. The continuity
of the maps and their inverses is due to (1.1).

(b) is immediate from (a).

(c) follows from (a) and (b), since T,(U) =a+U and M,(U) = AU. Now (d) is another
immediate consequence. 1

Proposition 1.5. Let (X, 7) be a topological vector space over K.

(a) If W € U(0), then there exists an open U € 1/(0) such that U satisfies the following
two properties:

= -U, (1.4a)
U+UCW (1.4b)

(here, and in the following, ¢/(x) denotes the set of all neighborhoods of x € X (cf.
[Phil6b, Def. 1.1]).

(b) Disjoint sets A, K C X, where A is closed and K is compact, can be separated by
disjoint open sets (in particular, topological vector spaces are always T3, cf. [Phil6b,
Def. 3.1(c)]):

1 ] 51
W ANK=0 = 3 AQOlAKQOZAolﬂOZZQ
A K X] 01,02 [T

A closed,

K compact
(1.5a)

The following reformulation uses the linear structure of X:
1 1 51
4 ANnK=0 = 3 A+U)NnK+U)=0 . (1.5b)
AKX] U [uqo)

A closed,
K compact
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(c) Every neighborhood contains a closed neighborhood:

] ]
Vs Y 3 XeACU A Aclosed .
X[X1 U Ox) ALUx)

(d) If (X, T) is Ty, then (X,7) is regular (i.e. T, and T3). In particular, (X, 7T) is
then also T, (i.e. Hausdor [).]

Proof. (a): Since addition is continuous and 0 + 0 = 0, given W € /(0), there exist
open Uy, U, € U(0) such that U; +U, C W. According to Prop. 1.4, —U;, —U, are open
and —Uy, —U, € U(0) as well. Thus, U := U; NnU, N (—Uy) N (—=Uy) € U(0), U open,
U+UCU;+U, CW, and x € U if, and only if, —x € U, showing U = —U.

(b),(c): Exercise.
(d) is immediate from (c) (and since T, + T3 implies T,, cf. [Phil6b, Lem. 3.2(b)]). [1

Definition 1.6. Let X be a vector space over K, A C X.

(a) A is called convex if, and only if,

Vv ¥V Aa+(1-AbcA

a,b[Al 0=A<1
(i.e. if, and only if, foreach 0 < A <1, AA+ (1 — A)A C A in terms of Not. 1.3).
(b) A is called balanced if, and only if,

V) vV ANacA
alAl |\=1

(i.e. if, and only if, for each A € K with |A| <1, AA C A in terms of Not. 1.3).

Example 1.7. If 0 # x € X (X vector space over K), then {x} is convex, but not
balanced. The set A := ([-1,1] x {0}) U ({0} x [-1,1]) € R? is balanced, but not
convex. Moreover,

[ACR: Abalanced} = R0 To .l re R 0 onr: re R
; alanced} = —rnrre —rr]:re

- S +|:||:[| N
{ACC: Abalanced} = C U B,(0): reR"™ U B/0): reRy .

Proposition 1.8. Let X be a vector space over K. Let (A;)ibe a family of subsets of
X; A, B CX.

L1
(a) If each A is convex, thenso is C := ; A;. If A, B are convex, then so are A+B
and oA for each a € K.
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: 1 1
(b) If each A; is balanced, then so are C := ; Aijand D := ; Ai. If AB are
balanced, then so are A+ B and aA for each a € K.

(c) If Ais balanced and 0 < s <'t, then sA C tA.

(d) If X is a Cartesian product X =
is balanced (resp. convex), then B :=

Proof. Exercise.

f vector spaces X; over K and B; C X;
- Bi is also balanced (resp. convex).

Definition 1.9. Let (X, 7) be a topological vector space over K.

(a) Let B C P(X) be a local base at x € X. We call B convex (resp. balanced) if, and
only if, each B € B is convex (resp. balanced).

(b) We call (X, 7T) locally convex if, and only if, 0 has a convex local base (then, by
Prop. 1.4(d), every x € X has a convex local base).

(c) Aset B C X is called bounded if, and only if,

\
U [U{0)

= B CsU.
s[RT

(d) We call (X, 7T) locally bounded if, and only if, 0 has a bounded neighborhood.

Proposition 1.10. Let (X,7) be a topological vector space over K. Let A,B C X.

(a) One has '

A= (A+VU).
U [U{0)
(b) A+B C A+B.
(c) If A'is a vector subspace of X, then so is A.

(d) If B is open, then so is A+ B.

(e) If A is convex, then so are A and A°.

(f) If A is balanced, then so is A. If A is balanced with 0 € A°, then A° is balanced as

well.

(g) If A is bounded, then so is A.
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Proof. (a): Given x € X, according to Prop. 1.4(c), U C X is a neighborhood of 0 if,
and only if, x + U is a neighborhood of x. Thus,

1 1 1 1
XEA & V X+U)NAZD < Vv XxXeA-U |,
U (o) U (o)

where the last equivalence holds since a € (x+U)NAif, and only if, there exists u € U
such that a = x +u € A. Using Prop. 1.4(c) again, U is a neighborhood of 0 if, and
only if, —U is a neighborhood of 0, showing the above equivalences prove (a).

(b): Leta € A, b € B, U € U(a+h). By the continuity of addition, there exist U; € U(a)
and U, € U(b) such that U; + U, C U. Since a € A, b € B, there exist x € AN U; and
y € BNU,. Then x+y € (A+B)N(U;+U,) C (A+B)NU # (), showing a+b € A+ B.

(c): Leta,b e A. Then

_ __( _
a+becA+ACA+ANVEPR (1.6a)

~

According to Prop. 1.4(a),

raly M= MA(R) = Ma(A) = 3A. (1.6b)

As we also have 0A = {0} C {0} C A, since 0 € A if A is a subspace (note that
{0} 4} if (X, T) is not Ty), A is a subspace of X.

(d): Let B be open, a € A, b e B. Then a+ B is an open neighborhood of a + b and
a+ B C A+ B, showing a + b to be an interior point of A+ B, i.e. A+ B is open.

(e): Let A be convex. Then

_ __ (1.6b),(b) _
V M+(L-NA C MM+ (1-NALR

0<A<l

showing A to be convex. Furthermore, since A° C A, we have

0 Y ) A= NAT + (1 — MDA g)\A‘*‘(l—)\)AAC%WEXA_

Since A, is open by (d) and Prop. 1.4(a), and since A° is the union of all open subsets
of A, we obtain A, C A°, showing A° to be convex.

(f): Let A be balanced. As in the proof of (c), we obtain AA C AA for each A € K.
Thus,
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showing A to be balanced. According to Prop. 1.4(a),

mzvx{o} AAT = MA(AT) = (Ma(A))" = (AA),

implying
A bal.
AN = (AA)” C A
0<|A\|<1

Since 0A° = {0} C A" holds by hypothesis, A” is balanced.

(9): Let A be bounded and U € ¢/(0). According to Prop. 1.5(c), there exists C € 1/(0)
such that C € U and C is closed. Since_A is bounded, th_ere exists s € R* such that
A C sC, where sC is still closed. Thus, A C sC, showing A to be bounded. 1

It is an exercise to find counterexamples that show that, in general, Prop. 1.10(b)
does not hold with equality (there exist examples with (X, 7) being R with the norm
topology) and that, in general, the second part of Prop. 1.10(f) becomes false if 0 € A°
is omitted from the hypothesis.

Example 1.11. (a) If (X, ||-||) is a normed vector space over K, then it is both locally
bounded and locally convex: Each ball B,(x), x € X, r € R*, is both convex and
bounded: Indeed, if a,b € B,(x) and A € [0, 1], then

[Aa+(@—Nb—xX|| = [Aa—Ax+(L—Ab—(L—Ax]| < Ala—x|+L—N)|b—x| <,

showing Aa + (1 — A)b € B,(x). Now let [ R", y € B, (X), a := ||x||. Then
Iyl < |ly = x|l + [[x]] < r+a, showing y € Br+q(0). Thus —=y € B0) and

r+a

y € 55Bi(0), showing B,(x) to be bounded in the sense of Def. 1.9(c). As a
caveat, it is pointed out that, in general, the topology 7 of a topological vector
space (X, 7) can be induced by a metric d on X without the corresponding metric
balls being convex (see (b) below), balanced (see (d) below), or even bounded in the
sense of Def. 1.9(c) (in Ex. 1.43 below, we will construct topological vector spaces

that are metrizable, but not locally bounded).

(b) We come back to the spaces X := LP([0,1], £}, A), 0 < p < 1, with the metric
dp (cf. Ex. 1.2(c)). It is an exercise to show (X, d,) is locally bounded, but not
locally convex (and, actually, () and X are the only convex open subsets of X).
As mentioned earlier, a main goal of Functional Analysis is the representation of
continuous linear functionals. In the present case, it turns out that A = 0 is the only
continuous linear functional on X: Indeed, let (Y, 7) be an arbitrary locally convex
topological vector space that is T; (for example, Y = K) and let A: X — Y be
linear and continuous. Let B be a local base of 7 at 0, consisting of convex open
sets. If C € B, then A~*(C) is convex, open, and nonempty, i.e. A"}(C) = X. If
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(©)

(d)

y €Y,y #0, then, since (Y, 7) is Ty, there exists U € 2/(0) such thaty £ U. Then
there is C € B such that C C U. Since A™}(C) = X, y ¢ A(X), showing A = 0.

The topological vector space (KR, 7) (where 7 is the product topology) is locally
convex, but not locally bounded: The set
1 1

I:_ll .
jmnj (B5(0)): J CR,0<#J <o, jvmljtle R

constitutes a local base at 0 and, by Prop. 1.8(d), each element of this local base is
convex. We now show that 0 does not have a bounded neighborhooldjpdeed, ifu e
U(0), then U contains a set from the above local base, say B := J.,:Dnj_l(Bg(O)),
where J is a nonempty finite subset of R and ;1> 0 for each j € J. Leta € R\ J.
Then V :=n 1(B1(0)) is another neighborhood of 0. However,

e V= Mo (Bs(0)),

showing that B ¢ sV and that neither B nor U is bounded.

If we consider R? as a vector space over R and || - || is some norm on R?, then
the balls B,(0) and B,(0), r € R*, with respect to this norm are R-balanced.
However, if we consider R? = C as a vector space over C, then each norm on R?
still induces a metric and the standard topology on C. However, the balls are not
necessarily C-balanced: For example, consider R? with the max-norm: d(z,w) :=
max{| Re(z —w)|, | Im(z —w)|}. Then 1+i < B1(0), |[1+i| =2, i.e. 1+i=+2C
with |[{| = 1. Thus, v2 = (1+i)Z* ¢ B1(0), showing that B;(0) is not C-balanced.

Proposition 1.12. Let (X, 7) be a topological vector space over K.

(@)

(b)

©)

(d)

If U € U(0), then there exists B € ¢/(0) such that 0 € B C U and B is balanced
and open. In particular, (X,7) has a balanced local base at 0.

If U € U(0) is convex, then there exists C € ¢/(0) such that 0 €« C C U and C is
convex, balanced, and open. In particular, if (X,7) is locally convex, then (X, 7)
has a balanced convex local base at 0.

B C X is bounded if, and only if,

\ 3 vV BCtuU.
U [UQ) sIRT t=s

A C X is bounded if, and only if, every countable subset of A is bounded.
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(e) If A,B C X are bounded, then so are AUB and A + B.

(f) IfU € 4(0) and (ry)xmnis a sequence in R™ such that limy . o rx = oo, then

L1
X = (rkU).
k N1

(g) If K C X is compact, then K is bounded.
(h) (X, 7T) is locally bounded if, and only if,

Y 3 U bounded.
x[X1 U [U{x)

(i) If U € U(0) is bounded and (ry)xmnis a sequence in R™ such that limy_ o rx = 0,
then B:= {rcU : k € N} is a local base at 0.

Proof. Exercise. 1

We conclude this section with some basic properties of continuous linear maps between
topological vector spaces ([Phil6b, Th. 2.22]):

Theorem 1.13. For a K-linear function A : X — Y between topological vector spaces
(X, Tx) and (Y, 7v) over K, the following statements are equivalent:

(i) A is continuous.
(i) There exists £ € X such that A is continuous in .

(i) A is uniformly continuous, i.e.
1 1

\4 = v y—-xeV = Ay—AxeU .
U Qo) [eqQy) Vv [O90) [POX) Xy [XI

Proof. (i) trivially implies (ii).
“(if) = (iii)”: Let A be continuous in & € X. Then

f: X —Y, fX):=AX+E) -—A®),

is continuous in 0 with £(0) = 0. Let U € ¢/(0). Then there exists V € ¢/(0) such that
f(V) CU. Thus, if X,y € X are such thaty — x € V, then

Ay —AX=A —x+& —-A@E) =Ff(y—x) e U,
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proving (iii).

“Gi) = (1)”: Let x € X. We show A is continuous at x: If W € U(AXx), then

U: =W —Ax € 4(0) and W = Ax + U. Choose V < U(0) according to (iii). Then
Xx+V e U(X)and ify € x+V ,theny—x € V.. Thus, Ay—Ax € U and Ay € Ax+U =W,
showing A to be continuous at X. 1

The following notions of kernel and image of a linear map A : X — Y between vector
spaces are familiar from Linear Algebra:

ker A= A7H0} = {x € X : A(x) =0}, (1.7a)
imA = AX) = {A(X) : x € X}. (1.7b)

Theorem 1.14. Let (X, 7T) be a topological vector space over K. For a K-linear func-
tional A : X — K the following statements are equivalent:

(1) A is continuous.
(i) ker A is closed.
(iii) ker A = X or ker A is not dense in X.

(iv) There exists U € U/(0) such that A(U) is bounded.

Proof. “(i)=-(ii)”: If A is continuous, then preimages of closes sets are closed. Since
{0} C K is closed, so is ker A = A~1{0}.

“(i)=-(iii)”: If X # ker A and ker A is closed, then ker A = ker A # X, showing ker A
is not dense in X.

“(>iii)=-(iv)”: If ker A = X, then A(X) = {0}, which is bounded. Now suppose ker A is
not dense in X. Then O := X \ ker A is nonempty and open. Let x € O. Since O is
open, there exists U € ¢/(0) balanced, such that

(x+U)nkerA = 0. (1.8)

Since A is linear, A(U) C K is a also balanced. If A(U) is bounded, then (iv) holds. If
A(U) is unbounded, then A(U) = K (since A(U) is balanced). Thus, in this case, there
exists y € U such that Ay = —AXx, i.e. x+y € ker AN (x+U) in contradiction to (1.8).

“(iv)=-(i)”: By Th. 1.13, it su [ced to show A is continuous at 0. Given [ 3 0, we have
to find V € U4(0) such that A(V) C B{0) € K. Using (iv), we know A(U) C Bnm(0)
for some U € ¢/(0) and some M > 0. If V := -=U, then, for each -U, u € U, we have
A(7U) = -AU) € Bi{0), since |A(u)| < M. Thus, A(V) C B{0) as needed. 1
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1.2 Finite-Dimensional Spaces

In [Phil6b, Th. 3.18], we already stated the important result that the closed unit ball
in a normed vector space X is compact if, and only if, X is finite-dimensional. In the
present section, we will obtain this again as a corollary to the more general statement
that a T, topological vector space has finite dimension if, and only if, it is locally compact
(cf. Th. 1.19 below). In the process, we will prove in Th. 1.16(b) that finite-dimensional
subspaces of T, topological vector spaces are always closed (again in generalization of
the corresponding result for normed spaces, cf. [Phil6b, Th. H.2]). The remaining main
result of this section is that the norm topology on K" is the only T, topology that makes
K" into a topological vector space (see Cor. 1.17).

Lemma 1.15. Let (Y,7) be a topological vector space over K. If A: K" — Y s
K-linear, then A is continuous.

Proof. For each i € {1,...,n}, let a; := A(e;j) be the image of the standard unit vector
ej € K". Then

I 1 I 1
v A(z) = Zia; = mi(2)ai,
i=1 i=1
and, since the projections 1; : K" — K are continuous as well as the constant functions
z — a; and addition and scalar multiplication, so is A. 1

Theorem 1.16. Let (X,7) be a T, topological vector space over K and let Y C X he a
finite-dimensional subspace, dimY = n € N. Then the following statements hold true:

(@) If A: K" — Y is a linear isomorphism, then A is also a homeomorphism.

(b) Y is closed.

Proof. (a): The linear isomorphism A is continuous by Lem. 1.15. Let S := S;(0) =
{z € K": ||z|]|]2 = 1} be the unit sphere in K". Then S is compact and, by [Phil6b, Th.
3.12], so is K := A(S). Since A(0) =0 and A is injective, 0 ¢ K. Since (X,7) is T, by
Prop. 1.5(d), the compact set K is closed by [Phil6b, Prop. 3.9(b)]. Thus, as (X,7)
is T3 by Prop. 1.5(b), there exists an open O € ¢/(0) such that O N K = (). By Prop.
1.12(a), we may also assume O to be balanced as well. Then

U:=A10)=A*0nY)CK"

satisfies 0 € U, UNS = (), and U balanced (as A is linear). We claim U C B := B;(0) =
{z € K" : ||z||; < 1}: Seeking a contradiction, assume z € U with ||z|, > 1. Since U
is balanced and ||z||,;* < 1, this implies &5 € U, in contradiction to U NS = (). But
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U C B shows U = A~1(O) to be bounded. Since the n coordinate functions of A~* are
K-linear functionals, the continuity of A1 is now a consequence of Th. 1.14(iv).

(b): WeshowY =Y: LetxeY. Let A: KN — Y, O C X, and B be as in the proof
of (a). By Prop. 1.12(f), we may choose r € R™ such that x € rO. Then x is an element
of the closure of each of the three sets

1 1 ]
YN(rO)CArB CC:=ArB.

As rB is compact, so is C. As above, we conclude C to be closed as well (as (X, T) is
T2). Thus, x € C C Y, showing Y =Y as desired. 1

Corollary 1.17. If X is a finite-dimensional vector space over K, then the norm topol-
ogy on X is the unique topology on X that makes X into a T, topological vector space.

Proof. This is an immediate consequence of applying Th. 1.16(a) with Y := X. 1

Definition 1.18. A topological space (X, 7)) is called locally compact if, and only if, for
each x € X, there exists a compact neighborhood of x.

Theorem 1.19. (a) If (X,7) is a T, topological vector space over K, then X has finite
dimension if, and only if, (X, T) is locally compact.

(b) A normed vector space (X, || - [[) over K is finite-dimensional if, and only if, its
closed unit ball B1(0) is compact.

Proof. (a): If X has finite dimension and 7 is Ty, then, by Cor. 1.17, 7 is the norm
topology on X and that means balls are compact. In particular, (X,7) is locally
compact. Conversely, assume (X, 7)) to be a locally compact T, space. Then there exist
0O,K € U(0) such that O C K, O is open, K is compact. For each x € X, one has
X EX+ %O. Thus, (x + %O)XD@ is an open cover of K and there exist Xg,...,Xn € K,

m € N, such that
' —1
=
i=1
LetY :=span{xi,...,Xm}. ThendimY < m. Wewill showY = X. Asan intermediate
step, we use an induction to prove

Vv OCY +2%0: (1.10)
k [N

The case k = 1 holds due to (1.9). Now let k € N and assume O C Y + 27XO to hold
by induction hypothesis. Now if x € O, then ix € 1Y +1.27kO =Y +27®*DO (as Y
is a vector space). Thus,

OCY +%O CY+Y +2 kDo =y 42K+t
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completing the induction. As a consequence of (1.10), we now obtain

1
0OC (Y +27%0). (1.11)
k [N

Since K is compact, K (and, thus O) is bounded by Prop. 1.12(g), and {27%O : k € N}
is a local base at 0 according to Prop. 1.12(i). In consequence, we conclude

- 1
(Y+U)= (Y +27%0)
U [U(0) k NI

Y Th. 1ilG(b) V Prop.=1.10(a)

and (1.11) implies O C Y. Thus, kO C Y for each k € N (since Y is a vector space),
and Prop. 1.12(f) yields Y = X as desired.

(b): If X is finite-dimensional, then it is linearly homeomorphic to K", n € N. Thus,
B1(0) C X is compact. Conversely, if B;(0) C X is compact, then the space is locally
compact, hence, finite-dimensional by (a). 1

1.3 Metrization

Definition 1.20. Let X be a vector space and let d be a metric on X. Then d is called
translation-invariant if, and only if,

v dix+z,y +2z) =d(x,y). (1.12)

X,y,z X1

Theorem 1.21. Let (X, 7) be a topological vector space over K. Then (X, 7) is metriz-
able if, and only if, it is both T, and C; (i.e. first countable). In that case, there exists
a metric d on X that induces 7 and has the following additional properties:

(i) B,(0) is balanced for each r € R™.

(i) d is translation-invariant.

If (X,7T) is also locally convex, then one can choose d to have properties (i), (ii), and
(iii), where

(iii) By(x) is convex for each x € X and each r € R™.
Proof. If (X,7) is metrizable, then it is T; (and even normal) by [Phil6b, Ex. 3.4(c)]

and C; by [Phil6b, Rem. 1.39(a)]. To prove the converse needs some work. Assuming
(X, T) to be T; and C4, we need to construct a suitable metric d on X.



1 TOPOLOGICAL VECTOR SPACES 17

Claim 1. There exists a sequence (Vi)x moin 4(0) such that each V. is open and balanced
(and convex if (X, T) is locally convex), B := {Vx : k € N} is a local base at 0, and

V o Vi1 + Vi1 + Vi + Virr C Vi (1.13)
k [N
Proof. One starts with some countable local base at 0, gi by sets (Wj); oo (which
exists as (X, 7) is C1). Letting, for each j € N, U; := 1 _; Wy, the sets (U;j); mnstill

form a local base at zero, but the sets (Uj);mnare also decreasing in the sense that
Uj+1 € Uj. From the U;, one inductively constructs a sequence (On)nmnthat satsfies
everything the V are supposed to satisfy, except, instead of (1.13), one has Op+1 C Og:
Suppose Oy, ..., Oy are already constructed, N € No. Choose j > N such that U; C Oy
(and j € N arbitrary for N = 0). By Prop. 1.12(a),(b), there exists O € ¢/(0) such that
O C U;, and O is open and balanced (and also convex for (X, 7°) locally convex). Thus,
we may set On+1 := O, completing the definition of the O,. From the O,, we can
now inductively construct the V;j: Set Vi := O;. Now suppose Vi,...,V; have already
been constructed, J € N. Using Prop. 1.5(a) twice, we obtain U € /(0) such that
U+U+U+U C V. Then there exists n > J such that O, C U (since the O, are
decreasing and form a local base at 0). Setting Vj.+; := On, V341 has all the required

properties, including V41 + Vi1 + Vi1 + Vi C V3. —1
We now define
1
L1 Nfo—1 L1
D := IEIQ Q= ci(@) 27", c1(q), ..., Cng(@) € {0,1}, N(@) € N —

i=1

Then, clearly, D C [0, 1], and the coe Lciehts c1(q), ..., Cn((q) are uniquely determined
by q € D if we require cn)(q) = 1 for g # 0 (e.g., due to [Phil6a, Th. 7.99]). We now

define the following functions:
Yo ci(q)Vi ifqeD,

A: DU{1} — P(X), INO _ (1.14a)
X ifqg=1,
N . 1
f: X —[0,1], f(x):=inf ge DU{1}: x € A(q) , (1.14b)
d: X xX —[0,1], d(x,y) .=f(x—y). (1.14c)

Before we can prove that d constitutes a metric with the desired properties, we need to
establish some properties of the function A:

Claim 2. Let q € D. Then,

1 1
r— 1
W A - Ci Vi +V,.
oy AOS @Y+
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Proof. We prove the claim by an induction on n = N(q), ..., 1. Since the V; contain 0,
the claimed inclusion trivially holds for n = N(q). Now assume the inclusion to hold
for some 1 <n < N(q). Then

[ 1 (|
%I (1.13) %
A(g) C ci(@Vi +Vp+V, C Ci(@)Vi + Vi,
i=1 i=1

completing the induction. 1

Claim 3. Each A(q), g € D U {1} is balanced (also convex it the V; are convex). One
has

A(0) = {0}. (1.15a)

Moreover, for each g, r € D, the following holds:
q+r<1 = A@) +A(r) S A +T), (1.15b)
qg<r = A(Q) C A(r). (1.15c)

Proof. According to (1.14a) and Prop. 1.8(a),(b), the A(q) are balanced (resp. convex)
if the V; are. Next, A(0) =0-V; = {0} proves (1.15a). We now establish (1.15b), which
is not quite as obvious. If g +r =1, then A(q +r) = X and (1.15b) holds. Thus, let
q+r < 1. We extend the coe Lciehts c;(q), ci(r),ci(q +r) to all i € N by setting them
0 for i > N(q), i > N(r), 1 > N(q + r), respectively. If ¢ij(q) + ci(r) = ci(q + r) hold
for each i € N, then (1.15b) (even with equality) is immediate from (1.14a). Otherwise,
there exists a smallest n € N such that c,(q) + cq(r) Zca(q+r) (duetoqg+r <1no
carry can be left at n =1). Then c,(q) =cn(r) =0 and c,(q +r) = 1. Thus,

[ 1 [ 1
cl 2 % cn(q)=0 %
A(g) < Ci(@)Vi +Vpra C Ci(Q) Vi + Vna1 + Viur.
i=1 i=1

Completely analogously, we also obtain

gy
A(r) C Ci(r)Vi + Vps1 + Via.
i=1

Since, for 1 <i<n-—1, c¢i(q) +ci(r) =ci(q+ r), we now obtain

g
A(q) + A(r) - Ci(q + I") Vi + Vn+1 + Vn+1 + Vn+1 + Vn+1
i=1
(113), cn(g+)=1 V@]
- ci(@+r)Vi=A(@+r),

i=1
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proving (1.15b). Finally, (1.15c) follows from (1.15b), since, for r > q, r —q € D and
A(@) € A@@) +A(r —q) € A(N). L1

Claim 4. The function d, as defined in (1.14c), constitutes a translation-invariant metric
on X.

Proof. We have f(0) = 0 due to (1.14b) and (1.15a), implying d(x,x) = 0 for each
x € X. Now let x € X, x # 0. Since (X,7) is T; and the Vi form a local base at
0, there exists k € N such that x & V,, i.e. x € A(27%) = Vi. Then (1.15c) implies
f(x) > 27K > 0, also showing d(x,y) > 0 for x #y. From CI. 3, we know the A(q) to
be balanced. Thus, x € A(q) if, and only if —x € A(q), implying f(x) = f(—x) and
d(x,y) = d(y, x). Next, we show

V. fx+y) <f(x)+f(y): (1.16)
X,y X1
Since (1.16) trivially holds for f(x) + f(y) > 1, it remains to consider the case f(x) +
f(y) < 1. Clearly, D is dense in [0, 1], and, thus,
1 L1

m\g_:r q’rﬂmj fxX)<qg AN fyY)<r A g+r<min{l, fx)+f(y)+ 1.

In consequence, X € A(Q), y € A(r), and x +y € A(q +r) by (1.15b). Thus,
fx+y)<q+r<f(x)+f(y)+L]

proving (1.16), since [ 3> 0 was arbitrary. Now, if x,y,z € X, then

dx,y) =f(x—y)=f(x—z+z-y) <f(x—2) +f(z —y) =d(x,2) +d(z,y),

proving the triangle inequality for d and that d is a metric. Translation invariance of d

is immediate from (1.14c). 1
Claim 5. One has
L1
X f >1
Vo OB(0)={xeX:f)<rl= T orr== (1.17)
r [RT qmig<r A@) forr <1.

Moreover, d induces 7 and all B.(0), r € R™, are balanced. All B.(x), r € R™, x € X,
are also convex if (X, 7) is locally convex.

Proof. The first equality in (1.17) is immediate from (1.14c). For r > 1, the second
equality is also clear. For 0 < r <1, the second equality is due to

1
xeB(0) & fX)<r < ED% xeA(@@) & xe A(Q).
q Dlg<r
qDlg<r
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Let 74 denote the topology induced by d. As d is translation-invariant, we have B,(X) =
x + B(0) for each r € R*, x € X. Due to (1.17), B,(0) € T for each r € R™ (as each
A(Qq), g > 0, is open due to Prop. 1.10(d)). Then, for each x € X, B(X) = x+B,(0) € T
as well, showing 74 C 7. For the remaining inclusion, we recall Vi, = A(27%), i.e. (1.17)
implies B(0) C Vi for r < 27, showing B, := {B,(0) : r € R*} to be a local base for
T at 0. In consequence, for each x € X, By := {B((X) : r € R*} is a local base for 7 at
X, showing 7 C 74. Each A(q) is balanced according (1.14a) and Prop. 1.8(b). Then,
according to (1.17) and Prop. 1.8(b), each B,(0) is balanced as well. If (X, 7)) is locally
convex, then each A(q) is convex by Cl. 3. If X,y € B((0), then, by (1.17) they must be
in the same (convex) A(q) C B,(0) (for some suitable g € D U {1}), showing B,(0) to
be convex. Then each B,(x) = x + B,(0) is convex as well. 1

With the proof of Cl. 5, we have concluded the proof of the theorem. L1

Definition 1.22. Let (X, 7) be a topological vector space over K.

(@) (X, 7) is called an F-space if, and only if, 7 is induced by a complete translation-
invariant metric on X.

(b) (X, T) is called a Fréchet space if, and only if, it is a locally convex F-space.
(c) (X, T) is called a normable if, and only if, 7 is induced by a norm on X.

Remark 1.23. For a normed vector space X, we, clearly, have the equivalences
X Fréchet space < X F-space <« X Banach space.

The spaces LP([0,1], £}, AY), 0 < p < 1, of Ex. 1.11(b) are examples of nonnormable
F-spaces that are not Fréchet: They are complete by [Phil7, Th. 2.44] (i.e. F), but they
are not locally convex by Ex. 1.11(b) (i.e. neither Fréchet nor normable). We will see in
Th. 1.41 below that a T, topological vector space is normable if, and only if, it is both
locally bounded and locally convex.

We conclude the section with a lemma we will use in the proof of Th. 1.32 below:

Lemma 1.24. (a) Let X be a vector space and let d be a translation-invariant metric
on X (here, we do not assume that d makes X into a topological vector space).
Then

v v d(nx,0) < nd(x,0).

x[X1 n[INI
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(b) Let (X,7) be a metrizable topological vector space over K and let (Xn)nmnbe a
sequence in X such that lim,_ . X, = 0. Then there exists an increasing sequence
(Nn)nmoin N such that lim,_ o N, = 0o and limp, _ o NpXn = 0.

Proof. Exercise. 1

1.4 Boundedness, Cauchy Sequences, Continuity

Boundedness and Cauchy sequences are both notions that, in general, do not make sense
in an arbitrary topological space. However, both notions are familiar in metric spaces
and both can be defined in arbitrary topological vector spaces (see Def. 1.9(c) and Def.
1.27, respectively). Unfortunately, if the topology 7 of a topological vector space is
induced by a metric d, then the resulting notions of boundedness and Cauchy sequences
with respect to 7 and d are, in general, not the same (cf. Rem. 1.26 and Ex. 1.30 below).
Thus, it is necessary to use some care regarding these notions. Some related results will
be presented in the current section.

If we call a subset of a topological vector space bounded, we will always mean bounded
in the sense of Def. 1.9(c). When we need to distinguish this boundedness from the
boundedness with respect to a metric d, then we will speak of d-boundedness in regard
to the metric.

Proposition 1.25. Let (X,7) be a topological vector space over K, A C X. Then the
following statements are equivalent:

(i) A is bounded.
(it) For each sequence (Xn)nmmin A and each sequence (An)nmnin K one has

nlirgoAn =0 = nIirrgo)\nxn =0.
Proof. Suppose, A is bounded. Let (Xn)nmnbe a sequence in A and let (A,)nmnbe a
sequence in K such that lim,_ . Ay, = 0. Let U € ¢/(0). Then there exists B € 1/(0)
such that B C U and B is balanced. Since A is bounded, there exists t € R* such that
A CtB. Then
= vV ooot|An <1l

N [NI n>N

We also know t=1x,, € B for each n € N since t™*A C B. Thus, since B is balanced, for
each n > N, tA,t71X, = AnX, € B C U, showing lim,, _ o An X = 0. Conversely, if A is
not bounded, then there exists U € ¢/(0) such that no nU, n € N, contains A. For each
neN,letx, € A\nU. Then Iimnqm% =0, but %xn ¢ U for each n € N (otherwise,
Nixn = X, € nU), showing £x, # 0 for n — . 1
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Remark 1.26. Let (X,7) be a T, topological vector space over K. If Y # {0} is a
vector subspace of X, then Y is not bounded (in general, this is not true without the
T, hypothesis - e.g., if (X, 7T) is indiscrete, then, clearly, every subset is bounded): Let
0 #y €Y. Then (ny)nmnisS @ sequence in Y such that Iimnam(%ny) =y 0. If
(X,T) is Ty, then it is T, and limits are unique, showing Y not to be bounded by Prop.
1.25. On the other hand, the metric d constructed in the proof of Th. 1.21 is such that
X itself is d-bounded (by 1), showing that each metrizable topological vector space is
metrizable by a translation-invariant bounded metric, even though X # {0} can not be
bounded.

Definition 1.27. Let (X, 7) be a topological vector space over K, and let B be a local
base at 0. Then a sequence (Xn)nmnin X is called a Cauchy sequence if, and only if,

\ 3 v Xn — Xm € B. (1.18)

BBl NIINI m,n>N

Moreover, (X, 7)) is called complete if, and only if, every Cauchy sequence in X converges
in X.

Proposition 1.28. Let (X, 7) be a topological vector space over K.

(2) Then the notion of Cauchy sequence as defined in Def. 1.27 does not depend on the
chosen local base at 0.

(b) If (Xn)nmiS @ convergent sequence in X, then it is a Cauchy sequence.

(c) If (Xn)nmnis @ Cauchy sequence in X (in particular, if it is a convergent sequence
in X), then it is a bounded sequence (i.e. {Xn : N € N} is bounded).

Proof. (a): Let (Xn)nmube a sequence in X, let B,C be local bases at 0. We show
(Xn)nmnis C-Cauchy if it is B-Cauchy: Let C € C. Then there exists B € B such that
B C C. To B choose N € N according to (1.18). Then

Y Xn —Xm € B CC,

m,n>N

showing (Xn)nmoto be C-Cauchy.

(b): Suppose, lim,_ Xy, = X € X. Then lim,_(Xn — X) = 0. Let W € 1(0).
According to Prop. 1.5, there exists U € ¢/(0) such that U = —-U and U +U C W. Let
N € N such that x,, — x € U for each n > N. Then

N Xn —Xm =Xp —X—Xm—X)eU-U=U+UCW,

m,n>N

showing (Xn)nmnto be Cauchy.
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(c): Let U € U(0). Then there exists V € U/(0) such that V is balanced and V +V C U.
Since (Xn)n mnis Cauchy, there exists N € N such that x, — Xy, € V for each m,n > N.
Thus, X, € Xn+1 +V for each n > N. Choose s > 1 such that Xn+1 € SV. Then

Prop. 1.8(c)
vV Xp€esV +V C sV +sV C sU.

n>N

Since {X, : n < N} is bounded by Prop. 1.12(e), it follows that {x, : n € N} is
bounded. L1

Theorem 1.29. Let (X, 7) be a topological vector space over K.

(a) If dy,d, are translation-invariant metrics on X that both induce 7, then, given a
sequence (Xn)nmnin X, the following statements are equivalent:
(1) (Xn)nmnis di-Cauchy.
(i) (Xn)nmnis dx-Cauchy.
(1ii)) (Xn)nmuis Cauchy in the sense of Def. 1.27.
(b) If dq, d, are translation-invariant metrics on X that both induce 7, then the follow-
ing statements are equivalent:
() (X,dy) is a complete metric space.
(i) (X, d,) is a complete metric space.
(iii) Every Cauchy sequence in X converges (i.e. (X, 7T) is complete).

(c) Let (X, 7) be T.. If Y C X is a vector subspace (with the relative topology) and Y
is an F-space, then Y is closed in X.

Proof. Exercise. L1

Example 1.30. Consider

X
f:R—R, f(x).—1+—|x|.
It is an exercise to verify that

d: RxR—Ry, dxy):=|f(x)—Tf(y)|,

defines a metric on R that is equivalent to the metric induced by |- | (i.e. it induces the
same topology), but, in contrast to (R, | - |), (R,d) is not complete.
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Due to Rem. 1.26, a nontrivial linear map A : X — Y between T, topological vector
spaces can never be bounded in the sense that A(X) is a bounded subset of Y . However,
for such maps, the following definition turns out to be useful:

Definition 1.31. Let (X, 7x) and (Y, 7y ) be topological vector spaces over K. Then a
K-linear map A : X — Y s called bounded if, and only if,

1 1
Y B bounded = A(B) bounded .
B X1

We can now supplement Th. 1.13 with the following result:

Theorem 1.32. Regarding the following statements (i) — (iii) for a K-linear function
A: X — Y between topological vector spaces (X, 7x) and (Y, 7yv) over K, one has the
implications

@M = @)y = (ii).
If (X, 7x) is metrizable, then one also has the additional implications

@iy = (@(vy = (@

and all statements (i) — (iv) are equivalent.

(i) A is continuous.
(i) A is bounded.

(iii) For each sequence (Xn)nmoin X such that limy, _ - X, = 0, the sequence (A(Xn))nmo
is bounded in Y.

(iv) For each sequence (Xn)nmoin X, one has

limx, =0 = lim A(Xy) =0.
n-oo n - oo

Proof. “(i)=-(ii)”: Let A be continuous, let B C X be bounded, and U C Y, U € 14(0).

As A is continuous, there exists V. C X, V € U/(0) such that A(V) C U. Since B is

bounded,

3 B C sV,
s[RT

implying
A(B) C A(sV) =sA(V) C sU,

showing A(B) to be bounded.
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“(it)=(iii)”: Assume A to be bounded and let (Xn)nmnbe a sequence in X such that
lim,_ o Xn = 0. Then (Xn)n mnis bounded according to Prop. 1.28(c). Thus, (A(Xn))nmo
is bounded due to the boundedness of A.

For the remaining implications, we now assume (X, 7x) to be metrizable.

“(ii)=(iv)”: Let (Xn)nmnbe a sequence in X such that lim,_ . X, = 0. According
to Lem. 1.24(b), there exists a sequence (Np)nmnin N such that lim,_ o Ny = oo
and lim,_ o NpXy = 0. Using (iii), (A(NnXn))nmoiS @ bounded sequence in Y. Since
limn_ o N2 =0, Prop. 1.25(ii) implies

. oL ]

lim A(x,) = lim "N, 'NLA(XR) =0.

n - oo

“(iv)=-(1): Since (X, 7x) is metrizable, (iv) implies the continuity of A at 0 by [Phil6b,
Th. 2.8], which, in turn, implies the (global) continuity of A according to Th. 1.13. [ 1

We will see in Ex. 1.42 below that it is possible for a linear map between topological
vector spaces to be bounded without being continuous.

1.5 Seminorms and Local Convexity

We are already familiar with norms on vector spaces over K. We have also encountered
the seminorms || - ||, on the spaces £P(), given a measure space (Q, A, 1), p € [1, oo] (cf.
[Phil7, Def. and Rem. 2.41(a)] and [Phil6b, Sec. E]). In the present section, we inves-
tigate the relation between seminorms and topological vector spaces more thoroughly.
As a main result, we will see in Th. 1.40 that a topological vector space (X, 7) is locally
convex if, and only if, 7 is induced by a family of seminorms. Moreover, according to
Th. 1.41, (X, T) is normable if, and only if, it is T; and both locally convex and locally
bounded.

Definition 1.33. Let X be a vector space over K. Then a function p : X — Ry is
called a seminorm on X if, and only if, the following three conditions are satisfied:

(i) p(0) =0.
(it) p is homogeneous of degree 1, i.e.
P(AX) = |A| p(X) for each A € K, x € X.
(iit) p is subadditive, i.e. p satisfies the triangle inequality, i.e.

p(x +y) < p(x) + p(y) for each x,y € X.
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If p constitutes a seminorm on X, then the pair (X, p) is called a seminormed vector
space or just seminormed space. Given a seminormed space (X, p), we denote open and
closed balls by

Bor(X) :={ye X:px-y)<r},

- (1.19)
xX1 rRT By (X) = {yeX:px—-y)<r}

Remark 1.34. Let (X, p) be a seminormed vector space over K.

(a) Clearly, p is a norm if, and only if, p(x) # 0 for each x # 0, x € X.

(b) p induces the pseudometric d : X x X — Ry, d(X,y) = p(x —y), on X (cf.
[Phil6b, Def. E.1]). Since d(x +z,y +z) = p(X+z —y —z) = d(X,y), it is always
translation-invariant. Related results are

B, (X)) = x+ B, (0),
vy p.r(X) p.r(0)

_ _ (1.20)
xIX1 rrr By (X) = x+ By r(0),

since
yex+Bpr(0) & y=x+z,p(2) <r & ply—X)<r & yecBp(x)
(and analogously for the closed balls).

(c) Let x € X, r € R*. Then the balls B, (0), B, (0) are balanced; the balls B, ,(x),
Bp.r(X) are convex: If p(y) < r (resp. P(y) < 1), and A € K, [A] < 1, then
P(AY) = |Alp(y) < (resp. <r). Ify,z € B, (X), then

1] [ 1 C1 1]
gy Pay+d-mz—x <paly-x) +p(1-a@z-x)
o [oj] =oaply—x)+(L—-a)p(z—x)<r,
with strict inequality for X,y € By ((X).
Definition and Remark 1.35. Let X be vector space over K, A C X.

(a) Ais called absorbing if, and only if,

—
X = (tA). (1.21)
t[RT

It is then immediate that A absorbing implies 0 € A. If (X,7) is a topological
vector space and U < 2/(0), then we know from Prop. 1.12(f) that U is absorbing.
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(b) If A is absorbing, then we define
Ha: X — Ry, Ha(X):=inf{te R*: t7'x € A}, (1.22)

and call pa the Minkowski functional of A. Since A is absorbing, for each x € X,
there exists t € R™ such that t™'x € A and pa is well-defined. It is also immediate
from (1.22) that pa(0) = 0.

We will see in Cor. 1.38(a) below that seminorms are precisely the Minkowski functionals
of balanced convex absorbing sets. The definition of a seminorm that we gave in Def.
1.33 is quite common and it underlines the relation between seminorms and norms.
However, it turns out that nonnegativity and Def. 1.33(i) do not have to be required in
the definition, as they follow from Def. 1.33(ii),(iii), as we will now see as part of Th.
1.36:

Theorem 1.36. Let X be a vector space over K. Then a function p: X — R is
a seminorm on X if, and only if, p satisfies Def. 1.33(ii),(iii). Moreover, if p is a
seminorm, then it further satisfies

(@) [p(xX) —p(y)| < p(x —y) for each x,y € X.
(b) p~1({0}) is a vector subspace of X.

(c) The unit ball B := {x € X : p(x) < 1} is convex, balanced, and absorbing, with
P=Hs-

Proof. Clearly, it su [ced to show that each p : X — R with the properties of Def.
1.33(ii),(iii) is a seminorm and satisfies (a) — (c). Thus, assume p : X — R to have
the properties of Def. 1.33(ii),(iii). We then have

Def. 1.33(ii)

p(0) =p(0-0) " =""10]-p(0) =0,
proving Def. 1.33(i). Next, we note that
Def. 1.33(iii)
PX) =p(X—y+y) < p(x—y)+py),
Def. 1.33(iii) £ 1.33(ii
pY) =ply —x+x) < py—x) +px) " E px —y) + p(x),

proves (a). Applying (a) with y := 0, proves p to be Ry -valued and, thus, a seminorm.
Now let X,y € X such that p(x) = p(y) =0and A,p € K. Then

Def. 1.33(ii),(iii)

0 < p(Ax + py) < [A[p(X) + [u|p(y) =0,
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showing p(Ax + py) = 0 and, thus, (b). We know B to be convex and balanced by Rem.
1.34(c). For each x € X,

vV oop(tThx) =tTp(x) <1,
t>p(x)

showing t™*x € B. Thus, B is absorbing and pg(Xx) < p(x). Since x € X was arbitrary,
we have pg < p. Conversely, if 0 < t < p(x), then p(t™*x) = t™1p(x) > 1, showing
p(X) < ps(x) and p < pg. 1

Theorem 1.37. Let X be a vector space over K and let A,B C X be absorbing with
Minkowski functionals pa, M. Then the following statements hold true:

() If AC B, then pug < Ha.
(b) pa(sx) = spa(x) holds for each x € X and each s € Ry .
(c) If Ais balanced, then pa(AX) = |A|ua(X) holds for each x € X and each A € K.

(d) If A is convex, then

L] L]

-1
XYX] SEij S>pa(X) = s XeA .

(e) If A is convex, then

x,yv[X] HA(X +Y) < pa(X) + pa(y).

(f) If A is convex and balanced, then pa is a seminorm on X.

(g) If A is convex, then, for each r € R™, the sets Ba, := {Xx € X : pa(X) <r} and
Car:={x € X: pa(x) <r} are convex.

(h) Using the notation from (g), one always has A C Ca; and, if A is convex, then
Ba1 CACCazand pg,, = Ha = Hca,-

Proof. (a): If A C B, then

V {teR":txecA}C{teR": t'xec B},

x X1

proving (a).
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(b): pa(0) =0 yields the case s = 0. If s > 0, then, for each x € X,

Ha(sx) = inf{t € R* : tisx € A} Dlinf{st e R* : t7ix € A}
=sinf{tc R*: t7’x € A} = spa(X),

where the equality at (x) holds since, for
M:={tcR":t'sxc A} and N:={stcR":t!xcAl,

one has
reM < risxeA < s xeA < reN.

C). IS Dalanced, X & ) € K, then x € IT, and only I1, - X € A. us,
(c): If A is balanced X,0#AeK, th A if, and only if, 2x € A. Th

Al

Ha(AX) = inf{tc R": tT'}Ax € A} =inf tcR": t'A 5

Xe€A =Ha(|AIX)

®

IA[HA(X).

(d),(e): Exercise.
(f) is now a consequence of combining (c) and (e) with Th. 1.36.

(9): Let A be convex and fix X,y € Ca,, r > 0. We use (e) to obtain

(e) b
ach;n] Ha(OX + (1 — a)y) < Ba(0x) + Ha((L — a)y) & apa() + (1 — a)pa(y) < T,
with strict inequality for X,y € Ba,, showing ax+ (1 —a)y € Car, and ax+ (1 —a)y €
Bar for X,y € Ba.

(h): If x € A, then § € A, showing pa(X) < 1 and x € Ca1. Now let A be convex. If
X € Bayg, then x = 3 € A by (d). Aswe now have Ba1 € A C Cay, Heas < Ha < UBa,
follows from (a). To prove equality, we show pg,, < Hc,,: Let X € X. As Cap is
convex by (g), we can use (d) again to obtain, for each pc, ,(X) <s <t, s7'x € Cay,
ie. pa(%) <1, ie pa(¥) = $pa(®) < $ < 1. Thus, t7'x € Bay, showing pg,,(x) < t.

Taking the limit t | pc, ,(X) yields pg, ,(X) < Hc, ,(X) as desired. 1

Corollary 1.38. Let X he a vector space over K.

() A function p : X — R is a seminorm on X if, and only if, there exists an
absorbing, convex, balanced set A C X such that p = pa.
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(b) Let p: X — R be a seminorm on X. Then p is a norm on X if, and only if, the
unit ball By 1(0) does not contain a nontrivial vector subspace of X.

Proof. (a): We know “=-" from Th. 1.36(c) and “<" from Th. 1.37(f).
(b) is an immediate consequence of Th. 1.36(b). 1

Definition 1.39. Let X be a vector space over K. A family (pi)i (1 some index set)
of seminorms on X is called separating if, and only if,

V3 p) 70, (1.23)

Theorem 1.40. Let X be a vector space over K.

(a) Let I # () be an index set and let P := (pi)iobe a family of seminorms on X. If
S:= {BpiY%(O) :neN,iel},

then
B:={x+B: x € X, B finite intersection of sets from S}

forms the base of a topology 7 on X — we call 7 the topology induced by the family
of seminorms P. Then, for each x € X,

By = {x+ B : B finite intersection of sets from S}

is a local base for 7 at x and, moreover, (X, 7) is a locally convex topological vector
space with the additional properties:

(i) Each pj, i € 1, is continuous.
(i) E C X is bounded if, and only if, each p;, i € I, is bounded on E.

The space (X, 7T) is Ty if, and only if, the family P is separating. If (X, 7) is Ty
and I = N, then (X, 7) is metrizable by each metric
1

1

+ Cipix—y) ..
d: X xX —R;, dx,y):=max ———:1€N , 1.24
5. d(x.y) Ty e (1.24)

where (c;)imnis some sequence in R* converging to 0 (e.g., ¢; := ). Furthermore,

d is translation-invariant and the set of open metric balls D := {Bq4,(0) : r ¢ R*}
forms a convex balanced local base for 7 at 0.
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(b) Let (X, T) be a topological vector space and let B € 2/(0) be open and convex. Since
each B is absorbing by Prop. 1.12(f), the corresponding Minkowski functional pg is
well-defined. Then

B=B;:={xeX: pug(x) <1}. (1.25)

Moreover, if B is a local base for 7 at 0, consisting of convex balanced open sets
(we know from Prop. 1.12(b) that such a B exists if (X, 7T) is locally convex), then
P := (UB)B reconstitutes a family of (continuous) seminorms on X, and this family
induces 7. Moreover, (X, 7) is T if, and only if, P is separating.

Proof. (a): To apply [Phil6b, Prop. 1.48] to show B constit@the base for a topology
T on X, we have to show that B is a cover of X (i.e. X = 5 gB) and

\4 \4 = X € Bz € B;NB,.
B1,B> [B1 x[BinB> B3 [B1

If x € X, then x € By, 1(x) € Bfori e I shows B to be a cover of X. Now let By, B, € B

and x € B; N B,. There exist X;,X, € X; Ny, N2 € N; my,...,my,, Ny, ...,NN, € N;
and i,...,Ing, J1,- -+, N, € | such that
Bl = Bpik’%k(xl)’ BZ = Bpjk,i(XZ)'

For each iy, there exists ax € N such that Bpik,i(x) C Bpik 1 (Xy1), and for each jy,
ak Tmy
there exists by € N such that B, 1 (X) € B, 1 (xz). Letting
Tk by Tk ny

L1 L1
N:=max {ax: ke{l,....,Ni}}u{bc: ke{l,...,Ny}} ,
Bs:= Bpik,%(x) N Bpjk,%(x) € B,
k=1 k=1

we have x € B3 C B; N B, as desired. If x € X and U € U/(X), then there exist
B € B such that x € B C U. The previous argument shows there is B3 € By such that
x € B3 € B C U, proving By to be a local base for 7 at x. We now verify the continuity
of addition: Let x,y € X and z "Ijj'y If U € U(z), then there exist N,n € N and

i1,...,in €l such that z € B := _ 1(z)CU If
1 1
Vy = Bpik%(x), Vy 1= Bpik‘%(y),
k=1 k=1

then

1 1 1
(a,b)éngy k@v_”N} Pi@+b—(x+y) =pi@-x)+pib-y) <+ =,



1 TOPOLOGICAL VECTOR SPACES 32

showing a+b € B C U and the continuity of addition. We proceed to the continuity
of scalar multiplication: Let x € X, A € K, z := Ax. Given U € U(z), let B C U be as
above. Let R := 1+ max{p; (X): ke {1,...,N}} e R", (= 1/(2nR) ¢« R", M € N
such that M > |A| + []

1
Vy = Bpik,ﬁ(x).
k=1
Consider (a,a) € Vx x BiA). Then |a] <M and, for each k € {1,...,N},

P1 (08— AX) < i, (08— )+ Py (X AX) < M Py, (@~ X)+ DBy, (X) < 5onr 5 =
showing aa € B C U and the continuity of scalar multiplication. Due to Rem. 1.34(c)
and Prop. 1.8(a), the elements of By are convex, showing (X, 7) to be locally convex.
We now fix i € I and show p; to be continuous: Let x € X be arbitrary, C& R*, n € N
such that n™* < [V := By, ,-1(0). Then x+V € U(x) and, for eachy € x+V € U(x),
we havey —x € V, i.e.

Th. 1.36(a)
pi(y) —pi¥)] < pily —x) €0, [

showing p; to be continuous at x, proving (i). To prove (ii), let E C X be bounded and fix
i € 1. Since By, 1(0) € U(0), there exists M; € R™ such that E C M;By, 1(0) = By, m; (0),
showing p;j [gl to be bounded by M;. Conversely, suppose each p;j, i € I, to be (w.l.0.g.
strictly) bounded by some M; € R on E, i.e. E C By, m,;(0). Let U € 2/(0) and choose
B C U as before (with z := 0). If s > nM;_foreachk € {1,...,N}, thenE C sB C sU,
showing E to be bounded, proving (ii). Assume P to be a separating family. We show
(X, T) to be Ty If x € X\ {0}, then there is i € I with pij(x) # 0. Thus, there exists
n € N such that x € By, n-2(0) € 7, 0 £ By, n-21(X) € 7. Now, ify,z € X withy # z,
and U; € U(0), U, € U(z —y) are such that z —y & Uy, 0 € Uy, theny + Uy € U(y),
y+U, eU(z) withz £y +U; andy € y + Uy, showing (X,7) to be T,. Conversely,
assume (X,7) to be T, and let x € X \ {0}. Then there exists U € ¢/(0) such that
X ¢ U. Once again, we let B C U be as above. Since x £ B, thereexists k € {1,...,N}
such that x £ By, »-1(0), i.e. pi, (X) 7 0, proving P to be separating. If I is countable,
then both S and B, are countable, i.e. (X,7) is C;. Thus, if (X,7T) is also Ty, then it
is metrizable by Th. 1.21. The proof that, for I := N and (X,7) Ty, d as defined in
(1.24) constitutes a metric on X that induces 7 with D = {Bq,(0) : r € R*} a convex
balanced local base at 0, is left as an exercise.

(b): The inclusion B; C B is due to Th. 1.37(h). For the remaining inclusion, let x € B.
As B is open, there exists U € U/(X) such that U C B. Since 1-x = X, the continuity
of scalar multiplication yields neighborhoods V of x and O of 1 such thatty e U C B
for each t € O, y € V.. In particular, there exists t €]0, 1] such that t™'x € B, implying
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Me(X) <1 and x € By, proving (1.25). Moreover, if the local base B for 7 at 0 consists
of convex balanced sets, then P is a family of seminorms according to Th. 1.37(f), which
induces a topology 7; on X according to (a), such that (X, 71) is a topological vector
space. We then also know from (a) that each pug, B € B, is 7;-continuous and that
(X, Ty) is Ty if, and only if, P is separating. Thus, it remains to prove 7, = 7. If B € B,
then, using the notation from (a) as well as (1.25), we obtain B = B, 1(0), showing
T C 7:. On the other hand, if n € N and B € B, then nBuB’%(O) =B1(0)0=BeT,

showing B, 1(0) = %B € T and 71 C T, concluding the proof. 1

Theorem 1.41. Let (X,7) be a T, topological vector space over K. Then (X,7) is
normable if, and only if, there exists a bounded and convex U € ¢/(0) (i.e. if, and only
if, (X, 7T) is both locally bounded and locally convex).

Proof. Let ||-|| be a norm on X that induces 7. Then each ball B.(0), r € R™, is convex
by Th. 1.36(c) and bounded by Th. 1.40(a)(ii). Conversely, let U € 2/(0) be bounded
and convex. Then, by Prop. 1.12(b), U contains some V < U/(0) that is bounded,
convex, balanced, and open. Then || - || := py defines a norm on X: By Th. 1.37(f),
My is a seminorm. According to Th. 1.40(b), Brz(0) = V, i.e. Brg(0) is bounded.
Since py {0} C Brr(0), uy*{0} is bounded. Since p,*{0} is also a vector space by Th.
1.36(b) and (X, T) is Ty by hypothesis, u;*{0} = {0} by Rem. 1.26 and, thus, py is a
norm by Cor. 1.38(b). Let S be the topology on X induced by || - ||. We still need to
show S = 7. Let O € T, 0 € O. Since V = Bpyy(0) is bounded, V C sO for suitable
s >0, showing s™V = Byg-1(0) C O and 7 C S. On the other hand, if r € R*, then
Brga(0) =rV € 7T, showing S C 7. 1

1.6 Further Examples

Example 1.42. We provide an example that shows that bounded linear maps between
topological vector spaces need not be continuous. Let X := C([0, 1], K) be the vector
space over K consisting of all K-valued continuous functions on [0, 1]. Define

-
=9l g (1.26)

d: X x X — Ry, d(f,g):= —_—
° .9 o 1+[f—g

It is an exercise to show d constitutes a translation-invariant metric on X and that the
induced topology S makes X into a topological vector space (X, S). Next, define

tE[vEIl] pe: X — Ry, pu(F) == [F(D)]. (1.27)

If .9 € X, A e K, then pi(Af) = [A[[f(1)] = |Alp(f) and pi(F +g) < [F(D)] +[9(D)| =
pe(F) + pe(9), showing p; to define a seminorm on X. Thus, according to Th. 1.40(a),
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the family (pe):ropy induces a topology 7 on X such that (X, 7) is a topological vector
space as well. It is now another exercise to show Id : (X, 7) — (X, S) is bounded, but
not continuous. We can now conclude from Th. 1.32 that (X, 7)) is not metrizable (since
the linear map Id : (X,7) — (X, S) is bounded, but not continuous). Another way
to see that (X, 7) is not metrizable is to show Id : (X, 7) — (X, S) to be sequentially
continuous: Indeed, if (fx)xmnis a sequence in X a and f € X such that lim,_yfc =F
with respect to 7, then

i — i B Pt gnt. —
tE\[YJljl] ;!'ml -0 = I!IITI]\J pe(f — f) p(0) =0,

[T —fil
1+[f—f|

i.e. the |f — fy| converge pointwise to 0. Since
we can use DCT [Phil7, Th. 2.20] to obtain

- L
0 1+|f—fk|

< 1and 1 is integrable over [0, 1],

lim d(fi, f) = lim dal PET o,

showing limy_ n fx = F with respect to S and sequential continuity of Id : (X,7) —
(X,S8). In consequence, by [Phil6b, Th. 2.8], (X, T) is not metrizable.

Example 1.43. Let n € N, and let O C R" be open, X := C(0O, K). Let (K;)impbe an
exhaustion by compact sets of O, i.e. a sequence of compact subsets of O such that

—
o= K, (1.284)

i [N
VK C Ky (1.28b)

i (N1
(cf. Th. A.2 of the Appendix). Clearly, we may also assume, in addition, K; #  for
each i € N. We define

i&ﬂ pi: X — Ry, pi(f) :==sup{|f(X)|: x € Ki} = [|[f [ ||co- (1.29)

Clearly, F := (pi)imnconstitutes a family of seminorms on X. Thus, according to Th.
1.40(a), F induces a topology 7 on X such that (X, 7) is a locally convex topological
vector space. Due to (1.28b), we have p; < p, < ... and, thus,

{Bp,2(0): i €N},

forms a convex balanced local base for 7 at 0. Moreover, F is separating due to (1.28a),
implying (X, 7) to be T;. Thus, using Th. 1.40(a) once again, (X, 7) is metrizable by
the metric

C_1
27 pi(f—9) .

d: X x X — Ry, d(f,g) := max ieN . 1.30
5. d(f.0) v (f o) (1.30)
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We show d to be complete: Let (fx)xmpnbe a Cauchy sequence in X (with respect to
d). Then, for each i € N, (fx Ld)kmnis Cauchy with respect to || - || (check it!)
and, thus, converges (uniformly) to some continuous F; : K; — K. Due to (1.28b),
Fikd=Fiforj >iand F : O — K, F(X) := Fi(x) for x € K; well-defines a function
F € X. Since lim,_ o pi(fk — F) = lim_ » pi(fk — F;j) = 0 for each i € N. This implies
limy . d(fi, F) = 0: Given [E R*, choose ip € N such that 27" < [ Then choose
N € N such that, for each k > N and each i < o, 27" pij(fx — F) < [dThen,

Z_ip(f F)
i(fk —F) .
"'pi(fk—':)'IEN =t

showing limy_ o, d(fx, F) =0, i.e. d is complete and (X, 7) is Fréchet. However, (X, 7)
is not locally bounded (and, thus, by Th. 1.41, not normable): It su [ced to show that no
Bp,.(0), i € N, & R™, is bounded. Let 0 # f € C.(K;,; \ Kj) (cf. [Phil7, Th. 2.49(a)]).
Then pi1(rf) = rpj+1(f) > 0 and pi(rf) = 0 (i.e. rf € By, (0) for each & R™) for
each r € R™, showing pi+1 is not bounded on By, (0), i.e. By, (0) is not bounded by Th.
1.40(a)(ii). We conclude the example by showing that 7" does not depend on the chosen
exhaustion by compact sets of O: Suppose (K;)imnis also an exhaustion by compact
sets of O with resulting seminorms p;, metric d, and induced topology 7. Inductively,
we define a sequence of indices (ji)i mmas follows: Given i € N, since K; is compact and
(K;)j mnis an open cover of K;, there exists j(i) € N such that K; C K. If i =1, set
Ji = J(); ifi>1, set j; := max{ji—1 + 1,J(i)}. Then (Ji)imnis strictly increasing and
Ki C K;j, for each i € N. For each i € N and f € X, we obtain

k)vN d(fx, F) = max

; pi(f)
fpr 1 < p;,(F), since 12‘ <1
Bi(f) 1+p;(f) and P <2« 1< p;,(F),
p;; (F) >0 - <2 ' p.(f)
1+pi(f)  pj(F) fr p;,(F) < 1, since 2y <1
and 728 < - by, (F) <2,
and, thus,

271 pi(f) _ 27'pi(F) 1+p5(F) pii(F) 2727 (f)

L+/(f)  1+pF) pu(F) 1+p(F) —  1+p;(F)
In consequence, if 8 € R™ and T € By;3(0), then, for each | € N, | > 1,
1 C .
d(f,0) < max 27!, max 20 i<l <max{27', ¢ &} (1.31)
) — ) 1 + ﬁi(f) — ) )
where ¢; ;= max{2~"*1*i : i < I}. Thus, given CkE R*, we may choose | € N such

that 27! < [Cand then § > 0 such that ¢;d < [hs well. Then (1.31) shows that
Bas(0) € Bg(0), implying 7 C 7. Since the previous argument works exactly the

same with the roles of d and Jreversed, we obtain 7 = 7 as desired.
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Example 1.44. Let n € N, and let O C R" be open, X := C*(O, K). Moreover, for
each compact K C O, we introduce the notation

1 1
Dk :=Dk(0,K):= feC®(O,K): suppf CK , (1.32)

where we recall from [Phil7, Def. 2.48(a)] that the support of T is defined by

suppf := {x € O: f(x) # 0}.

The spaces Dk play an important role in the theory of so-called distributions (see,
e.g., [Rud73, Ch. 6] — we will also make some further remarks on distributions below).
Clearly, each Dy is a vector subspace of X over K. Applying a procedure that is similar
to the one used in the previous Ex. 1.43, we make X into a metrizable topological vector
space: We start with a sequence (Kj)img constituting an exhaustion by compact sets of
O, i.e. such that (1.28) holds. As in Ex. 1.43, we also assume K; # () for each i € N.
This time we define a family of seminorms F := (pi)imuby letting, for each i € N,

i. X R+,
P Ty _ ]
pi(F) :==sup [0,F(X)|: xeKj,p=0orp=(ps,....pj) €{L,...,nP, 1 <j<i
] _ -
=max [[(0pF)0d [l p=0orpe{l,...,nP,1<j<i, (1.33)

where d¢f ;= f. According to Th. 1.40(a), F induces a topology 7 on X such that
(X, T) is a locally convex topological vector space. Due to (1.28b) and (1.33), we have
p: < pz2 <... and, thus,

{Bph%(O) e N},

forms a convex balanced local base for 7 at 0. Moreover, F is separating due to (1.28a),
implying (X,7) to be T;. Thus, as in Ex. 1.43, (X,7) is metrizable by the metric
defined in (1.30). Once again, we can show d to be complete: Let (fx)x mnbe a Cauchy
sequence in X (with respect to d). Then, for each i € N and each p € {1,...,n}"N,
N € N, (fk(d)xmnand ((0pfk) L)k mnare Cauchy with respect to || - || (check it!)
and, thus, converge (uniformly) to some continuous F; : K;j — K and continuous
Fip : Ki — K, respectively. Due to (1.28b), F; Ld= F; and F;, Ld= Fi, for j > 1i,
suchthat F : O — K, F(x) ;= Fi(X) and Fy, : O — K, Fp(X) := Fjp(x) for x € K;
well-define functions F, F, € C(O, K). Since the convergences fy — F and (9,fx) — F,
for each p € {1,...,n}N, N € N, are uniform on each K;, we can inductively apply
Th. B.1 to all partial derivatives of the fy to obtain F, = d,F and F € X. Moreover,
liMy_ oo Pi(fk — F) = limy_ o pi(Fc — Fj) = 0 for each i € N, implies limy _ . d(fx,F) =0
as in Ex. 1.43, proving d to be complete and (X, 7) to be Fréchet. For each x € O, ey :
X — K, ex(F) := f(x), constitutes a continuous linear functional (since convergence
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in (X, 7) implies pointwise convergence). Thus, kerey is closed and, hence, so is
1
Dk = ker ey (1.34)

x [OWK

for each compact K C O, showing the Dk to be Fréchet as well. As in Ex. 1.43, it follows
that (X, 7)) is not locally bounded (and, thus, by Th. 1.41, not normable): It su [ced to
show that no By, (0), i € N, C& R™, is bounded. Let 0 # f € C°(K; ., \K;) (cf. [Phil7,
Th. 2.54(d)]). Then pi+1(rf) = rpj+1(F) > 0 and p;(rf) = 0 (i.e. rf € By, «0) for each
& R™) for each r € R™, showing pi+1 is not bounded on By, (0), i.e. By, (0) is not
bounded by Th. 1.40(a)(ii). Finally, that 7 does not depend on the chosen exhaustion
by compact sets of O follows precisely as in Ex. 1.43. Distributions are linear functionals
on the space —1
D :=D(0,K) := Dk (0,K) (1.35)
K [CQlcompact
that are continuous with respect to a suitable topology S on D. For technical reasons,
one chooses S di Lerknt from the subspace topology 7p, where S is actually nonmetrizable
(however, Tp,. = Sp, for each compact K C O, see [Rud73, Sec. 6.2-6.9] for details).

2 Main Theorems

2.1 Baire Category

Recall that a subset A of a topological space X is called dense if, and only if, A = X.
The concept of Baire category can be seen as a refinement of the concept of denseness
(cf. Def. 2.1 below). The main result in this section is the so-called Baire category
theorem (Th. 2.6). Its main applications are abstract existence proofs. As applications,
we will prove the existence of continuous maps that are nowhere di [erkntiable (Ex. 2.8)
and the existence of points of continuity for pointwise limits of continuous functions as
well as for derivatives (Th. 2.11).

Definition 2.1. Let (X,7) be a topological space, A C X.

(a) A is called nowhere dense in X if, and only if, A has empty interior, i.e. if, and only
if, (A)° = 0.

(b) A is said to be of the first category in X or meager if, and only if, A = k;;=1 Ay is
a countable union of nowhere dense sets Ay, k € N.

(c) A is said to be of the second category in X or nonmeager or fat if, and only if, A is
not of the first category in X.
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Caveat: These notions of category (due to Baire) are completely dilerent from the
notion of category occurring in the more algebraic discipline called category theory.

Lemma 2.2. Let (X, 7) be a topological space.

(a) A C X is nowhere dense if, and only if, (A)¢ is dense.
(b) If AC B C X and B is nowhere dense (resp. of the first category), then so is A.

(c) Every countable union of sets of the first category in X is of the first category in
X.

(d) If AC X is closed and A° = (), then A is nowhere dense (and, in particular, of the
first category in X).

(e) The notions nowhere dense, of the first category, and of the second category are
topological invariants, i.e. they remain invariant under homeomorphisms.

Proof. (a): For each B C X, we have the disjoint union X = B~ U0dB U(B®)°. Applying
this to A yields X = (A)°Ud(A) U((A)°)°. Since also B = B°UdB, we obtain

(A =0 & X=(A)y
as claimed.

(b): The part regarding “nowhere dense” holds, since, for each C € D C X, one
has D and C° C D°. The part}lﬁarding “of the first category” holds, since
B= .,Bcand ACB implies A= |2, (ANBy).

(c) is due to the fact that countable unions of countable sets are countable.
(d): Since A is closed, we have (A)" = A° = ().

(e): Let (Y,S) be another topological space and ¢ : X — Y a homeomorphism. If
A C X, then

_ — L1 [
A =0 < (@A) =9 (A) =10,
1 1
A= Acs 0A)= oA,
k=1 k=1
proving (e). 1

The idea is that sets of the first category are somehow “small” and sets of the second
category are somehow “large” (e.g. in the sense that complements of sets of the first
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category must be dense in many spaces as we will see in Th. 2.6(c)). However, one has
to use care, as sets of the first category can still be “large” in other ways: For example,
they can themselves be dense (see Ex. 2.3(a)) or of full measure in a measure space (see
Ex. 2.3(c),(d)).

Example 2.3. (a) Q is a countable dense subset of R. Thus Q is both dense and of

(b)

©)

(d)

the first category in R. More generally, in spaces where point sets {x} are closed,
but not open, countable sets are always of the first category, but many spaces (such
as K™) have countable dense sets (we have previously called such spaces separable
in Analysis 11/111).

Let (X,7T) be a topological vector space over K and let Y be a vector subspace.
If Y # X, then Y has empty interior (in particular, Y is either dense or nowhere
dense): Let x € X \'Y and U € ¢/(0). Then there exists n € N such that x € nU,
i.e. n7x € U\ Y, showing 0 not to be an interior point of Y. Since translations
are homeomorphisms in X, noy € Y can be an interior point of Y. Now, if Y is
not dense, then, by Prop. 1.10(c), Y is a proper subspace of X. Then, as we have
just shown, Y has empty interior, and Y is nowhere dense.

Let n € N. It is an exercise to show every Lebesgue-measurable set M C R" (i.e.
each M € £") can be written as the disjoint union M = N UA, where N is a A"-null
set and A is of the first category in R" (use that Q" is dense in R" together with
a geometric series). Moreover, if M is any nontrivial interval in R" (i.e. M*° # (),
then A is of the first category in M (and, then, Th. 2.6(c) below implies N to be
of the second category in M).

Another way to obtain sets that are of full measure, but of the first category, is
to adapt the Cantor set construction of [Phil7, Sec. 1.5.3]: In [Phil7, Sec. 1.5.3],
the Cantor set was what was left from [0, 1] after successively removing the (open)
middle third from [0, 1], then the (open) middle thirds of the remaining intervals
etc. Now, consider what occurs if, instead of removing 2"~ intervals of length (%)n
in step n, we remove 2"~ intervals of length EC%)”, 0 < [X 1, in step n: Then the
total length of intervals removed is

n=l 1 1 1 L]
—_ = -+ -+ — 4+ .. = —.
Lo D_ R T 2
n=1
Thus, the resulting Cantor set Chas measure A}(Cp = 1 — >- As in [Phil7,

Prop. 1.62], one still finds each Cto be compae} with empty interitlw_@le. nowhere
dense). Now, if Oi=C{=[0,1]\CmB = |, xOwn, D:=B°=  Cuwn, then
ALY(B) =0, AY(D) =1, and D is of the first category in [0, 1].
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(e) We will see in Ex. 2.23 below that, for p,q € [1, co] with p < q < oo, L9([0, 1], £, A1)
is of the first category in LP([0, 1], £, A1).

The following Baire Category Th. 2.6 holds for complete pseudometric spaces as well
as for locally compact Hausdor [CSpaces. In preparation for the proof of the variant for
locally compact Hausdor [Spaces, we provide the following two propositions:

Proposition 2.4. Let the topological space (X, 7) be T,.

L1
@) If (Kiimm ! # 0, is a family of compact sub of X such that ; Ki =0, then
there exist iy,...,in € 1, N € N, such that |, K;_ = 0.

(b) One can separate points from compact sets: Let x € X, K C X, K compact. If
x ¢ K, then there exist open sets Ox C X and Ok C X such that

XeO, N KCOk A OXﬂOK:@.

Proof. (a): Since (X,7) is T, each K;j, i € I, is closed by [Phil6b, Prop. 3.9(b)]. Then
(a) follows, since each compact set has the finite intersection property by [Phil6b, Th.
3.8(ii)].

(b): Let K C X be compact and x € X \ K. Since (X, T) is T, for each a € K, there
exists open O, € U(x) and open U, € U/(a) such that O, N Uy = 0. Now (Ug)arka is an
open cover of K. Since K is pempact, there exists a finite set M C K suchlﬁf (Ud)am
still covers K: K € Ok := _yyUa € 7. On the other hand x € Ox := _ ;z0a € 7.
Since Oy N Ok = 0, this proves (b). 1

Proposition 2.5. Let the topological space (X, 7) be locally compact and T,. Then the
following holds:

(a) If O,K C X such that O is open, K is compact, and K C O, then there exists an
open set V C X such that V is compact and

KCV CV coO. (2.1)
(b) (X,T) is T3 (and, thus, regular).

Proof. Exercise. —1

Theorem 2.6 (Baire Category Theorem). Let (X,7) be a topological space, X # 0,
and suppose at least one of the following two hypotheses holds:
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() 7 is induced by a complete pseudometric on X.

(i) (X, 7T) is a locally compact Hausdor [Space.
Then, the following conclusions hold as well:

(@) If (Ox)kmnis a sequence of dense open subsets of X and

, c—
B:= O, (2.2)
k=1

then B is dense in X as well.

(b) If (A)kmnis a sequence of closed subsets of X with empty interior, then
C:= A (2.3)

has empty interior as well.

(c) If A C X is of the first category in X, then A° is dense in X. In particular, X is
of the second category in itself.

Proof. (a): Let Vo C X be open and nonempty. According to [Phil6b, Prop. 1.35(¢)],
we need to show VoM B # (). To this end, we construct a sequence (Vik)x g 0f nonempty
open subsets of X such that

Vi C Vi ) )
kvm] Vi € Vg N Ok (2.4)

Inductively, assume that, for I € Ng, | < k, V, have already been constructed in ac-
cordance with (2.4). The set Vkx—; N Ok is open and nonempty (as Ok is dense) and
we choose Xk € Vk—1 N Ok. In Case (i), we now choose [ 1€ R* such that [J< % and
Ba(Xk) € Vk—1 N Oy, letting Vi := Br(Xk). Then (2.4) is satisfied. In Case (ii), we
use Prop. 2.5(a) to choose an open Vi such that {x,} C Vi C Vi C Vi1 N Ok with V
compact. Then, once again, (2.4) is satisfied. We claim
L_1
D= Vg#0: (2.5)
k [N

In Case (i), | > k implies x; € By(x«) for each k,| € N, such that (Xx)k rnconstitutes
a Cauchy sequence due to limy_ . L= 0. The assumed completeness of X provides a
limit X = limg_ . Xk € X. The nested form (2.4) of the Vi implies x € V| for each
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k € N, proving (2.5). In Case (ii), (2.5) holds, since the compact set V; has the finite
intersection property (cf. [Phil6b, Th. 3.8(ii)]) and

_ L_1

v @ 7£\/k - V|.

k N1
1<k

In consequence of (2.4), we have D C B NV, showing Vo N B # () as needed.

(b) follows from (a) by taking complements: We rewrite (2.3) as

1
EILTJE

B:=C¢= A, = A
k=1 k=1

The Ok := A[ are open, since the Ay are closed. Since the Ax have empty interior, the
Ok are dense. Then B is dense by (a) and C has empty interior.

1
(c): If A is of the first category irIL_XI_then A= | Ak with each A, C X being

nowhere dense. Then A C C = | A« Where each Ay is a closed set with empty
interior. By (b), C (and, thus, A) must have empty interior as well. Thus, A° is
dense. 1

Remark 2.7. Typical applications of the Baire Th. 2.6 are (nonconstructive) existence
proofs of the following from: To show a space X contains elements having the property
P, one shows X to satisfy the hypotheses of Th. 2.6 and one shows the set A of elements
in X not having the property P to be of the first category in X. Then A® must be
nonempty (and even dense). The following Ex. 2.8, provides an illustration of this
method.

Example 2.8. In [Phil6a, Sec. J.1], one can find the construction of functions f : R —
R that are continuous, but nowhere di Lerkntiable. Using the Baire Th. 2.6 together with
the Weierstrass approximation theorem (provided as Th. C.1 in the Appendix), we can
now show that in C[a, b], where a,b € R with a < b, the set B of nowhere di [erkentiable
functions is even dense (and the complement D := CJa, b] \ B is of the first category):
If we equip Cla, b] with the max-norm || - ||, then we know it to be a Banach space (a
closed subspace of the Banach space L*([a, b], £, A)). Define

1 |

|
YV On:= feClab: V sup (x+h)—f(x)E 0<|hl <
n [N x [[ajh] — h

1 1
>n (2.6)

[

n
(to make sure f(x + h) in (2.6) is always well-defined, we extend f € %b] constantly
by f(a) to the left and constantly by f(b) to the right). Let By := | xOn. Clearly,

Bo C B, i.e. each T € By is nowhere di[erkntiable in [a, b]. If we can show each O, to be
open and dense in C[a, b], then, by Th. 2.6(a), By (and, thus, B) must be dense as well.



2 MAIN THEOREMS 43

Taking complements, we obtain Dg := (Bo)¢ (and, thus, D) to be of the first category
in C[a, b]. It remains to show each O, is open and dense. We first show O, to be open:
Let f € O,. Then

1 L1

S|

\ = su
xahb] dx [RT PO h

Thus, there exists hy € R with 0 < |hy| < % and Ewrﬁxﬂ& n +9d,. Now the

continuity of f (at x) implies

; @(Hhx) f(t)@> .

Ux EU]X) t II&

Since [a, b] is compact, there exist finitely many Xi,...,Xn € [@,b], N € N, such that

| —
[a,b] € Us.

i=1

We set 3 := min{dy,,...,0x,}, h 1= min{|hy|,...,|hy |}, CI= 2hd > 0, and show
g € O, for each g € Cl[a,b] with ||g — f|lc. < JIf g € C[a,b] with ||g — f||c < [And
X € [a,b], then there exists i € {1,..., N} with x € Uy, and

£+ ) — FOO| < [FOC D) — 90+ h)| + 190+ ) — 9601 + 960 — FGO.
Thus,
@(Hh) g(x)@ﬁ(xm) FoOH , If - LR ER -
P | h ™

Xij

showing g € O, and O, open. It remains to show O, is also dense. From the Weierstrass
approximation Th. C.1, we know the set of polynomials from R to R to be dense in
(Cla,b], || - [|e). Thus, if § # O C CJa,b], O open, then there exist a polynomial
p: R— Rand & R" such that
L1 L1
A |f —plly o <= F€O .

f [Cla,b]
For each n € N, define the (continuous and piecewise a [ne) triangle wave function

L1
nx — k2 for x € [EK2ET |k € Z,

—nx + (k + 1)2[7 for x ¢ [RREOEDA 7

O R—[0,0) on(x):=



2 MAIN THEOREMS 44

(the slope of @, alternates between n and —n on intervals of length 5 and also

On = On I—[_a:‘,b]6 C[a1 b]

Then, clearly, ||gn|lw < ({i.e. f,:=p+g, € O) and
o+ h) - gn(x)EE
Xqvmb] rl}IET(l) H h n. 2.7)

One also has, for each x € [a,b] and each h € R,
9n(X + h) = gn(X)] < [frn(x + ) = Fa ()| + [p(x + h) — p(x)],

implying, for h # 0,
Fx + ) nm@E A+ h) — gn(x)Er RO+ h) p(x)E
L h L h L h

n h — Yn
> e = 9 gy I @8)

where the mean value theorem was used for the last estimate. For each m € N such
that m > n + ||ply; ||, combining (2.8) with (2.7) yields

1 +h f 1
sup PR I OE <oy < 2o oty e >

S|

showing f,, € O, i.e. f,, € ON O, # (0. Thus, O, is dense as desired.

In [Phil6a, Ex. 8.3(b)], we saw an example of a sequence of continuous functions on
[0, 1] converging pointwise to a discontinuous function; in [Phil6a, Ex. 9.14(c)], we saw
a di[erentiable function on R with discontinuous derivative. So one might ask, whether
pointwise limits of continuous functions can be everywhere discontinuous and where
derivatives can be everywhere discontinuous. We can use the Baire category Th. 2.6 to
show that the set of points of discontinuity of such a limit as well as of such a derivative
must be of the first category (see Th. 2.11 below). In preparation, we introduce the
oscillation of a real-valued function:

Definition and Remark 2.9. Let M C R, f: M — R. For each nonempty A C M,
define the oscillation of f in A by

W(A) :=sup{f(X): x e A} —inf{f(X) : x € A} € [0, <]. (2.9)
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For each ¢ € M, the function
] ]
0 : R" — [0,00], ag(h):==w MNJE —h,&+h[,
is decreasing with lower bound 0, such that
w(&) = J]irf(])ag(h) = inf{og(h) : he R} € [0, 0] (2.10)

is well-defined. We call w(&) the oscillation of T at .

Proposition 2.10. Let M CR, f: M — R, ¢ € M.

(a) T is continuous at ¢ if, and only if, w(§) = 0.

(b) For each [& R™, O5={x € M : 0(x) < [His open (in M); A=0{={xe M:
w(x) > Odis closed (in M).

Proof. (a): Let f be continuous at ¢ and [ 0. Then there exists h > 0 such that
[T(§) — F(x)| < Cdor each x € MNJ§ — h, & + h[, showing az(h) < 2[C&nd w(§) = 0.
Conversely, assume T is not continuous at . Then there exists [1> 0 such that, for
each h > 0, there exists x € MNJ§ —h, & +h[ with |f(§) — F(X)| > L) showing az(h) > [5]
and w(§) > 1= 0.

(b): Let (& R* and & € O Then w(§) < [Cand there exists h € R™ such that
L1 1]
w(€) <ag(h) =w MNE —h,§+h[ <[]
Thus, w(x) < for each x € MNJ§—h, E+h[, showing Otfo be open; A-to beclosed. [

Theorem 2.11. Let I C R be a nontrivial interval (i.e. I° Z (), let f: | — R, and
let D C I of points, where f is not continuous.

(a) Assume (f,)nmnto be a sequence of continuous functions f, : I — R such that
. — T pointwise on 1.

(b) Assume f =g": I — R to be the derivative of some di[erentiable g : | — R.

In each case, (a) or (b), D is of the first category in | (then, by Th. 2.6(c), I \ D must
be of the second category in I and also dense).

Proof. Exercise. Hints: To show (a) first show, for each & R™, A= {x e | : 0(x) >
3 where w(x) denotes the oscillation of f at X, to be nowhere dense. Then use Prop.
2.10. Show that (b) follows from (a). 1
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2.2 Uniform Boundedness Principle, Banach-Steinhaus Theo-
rem

In the present section, we combine the Baire category concept of the previous section
with concepts of continuity, uniformity, and boundedness.

Definition 2.12. Let (X, 7x) and (Y, 7v) be topological vector spaces over K and let
F be a set of functions from X into Y. Then the set F (or the functions in F) are said
to be uniformly equicontinuous if, and only if,
1 1
\4 = v —-xeV = V fy)—-f(x) e U 2.11
U Og0) CPQY) V [O90) [PQOX) Xy [Xl y f[E] ) ) ( )
(then, for 7 = {f}, F is uniformly equicontinuous if, and only if, f is uniformly
continuous (cf. Th. 1.13(iii)).

Proposition 2.13. Let (X, 7x) and (Y, 7y) be topological vector spaces over K and let
F be a set of K-linear functions from X into Y.

(a) F is uniformly equicontinuous if, and only if,

\ 3 v AV)CU. (2.12)
U [UQO) CPQY) V [UQ0) [PQX) AILEl

(b) If F is uniformly equicontinuous, then F is uniformly bounded in the following
sense: For each bounded E C X, there exists a bounded set F C Y such that

v AE)CF.

Proof. (a): If (2.11) holds with T replaced by A, then setting x := 0 proves (2.12).
Conversely, if (2.12) holds, A € F,andy — x € V, then A(y) — A(X) = Ay — X) € U,
proving (2.11).

- Let F be uniformly equicontinuous, let E C X be bounded, and set F :=

AreANE). IfU C Y, U € U(0), then, as F is uniformly equicontinuous, there exists

V C X,V €U(0), such that A(V) C U for each A € F. Moreover, since E is bounded,
there exists s € R* such that E C sV. Then

AVEEI A(E) C A(sV) =sA(V) C sU,

showing F C sU, i.e. F is bounded. —1
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Theorem 2.14 (Uniform Boundedness Principle). Let (X, 7x), (Y,7y) be nonemtpy
topological spaces, where we assume to have a notion of boundedness on Y. Consider a
set of continuous functions 7 C C(X,Y ) and define

V My:={f(x): feF} (2.13)

X X1

as well as
B := {x € X : My is bounded}. (2.14)

Assume B to be of the second category in X.

(@) If (Y, 7Ty) is pseudometrizable (e.g., if (Y,7y) is a seminormed space), then there
exists a nonempty open set O C X such that F is uniformly bounded on O in the
sense that there exists a (pseudometric-)bounded set F C Y such that

vV My CF.
x [O1

(b) If (X,7x), (Y, Ty) are topological vector spaces over K and the elements of F are
both continuous and linear, then B = X and F is uniformly equicontinuous.

Proof. If 7 = (), then My = () for each x € X, F is (in case (b)), trivially, uniformly
equicontinuous, and there is nothing to prove. Thus, let F # 0.

(a): Assume Ty to be induced by the pseudometric d on Y, and fix some yp € Y. For
each f € F, k € N, as both T and the y — d(y, yo) are continuous, the set

1 [
Acs = xe X :df(x),y) <k

is an continuous inverse image of the closed set [0, k] and, hence, closed. Since arbitrary
intersections of closed sets are closed, so is

L1 1 L1
Ay = Acs = xe X d(f(x),yo) <k foreach f € F .
f =1

If x € B, then My is bounded, i.e. there exists k € N with d(f(x),y,) < k for each
f € F, implying

k=1
Since B is of the second category, there exists ko € N such that Ay, has nonempty
interior O. In consequence,

XE IVIX g F = Bd,ko(yO)a
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proving (a).
(b): First, we show F to be uniformly equicontinuous: Let W C Y, W € ¢/(0). Choose
some closed and balanced U € 2/(0) such that U + U C W. Then, since each A € F is
continuous, —
E:= AU
ALE]
is a closed subset of X. For each x € B, since My is bounded, there exists k € N such
that My C kU and x € KE, implying
1
BC (KE).
k [N

Since B is of the second category in X, there exists k such that KE is of the second
category in X. Then, since X — kx is a homeomorphism, E itself must be of the second
category in X. In particular, since E is also closed, E° # (). Let x € E°. Then

V :=x—E €U(0),

implying
A AV)=AK) -AEB)cU -UCW,

showing F to be uniformly equicontinuous. Thus, F is uniformly bounded by Prop.
2.13(b) and, since each {x}, x € X, is bounded in X, each My must be bounded in Y,
proving B = X. 1
Using the Baire category Th. 2.6, we now obtain the following corollaries:

Corollary 2.15. As in Th. 2.14, let (X, 7x), (Y, 7y) be nonemtpy topological spaces,
FCCXY), My:={f(x): fe F} foreach x € X, B :={x € X : My is bounded}.

(a) If X is a nonempty complete pseudometric space and Y is a seminormed vector

space with
Ox ;= sup{|ly]| : y € My} < oo for each x € X, (2.15)
then there exists X, € X and [g]> 0 such that
1 _ 1
sup Oy : X € B(Xo) < oc. (2.16)

In other words, if a collection of continuous functions from X into Y is bounded
pointwise in X, then it is uniformly bounded on an entire ball.

(b) If (X,7x), (Y, Ty) are topological vector spaces over K, where X is an F-space,
B = X (i.e. all My are bounded), and the elements of F are both continuous and
linear, then F is uniformly equicontinuous.
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(c) Banach-Steinhaus Theorem: If X,Y are normed spaces and X is a Banach space
(i.e. complete), B = X (i.e. F is pointwise bounded), then

3 Y ¥V AX| <M, (2.17)
MI:RQ' ALEl xIX]
xI=1

i.e.,, for each A € 7, ||A]] := sup{||Ax|| : x € X, ||x]| < 1} < M. We will see
later that ||A|| (the so-called operator norm of A) does actually constitute a norm
on L(X,Y), the space of continuous linear functions from X into Y. Thus, we can
restate the Banach-Steinhaus theorem by saying that, if F is pointwise bounded,
than it is a bounded subset of £L(X,Y).

Proof. (a): According to (2.15), we have that M is bounded by oy for each x € X, i.e.
B = X. Since X is a complete pseudometric space, by the Baire category Th. 2.6(c), X
is of the second category in itself. Thus, Th. 2.14(a) implies F to be uniformly bounded
on a nonempty open set O, such that (2.16) holds with O instead of B 5(Xo). But then
(2.16) also follows, as O contains some closed ball B ;(Xo).

(b): Asin (a), we have B = X and the Baire category Th. 2.6(c) yields X to be of the
second category in itself (since an F-space is a complete metric space). Now Th. 2.14(b)
implies F to be uniformly equicontinuous.

(c) follows by combining (b) with Th. 2.13(b). 1

Under suitable hypotheses, the uniform boundedness principle allows to establish the
continuity of pointwise limits of continuous linear maps. First, we provide a linearity
result:

Proposition 2.16. Let X be a vector space over K and (Y,7y) a topological vector
space over K. Let (A,)nmnbe a sequence of linear maps A, : X — Y and define

C:={xeX: (An(X))nmnCauchy in Y },
L:={xe X : (An(X))nmnconverges in Y }.
Then C and L are vector subspaces of X. If L =X and (Y, 7v) is Ty, then the pointwise
limit
A: X —Y, AKX := lim An(x),
n - oo

is linear (if (Y,7y) is Ty, then it is T, by Prop. 1.5(d), i.e. limits in Y are unique and
A is well-defined).

Proof. Exercise. —1
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Theorem 2.17. Let (X, 7x), (Y, Tv) be topological vector spaces over K, and let (An)n mo
be a sequence of linear continuous maps A, : X — Y, F := {A, : n € N}. Define C
and L as in Prop. 2.16 above.

(a) If C is of the second category in X, then F is uniformly equicontinuous and X = C.

(b) If F is uniformly equicontinuous, X = L, and (Y,7y) is T, (i.e. the A, converge
pointwise to a unique limit), then the pointwise limit

A: X —Y, AKX := lim A,(X),
n - oo

is linear and continuous.

(c) If Y is complete (e.g. and F-space) and L is of the second category in X, then
X =L, and F is uniformly equicontinuous. If Y is also T;, then the pointwise
limit A as above is linear and continuous.

(d) If X is an F-space (e.g. a Banach space) and L = X, then F is uniformly equicon-
tinuous. If, in addition, Y is also T,, then the pointwise limit A as above is linear
and continuous.

Proof. (a): Since Cauchy sequences are bounded by Prop. 1.28(c), F is pointwise
bounded on C. Thus, Th. 2.14(b) applies, showing F to be uniformly equicontinu-
ous. Moreover, from Prop. 2.16, we know C to be a vector subspace of X. Since C is
of the second category, it can not be nowhere dense. Thus, by Ex. 2.3(b), it must be
dense. Letx € X, W C Y, W € 1(0), and choose U € 2/(0) such that U +U +U C W.
Since F is uniformly equicontinuous, there exists V. C X, V € U/(0) balanced, such that
An(V) C U for each n € N. As C is dense, there exists z € CN(Xx+V). Choose N € N
such that

Y . An(z) — Am(2) € U.

m,n=

Then,

v An(X) = Am(X) = An(X —2) + An(2) = Am(@) +An(z —X) e U+U +U C W,

m,n>N

showing x € C, i.e. C = X.

(b): Ais linear by Prop. 2.16. To see the continuity of A, let W C Y, W € 1(0),
and choose U € ¢/(0) such that U C W (which is possible by Prop. 1.5(c)). Since F
is uniformly equicontinuous, there exists V. C X, V € U/(0), such that A,(V) C U for
each n € N. Thus, A(V) C U C W, proving A to be continuous.
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(c): Since L C C by Prop. 1.28(b), C is of the second category in X. Thus, by (a),
F is uniformly equicontinuous and X = C. Since Y is complete, we also have C C L
and, thus, X = L. IfY is also Ty, then (b) applies and we obtain A to be linear and
continuous.

(d): By the Baire category Th. 2.6(c), we know the F-space L = X to be of the second
category in itself. Now C = X (since covergent sequences are Cauchy), i.e. (a) implies
F to be uniformly equicontinuous. Thus, if, in addition, Y is Ty, then A is linear and
continuous by (b). 1

Example 2.18. Consider
X :={f ¢ C}(R,K) : f and f"are bounded}.

Clearly, (X, || - ||e) is @ normed vector space over K (e.g. a subspace of L=(R, £, A1)).
Define the continuous linear functionals
_ (™) - 1(0)

nvm] An: X — K, AF) = =

Each A, is a dilerence quotient map (at 0) and a linear combination of two (linear)
evaluation functionals A, = n(m,-1 +Tg), where the evaluation functionals are precisely
the projections

. R —
Vo KR K () = ().

Since each T € X is dilerkntiable, we have the pointwise convergence A, — A, where
A is the linear functional

A X — K, A(F):=fK0).

However, A is not continuous: For each k € N, let fy : R — K, f(x) := (1/Kk) sin(kx),
LX) = k(1/k) cos(kx) = cos(kx). Clearly, fx € X for each k € N with limy _. o ||fk||co =
0, but

I(Iirgo A(fy) = cos(0) =1 # 0= A(0).

Now Th. 2.17(d) implies that (X, || - ||«) is not a Banach space (i.e. not complete).
However, we can make X into a Banach space by modifying the norm: Let

I-[Fe X —Rg,  F]| = [[Flleo + [[F]oo. (2.18)

Suppose (f)kmnis Cauchy in (X, || - ||). Then we know the continuous maps fy to
converge uniformly to some continuous f : R — K. Moreover, the continuous maps f_
also converge uniformly to some continuous g : R — K. Now Th. B.1 implies f to be
continuously di Cerentiable with fP= g, i.e. fy — fin (X, ||-]|) and (X, || |]) is a Banach
space. Now Th. 2.17(d) implies the map A from above (evaluating the derivative at 0)
to be continuous (on (X, || - ||) — of course, here it is also easy to see that without Th.
2.17(d); also note that, for the f, from above, f, 4 0in (X, || - []))-



2 MAIN THEOREMS 52

2.3 Open Mapping Theorem

Definition 2.19. Let (X, 7x) and (Y, 7y) be topological spaces, & € X. A map T :
X — Y is called open at ¢ if, and only if,

N 3 U cCf(). 2.19

V [UgE) U UGF(E)) =tV ( )

Moreover, T is called open if, and only if, f maps open set to open sets (i.e. f(O) € Ty
for each O € Tx).

Caveat 2.20. While we know that a map is continuous if, and only if, preimages of
open sets are open and also if, and only if, preimages of closed sets are closed, there exist
open maps that do not map closed sets to closed sets: Projections from a product to
the factors are always open maps according to [Phil6b, Ex. 2.12(b)(ii)]. In particular,
m : R2 — R, m(s,t) :=s, is open. However, A := {(s,t) € R? : s > 0, st > 1} is
closed, but m;(A) =]0, o[ is not closed.

Proposition 2.21. Let (X, Tx) and (Y, 7v) be topological spaces, f: X — Y.

(a) T is open if, and only if, T is open at every ¢ € X.

(b) If (X, 7x) and (Y, 7y) are topological vector spaces over K and f is linear, then f
is open if, and only if, £ isopen at 0. If f: X — K is linear, then f =0 or T is
open.

(c) If f is bijective, then ¥~ is continuous if, and only if, f is open. In particular, if f
is bijective and continuous, then f is a homeomorphism if, and only if, f is open.

Proof. Exercise. L1

Theorem 2.22 (Open Mapping Theorem). Let (X, 7x), (Y, 7y) be T, topological vector
spaces over K and assume (X, 7x) to be an F-space. Let A: X — Y be continuous
and linear and assume A(X) to be of the second category in Y. Then the following
assertions hold true:

(a) AX)=Y.
(b) A is an open mapping.
(c) (Y,7Ty) is an F-space.
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Proof. (a) follows from (b), since proper vector subspaces can never be open (see EXx.
2.3(b)).

(b): We have to show A is open at 0. To thisend, letV C X, V € (0). We have to
find U C Y such that U € ¢4(0) and U C A(V). Since (X, 7x) is an F-space, Tx is
induced by some complete, translation-invariant metric d on X. Choose r € R* such
that Vo := Bq,(0) C V and define

n\gﬂa Vh = dez—nr(O) S Z/{(O)

Let m,n &€ No, m<n. ThenV, €V, C Vg CV and also, for m<n, V, —V, C Vp,.
Since y — —y is a homeomorphism, we can apply Prop. 1.10(b) to conclude

m nvEISIB A(Vn) - A(Vn) = A(Vn) + _A(Vn) - A(Vn) - A(Vn) - A(Vm)- (2-20)

m<n

Next, by Prop. 1.12(f), we have

1 Col O
v ooX= (kVy) = AX)=  KA(V) .
n N k [N k [N

Since, by hypothesis, A(X) is of the second category in Y, at least one kA(V,,) must be of
the second category in Y . Thus, since y — Ky is a homeomorphism, each A(V,,) must be
of the second category in 'Y, implying A(V,) to have nonempty interior. In other words,
for each n € Ny, there exists a nonempty open set W, C A(V,). Then U, := W, — W,
is still nonempty and open, U, € ¢4(0) and, for n > 1, m < n, U, C A(Vy,) by (2.20).
We will still prove

A(V1) S A(V), (2.21)

where we note that (2.21) shows (b), as we can let U := U,. Giveny € A(Vy), we
inductively construct a sequence (Yn)nmmin Y such that each y, € A(V,) as follows:
Start with setting y; := y. Then, assuming yi,...,Yn to be constructed, y, € A(V,)
means that every neighborhood of y, has nonempty intersection with A(V,). Since
A(Vn+1) € U(0), we have y, — A(Vh+1) € U(yn) and

1 1

Yn — A(Vn+1) NAVR) # 0.

In other words,
= A(X — A(Vh+1).
o T (Xn) € Yn (Vh+1)
Thus, if we let yn+1 := yn — A(Xn), then we have yn+1 € A(Vh+1) as desired. Then the
continuity of A implies
limy,=0: (2.22)

n- oo
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Indeed, let W C Y, W € U(0). The continuity of A at 0 yields nop € N with A(V,,) CW
(since the V,, n € N, form a local base for 7x at 0). Since theﬁ.ﬁﬁre decreasing,
A(Vn,) € W proves (2.22). We now define, for each n € N, z, := 2, Xj € X. Then,
using translation-invariance of d,

r 1 r 1 r 1 r 1
m<vnm] d(zn,zm) < d(zi,zi—1) = d(zi—zj—1,0) = d(xj,0) <r 27
i=m+1 i=m+1 i=m+1 i=m+1
showing (zn)nmoto be a Cauchy sequence in X (since the partial sums of the geometric
series form a Cauchy sequence in R). As we assume X to be complete, there exists a
limit z := lim, o Z, € X. Moreover,

, c—  c—
d(z,0) = lim d(z,,0) <  d(x,0)<r 2 =r,
n - oo

i=1 i=1
showing z € Bg,(0) = Vo C V. Using the continuity of A once again, we obtain

o __I:I__I:I e @2
AZ) = Iim A(za) = lim - AGQ) = lim - (yi —Yie1) = 1M (y1 = Yne1) =" Y1 =Y
i=1 i=1
(here we also used that limits in Y are unique), showing y € A(V), (2.21), and (b).

(c): One uses that X being an F-space implies the factor space X/ ker A to be an F-
space as well, and shows X/ ker A to be homeomorphic to Y (we refer to [Rud73, Th.
2.11(iii)] for the details). 1

Example 2.23. Let p,q € [1, 0] with p < q < co. From [Phil7, Th. 2.42], we know
L9([0, 1], £, A1) C LP([0, 1], £, AY). Since

£:10,1] — K, f@):=ta, (2.23)

isin LP([0, 1], £, AY) (by [Phil6a, Ex. 10.35(a)], since 2 <1), but not in LY([0, 1], N
(by [Phil6a, Ex. 10.35(b)]), we also know L%([0, 1], £, At) [LP([0,1], £, AY). As an
application of Th. 2.22, we can now show that X := LY([0, 1], £, A1) is of the first
category in Y := LP([0,1], £}, AY): Let A:=1d: X — Y. Then A is linear. According
to [Phil7, Th. 2.42], we have

Y IFll < [l

showing A to be bounded. Then, by Th. 1.32, A is continuous. Since X is an F-space
(even a Banach space) and A(X) # Y, Th. 2.22 yields that X must be of the first
category in Y.
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Proposition 2.24. Let (X, - ||x), (Y, | - [[y) be normed vector spaces over K and let
f.: X—Y.If
< .
39 IFelly < alxlx, (2.24)

then ¥ maps bounded sets into bounded sets. If T is linear, then the converse also holds
(i.e. (2.24) is equivalent to the linear map being bounded).

Proof. Exercise. 1

Corollary 2.25. Let (X, S), (Y, T) be F-spaces over K (e.g. Banach spaces) and assume
A: X — Y to be continuous and linear. Then the following assertions hold true:

(a) If A is surjective, then A is open.
(b) If A is bijective, then A1 is continuous (i.e. A is then a homeomorphism).
) f X=YandSCT,thenS=T.

(d) 1f (X, |- ]]x) and (Y, | -||v) are Banach spaces, where ||-||x induces S, |- ||y induces
T, and A is bijective, then

= < [|A < . 2.25
3wl < AXly < Bl (2.25)

@) It X=Y,(CX]|-|1)and (X, | - |l2) are Banach spaces such that || - ||; induces S,
|| - || induces T, and

<
3 Y Xk < allxl, (2.26)

then || - ||, and || - ||, are equivalent (i.e. S = 7).

Proof. (a): As A is sujective, we have A(X) = Y. Since Y is an F-space, the Baire
category Th. 2.6(c) implies A(X) =Y to be of the second category in itself. Thus, A is
open by Th. 2.22(b).

(b) follows from (a) combined with Prop. 2.21(c).

€): S CT,thenld: (X, 7) — (X,8) is continuous. Then Id : (X,8) — (X, T)
is continuous by (b), implying 7 C S.

(d): A is continuous by hypothesis, A~ is continuous by (b). Thus, A and A™! are
bounded. According to Prop. 2.24, the boundedness of A implies the second inequality
of (2.25) and the boundedness of A~ implies the second inequality of (2.25): Indeed,

Voo 3 IXlx = [IATAC)Ix < VA

y=>0 x[XI
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(set a:=y™1).

(e): According to (2.26) and Prop. 2.24, I1d : (X, - ||2) — X, || - ||1) is bounded and,
thus, by Th. 1.32, continuous, implying S C 7. Now & = 7 holds according to (¢). [ 1

Example 2.26. Consider the Banach space (X, || - ||1), where

X :={f ¢ C}(R,K) : f and f"are bounded},
Il = [[Flleo + [FHeo

(cf. Ex. 2.18 and, of course, || - ||; is not the L*-norm). Let
9:R—R, oKX :=e*.

Then we know ¢ € LY(R, £, A\') and we obtains two other norms on X by setting

1
Ifl == @[fldA!,
R
[F]l2 := ¥l + [[F]],
immediately implying
L [l < [Tl (2.27)

Let (f)k mobe a sequence in X that is || - [[;-Cauchy. Then (2.27) implies (fi)x mnto be
| - |li-Cauchy as well. Thus, there exists f € X with limy_ o ||[fc — ||y = 0. By the
dominated convergence theorem [Phil7, Th. 2.20], we have limy _  ||fx — F|| = 0 as well,
implying limy _, o ||fx — || = 0. In consequence, (X, || -||2) is also a Banach space. Since
(2.27) means that (2.26) is satisfied with a = 1, Cor. 2.25(e) implies || - ||, and || - ||, to
be equivalent.

2.4 Closed Graph Theorem
2.4.1 The Theorem

We start by recalling that, for each function f : X — Y, the graph of T is graph(f) =
{(x,y) e X xY :y="Ff(x)}. In topological spaces, the graph of f is closely related to
the Hausdor [skparation property:

Lemma 2.27. Let (X,7) be a topological space. Then (X,7) is T, if, and only if,
graph(ld) is closed with respect to the product topology P on X x X (where Id denotes
the identity on X).
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Proof. The set
A= graph(ld) = {(x,x) e X x X : x € X} (2.28)

is also called the diagonal in X x X. We have

Aclosed < A open

& \ 1 (x,y)eO0CA®
X,y XIxg8y OIL[P]
& 4 3 X,y) € Oy x O, C O C A°
x,y (X]x8y Ox,Oy[T] (|:|y) X y = - ]
& X’yEijxgy Oxgym XeOx ANyeOy AN OxNOy =1
= (X, 7-) Tz,
proving the lemma. 1

We now proceed to the situation of a continuous map f : X — Y. We know from Lem.
2.27 that, if X =Y, f =1d, and Y is a T,-space, then graph(f) is closed. We can now
show that, if Y is a T,-space, then graph(f) is closed for every continuous f : X — Y:

Proposition 2.28. Let (X,S), (Y,7T) be topological spaces and f : X — Y. If T is
continuous and (Y, 7) is T,, then graph(f) is closed with respect to the product topology
Pon X xY.

Proof. Let G := graph(f). We have to show G° to be open. To this end, let (x,y) € G°.
Theny # z := f(x). Since Y is Ty, there exist Oy,0, € T withy € Oy, z € O,, and
O, N0, = (. Since f is continuous, there exists an open U € ¢/(x) such that f(U) C O,.

Then U x Oy € P with (X,y) € U x Oy C G, showing G° to be open. 1
While simple examples such as
—
-t f 0,
fiR_R f)= X Torx¥ (2.29)
0 for x =0,

where graph(f) is closed, but f is not continuous, show that the converse of Prop. 2.28
is not true in general, according to the following Th. 2.30, the converse does hold for
linear maps between F-spaces. In preparation, we provide some simple facts regarding
the product of two metric spaces:

Proposition 2.29. Let (X,S), (Y,7) be topological spaces and let P be the product
topology on X x Y. Moreover, let S, 7 be induced by metrics dx and dy on X and Y,
respectively.
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(a) The map
) . 1 1
d: X xY) — Ry, d(X1,Y1), (X2,¥2) = dx(X1,%X2) +dy(y1,Y2), (2.30)

defines a metric on X x Y that induces P. Moreover, if dx,dy are complete, then
so is d. If (X,S8), (Y,T) are topological vector spaces over K, then (X x Y,P)
is a topological vector space over K; if dx,dy are translation-invariant, then d is
translation-invariant as well.

(b) If f: X — Y, then graph(f) is closed if, and only if, for each sequence (Xx)xmn
in X such that the limits

X = kIim Xk and y:= kIim T(Xk) (2.31)
both exist, one has y = f(x).

Proof. Exercise. 1

Theorem 2.30 (Closed Graph Theorem). Let (X,S), (Y,7T) be F-spaces over K (e.g.
Banach spaces) and let A : X — Y be linear. Then the following statements are
equivalent:

(i) A is continuous.
(i) graph(A) is closed with respect to the product topology P on X x Y.
(ii1) For each sequence (Xx)xmnin X such that the limits
X = kll_>n;]o Xk and y:= IJLFT;]O A(Xk) (2.32)
both exist with x =0, one has y = 0.

Proof. The equivalence of (ii) and (iii) is due to Prop. 2.29(b): (ii) implies (iii), since
A(0) = 0. If (iii) holds with limy_ o Xx = X and limy_ . A(Xx) =Y, then limy _ o (Xx —
X) =0, limg _ oo A(Xk —X) =y —A(X) and (iii) impliesy —A(x) = 0. Thus, y = A(x) and
Prop. 2.29(b) yields (ii). Next, note that (i) implies (ii) according to Prop. 2.28. Thus,
it only remains to show (ii) implies (i). So let G := graph(A) be closed and consider
the map

B: X —XxY, BX):=(XA(X)).

Then
B(Aa+ b—%l+ b, NA(a) + AbI:I
v (Aa u)—&lu,m(abu%
abXl AuIKI =AaA@) +pubB(M =AB(a)+ puB(h)
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shows B to be linear and G = B(X) to be a vector subspace of X x Y. As a closed
subspace of X x Y (which is an F-space by Prop. 2.29(a)), G is itself an F-space. The
projections mx : X xY — X and my : X xY — Y are linear, continuous, and
surjective. Moreover, Tix [l is even bijective as well. Thus, (x &)™t : X — G is
continuous by Cor. 2.25(b), showing A = 1y o (Tx [g) ™! to be continuous as well. L1

2.4.2 Application to Sequence Spaces

As an application of Th. 2.30, we will prove a theorem due to Toeplitz (Th. 2.34 below),
regarding linear operators on sequence spaces. We start by recalling/introducing some
notation for various sequence spaces:

Notation 2.31. Let p €]0, oo[ and define

1 1
KN := (ko Xk € K (2.33a)
L1 1 L1
IP:= (X )kmoe KN : IXk|P < o0 (2.33b)
1 k=1 -
1% = (Xk)k ma< KN : (Xk)k [ijounded , (233C)
L1 1]
c:= (X)kmu€ 1”1 (Xk)kmnconvergent (2.33d)
1 1
Co = (Xk)kmn€e C: kIlngo Xk =0 . (2.33¢)

Note that the definition of I? in (2.33b) and (2.33c) is consistent with [Phil7, Def. and
Rem. 2.41(b)]. In particular, each IP is equipped with the norm || - ||,; ¢ and ¢, are
subspaces of (1°°, || - [|). In particular, it makes sense to define

L1 L1
(co)":= (a: co — K): a linear and continuous . (2.33f)

We endow (co)"with the so-called operator norm

Tabo) -

|a| :=sup Xl X € Cop, XZ0
- ]
=sup |a(x)|: X €co, [[X[|lw=1 . (2.34)

It is a simple exercise to check that the operator norm is, indeed, a norm (we will also
come back to operator norms in a more general context later).
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Proposition 2.32. (a) ¢ and ¢, are Banach spaces over K. Moreover,
C1 1
Arc— K, A Xdkmo = kI|m Xk, (2.35)

defines a continuous linear functional.

(b) We have the representation (co)™= I*: More precisely, (co)”and I* are isometrically
isomorphic, where a linear isometry is given by

] 1 ] 1

@10 It — (co) 01 (A)kmn Xidkmn = akXk, (2.36a)
Mt O

Q11 (co)"— I, 0 (F) = Fe) | (2.36b)

(ex denoting the kth standard unit vector in KN).

Proof. (a): Since ¢ and ¢y are subspaces of the Banach space 1°°, it su [ced to show
they are closed. Since A is, clearly, linear, (a) is proved once we have shown, for each
sequence (X")nmnin ¢ converging to x € 1°°, that A(x™) converges to some L € K and

L= lim A(X") = lim x. (2.37)

n - oo

First, we note that

Vo AXT) = AT = AT = XM <X = XMoo
m,n [N

implies (A(X™))nmto be Cauchy in K, i.e. L := lim,_ o A(X") € K exists. To prove
(2.37), let [3> 0. Let N € N be such that
X X < 5 and A ~L|< o

and choose M & N such that

L]
N N =
Y =AM <

Then

7, X = L e = X X = AN+ AN — L <3
n=

=0

proving (2.37) and (a).

(b): Exercise. 1
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Proposition 2.33. Let A = (a;;) € KN*N be a double sequence (some authors think of
such an A as a countable matrix). We identify A with the map

[ ] [ ]
\ AN | | S
ArKY — (KM Ao = aigX (2.38)

=1 i (N1

where each I%Iaijxj is meant to be a sequence of partial sums (the series does not
necessarily converge). Let X C KN be a vector subspace. We call A simple on X if,
and only if, A(x) converges (in K) for each x € X; for A simple on X, we also write
A: X — KN, i.e. we then consider A as a map into KN. A given A might or might
not satisfy some or all of the following conditions (2.39a) — (2.39c), where

v _ lima;; =0, (2.39a)
! o 1

M :=sup lajj| :TeN < oo, (2.39b)

j=1
1 ) N |
all a;j converge with  lim ajj = 1. (2.39¢)
1> 00
=1 j=1

The following statements hold true for each double sequence A:

(@) A is linear. If A is simple on X, then A : X — KN is linear as well.

(b) If (2.39b) holds, then A is simple on I1** and A : 1> — I*° is a continuous linear
map.

(c) If (2.39a) and (2.39b) hold, then A(co) C co.

L1 1
(d) (2.39c) is equivalent to y := A (1)jmn € ¢ with A(y) = 1, where A is the functional
of (2.35).

(e) If A is simple on co with A(cg) C o, then (2.39b) is equivalent to A : ¢, — Co
being continuous.

Proof. (a): The linearity of A, in the general as well as in the simple case, is immediate
from the properties of finite sums, series, and limits in K.

(b): If x = (X;)j ma€ 1°° and (2.39b) holds, then

1
. < o)
v ~ @] xj| < M [x]
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showing A to be simple on I with ||A(X)|lcc < M |[|X||e for each x € 1°°. In particular,
the linear map A : I — | is bounded and, thus, continuous.

(c): Exercise.

.1

(d) is immediate fromy =A (1)jmo = (52, @ij)imna

(e): For each i € N, let A; := (ajj)j mu€ KN. Then (2.39b) is equivalent to {A; : i € N}
being a bounded subset of I1*. Due to Prop. 2.32(b), (2.39b) is further equivalent to

M =sup {||@:(A)| : 1 € N} < o0, (2.40)
where | - || denotes the operator norm on (co)= However, (2.40) is equivalent to
3 V v E ainj@ Mq’XHoo,
MHRY i[N0  xLcol j=1

which is equivalent to

3 v A(X)||oo < MT|X||co,
e g 1A= < M
i.e. to A: ¢cg — Co being bounded, i.e. to A : ¢cg — Co being continuous. 1

Theorem 2.34 (Toeplitz). Let A = (aj;) € KN*N and identify A with the map of (2.38).
Then the following statements (i) and (ii) are equivalent:

(i) Ais simple on c (in the sense of Prop. 2.33), maps ¢ into ¢, and satisfies

Vv A im aijj X im X; , 2.41
e ol ( (X)) il°° i% jl—>°°XJ (X) ( )

X:=(Xj)j =1

where A is the functional of (2.35).

(it) A = (&) satisfies the above conditions (2.39a) — (2.39c).

Proof. Theorem 2.30 will be applied to show (i) implies (2.39b). However, we begin
with the other direction:
“(i)=(1)": Letx € cwith & := A(X) € K. We identify & with (§); mne ¢. Then x—¢& € ¢
and A(x — &) € ¢ by Prop. 2.33(c). Since
L1 L1 1 L 1
1 1
AX) =AKX -8 +A®§) = aij (Xj — §) + &
i=1 i [N i=1 i [N
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with A(A(x — &)) = 0 and, by Prop. 2.33(d), A(A(E)) = &, we obtain A(x) € ¢ with
AAX)) = MAX — £)) + AA(E)) = & = A(X), as desired.

“(i)=-(ii)”: For each j € N, let e; denote the standard unit vector in KN. Then A(g;) =
(aij)imnfor each j € N and 0 = A(ej) = A(A(g;)) yields (2.39a). Moreover, (2.39c) is
satisfied by Prop. 2.33(d). It remains to verify the validity of (2.39b). According to Prop.
2.33(e), it su [ced to show that A : ¢cg — Cp is continuous. According to the closed
graph Th. 2.30, we have to consider a sequence (X*),mnin Co such that limy .. XX =0
and such that y := limy . A(X¥) exists in ¢, showing y = 0. For each i € N, we
consider the linear functional

1
Ai:co— K, AKX = aijXj.
i=1

Moreover, for each i,n € N, we also consider the continuous linear functional

r 1
j=1

(where the continuity of A, can be verified directly, but is also immediate from Prop.

2.32(b)). Then
Y XVU:_QJ Ai(X) = lim Ain(x),

showing the pointwise convergence of A, to A for n — oo. Thus, each A; is continuous
(i.e. Ai € (co)") by Th. 2.17(d) and each (a;j)j mn€ I* by Prop. 2.32(b). Thus,

1
iE/ISEI (A < |aij | \Xﬂ < %ij)j mﬂXka — 0 for kK — oo,
j=1

showing A(x¥) to converge to 0 in each component (i.e. pointwise). Thus, if y =
limy_ oo A(X¥) exists in ¢y (i.e. A(x¥) converges with respect to || - ||, i.€. uniformly),
then y = 0 as desired, showing A to be continuous and completing the proof. 1

3 Convexity

3.1 Hahn-Banach Theorems

In the literature, several extension and separation theorems in regard to linear func-
tionals are associated with the name Hahn-Banach. We study such theorems in the
present section. In this spirit, there will not be the Hahn-Banach theorem, but rather a
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number of theorems, each of which might subsequently be referred to as a Hahn-Banach
theorem. It is often not easy to establish the existence of nontrivial continuous linear
functionals (or, more generally, of linear functionals with desired prescribed properties).
The Hahn-Banach theorems are designed to be applied in precisely this kind of situation.
Theorem 3.3 is a dominated extension theorem that does not involve any topology, but
has immediate applications to seminormed spaces in Cor. 3.4. Theorem 3.5 and Cor. 3.7
are separation-type Hahn-Banach theorems holding on topological vector spaces. We
begin with some notation and some simple observations regarding the relation between
R-linear and C-linear functionals:

Definition 3.1. Let (X, 7Tx), (Y, 7v) be topological vector spaces over K. We introduce
the following notation:

LXK, Y):={(A: X —Y): Alinear and continuous}, (3.1a)
XY= £(X, K). (3.1b)

The space X"lis called the dual space (or just the dual) of X (in the literature, one often
also finds the notation X “nstead of X1.

Clearly,
VY z=Rez+ilmz=Rez —i Re(iz) (3.2)
z [C]

and every vector space over C is also a vector space over R.

Lemma 3.2. Let X be a vector space over C.

(@) If a: X — C is C-linear, then Rea : X — R is R-linear with

Y =R iR =
Y a(x) =Rea(xX) —i Rea ix .

(b) If f: X — R is R-linear, then
a: X —C, a(x):=*f(x)—i1f(x),
is C-linear.

(c) Let (X,T) be a topological vector space over C. Let a: X — C be C-linear. Then
a is continuous (i.e. a € XY if, and only if, Rea is continuous.

(d) Let (X,T) be a topological vector space over C. Let f : X — R be R-linear and
continuous. Then there exists a unique o € X"such that f = Rea.
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Proof. Exercise (use (3.2) in the proof of (a)). L1

Theorem 3.3. Let X be a vector space over R and V C X a vector subspace. Moreover,
consider a function p: X — R, satisfying

g POEY) <p0) +p(Y), (3.3a)
- tEVRg px) = tp(x). (3.3b)

(e.g., each seminorm on X satisfies the above conditions), and a linear functional o :
V — R that is dominated by p, i.e. such that

LI alv) = p(v). (3.3¢)

Then a can be linearly extended to X such that the extension is dominated by p on all
of X: More precisely, there exists a linear functional 3 : X — R such that 3 = a
and

V. —p(=x) < B(X) < p(x). (3.4)

x X1

Proof. First note that domination and linearity imply (3.4): If a(v) < p(v) and a(—v) <
p(—v), then —p(—Vv) < —a(—Vv) = a(v) < p(v). Thus, if V = X, then we can set 8 := q.
It remains to consider V. # X. We let x; € X \ V and first show how to extend o to

Vi:=span(V U{xi}) ={v+Ax;:veV,AeR}:

From
v, a()+a(v) =au+v) <p(u+v) <p(u—x)+p+Vv)
u,v
we obtain
vV oa(u) —pu—xg) < p(xz+Vv) —a(v)
u,v V1
and, hence, O O
o:=sup a(u) —pu—xi1):ucV <pX1) <oo.
Then
V_oa(u) —p(u—x1) <o < p(xg+v) —a(v),
u,v V1
implying

\?m a(u) — o < p(u—xy), (3.5a)

u

vm a(v) + 0 < p(xg + V). (3.5b)

\
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Define
oy : Vi — R, op(v+Axy) ;= a(v) + Ao.

Then, clearly, a; is linear with a; [= a. To obtain a; < p, for each A € R™, replace u
by A~tu in (3.5a), replace v by A~tv in (3.5b), and multiply the respective result by t
to obtain

Vo) — Ao < p(u— Axy),
u V1
vV oa(v) + Ao < p(Axy +V),

v [\V/1
indeed, implying a; < p. We can now apply Zorn’s lemma to finish the proof: Define a
partial order on the set

S ={W,y):V CW C X, W vector space, y : W — R linear, yL,/=a, y < p}

by letting
W,y) <(WHY) = WCWh yiy=y.

Every chain C, i.e. ev%totally ordered subset of S, has an upper bound, namely
(We,ye) with We := )iV and ye(x) 1= y(x), where (W,y) € C is chosen such
that x € W (since C is a chain, the value of yc(x) does not actually depend on the
choice of (W,y) € C and is, thus, well-defined). Clearly, W is a vector subspace of
X,V C W, and yc extends a, and yc < p, i.e. (We,yc) € S (that (Wc,yc) is an
upper bound for C is then immediate). Thus, all hypotheses of Zorn’s lemma have been
verified and we obtain the existence of a maximal element (Wmax, Ymax) € S. But then
Wmax = X, since, otherwise, we could extend Ymax t0 Wmax + span{Xp}, Xo € Wmax, as
in the first step of the proof, in contradiction to the maximality of (Wmax, Ymax). Thus,
we can set B := Ymax to complete the proof. 1

Corollary 3.4. Let (X, || - ||) be a seminormed vector space over K.

(a) Let V C X be a vector subspace of X and let a : V — K be a linear functional
such that
< : :
L o] < lvii (3.6)

Then there exists B € X"such that B = a and

Y BOIL < X 3.7

(b) For each xo € X, there exists B € X"such that (3.7) holds as well as

B(%0) = [[Xoll- (3.8)
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Proof. First note that (3.7) implies 3 to be continuous (e.g., by Th. 1.14(iv), as B(B1(0))
is bounded).

(a): If K =R, then we merely apply Th. 3.3 with p := || -
(3.4), since p(—x) = || —X|| = |IX]| = p(x). If K= C, then f := Rea is R-linear on V and
we can extend it to some R-linear map f : X — R, satisfying (3.7) (with B replaced
by f). According to Lem. 3.2(a),(b), there exists a unique C-linear  : X — C with
Re = f. Using Lem. 3.2(a) again, then yields 4= a. Since (3.7), clearly, holds for
B(x) = 0, it only remains to check it holds for each x € X with B(x) # 0. However, if

B(x) # 0, then
B

Boo=p B0y B @ o .
B() B(X) B(x) X)
completing the proof of (a).

(b): If ||Xo]| = 0O, then B = 0 works. If ||Xo|| # O, then, to apply (a), let V := span{xy}
and define

BOI =

a:V — K, a(Axo) :=A|Xol-
Then (3.6) holds and we obtain a linear extension [3, satisfying (3.7) by (a). 1

Theorem 3.5. Let (X, 7)) be a topological vector space over K. Assume A, B C X such
that A, B are nonempty and convex with AN B = (.

(a) If A is open, then there exist a € X"and s € R such that

VY V.  Rea(a) <s < Rea(b). 3.9

alAl bIBl

(b) If A is compact, B is closed, and (X, 7) is locally convex, then there exist a € X"
and s, S, € R such that

av@ bYBj Rea(a) <s; <s, < Rea(b). (3.10)

Proof. Suppose, we have proved the theorem for K = R. Then it also holds for K = C:

We first obtain a continuous R-linear function f : X — R, satisfying (3.9) or (3.10),

respectively (with o replaced by f). Then, by Lem. 3.2(d), there exists a unique a € X"
with Rea = f, proving the case K = C. It remains to prove (a),(b) for K=R.

(a): Fixag € A, bp € B, and set Xg :=bg —ag. If C:= A —B + X, then C € 1/(0) (C
is open by Prop. 1.10(d)). Moreover, C is convex due to Prop. 1.8(a). Let p := pc be
the Minkowski functional of C as defined in Def. and Rem. 1.35(b). Then

ANB=0 = xZC = px)>1
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The idea is now to apply Th. 3.3, where we note that p satisfies (3.3a) and (3.3b) due
to Th. 1.37(b),(e). Define

V i=span{Xp}, a:V — R, 0a(AXp) :=A,

and note
1
A >0 = a(Axo) = A < Ap(Xo) = p(AXo),

<ponV,
A<0 = a(Axo) = A <0 < p(AXo) — aspon

showing p to satisfy (3.3c) as well. Thus, by Th. 3.3, a has a linear extension defined
on X such that a < p holds on all of X. In particular, a <1onC and a > —1on —C,
implying |a| < 1on U :=CnN(-C) € U(0). Thus, a € X"by Th. 1.14(iv). Next, we
observe
avm DYB] a(@ —ab)+1l=a(@a—b+xy) <p(a—b+xy) <1,

where the last inequality is due to a — b+ X € C open and (1.25). Thus, a(a) < a(b),
showing a(A) and a(B) to be disjoint. Since A, B are convex and a is linear, a(A)
and a(B) are also convex, i.e. they are intervals with sup a(A) < infa(B). Moreover,
a is open by Prop. 2.21(b), i.e. a(A) is open (as A is open by hypothesis). Thus,
supa(A) £ a(A) and we can set s := sup a(A) to finish the proof of (a).

(b): If A is compact and B is closed, then, by (1.5b), there exists a convex open
neighborhood V of 0 in X such that (A +V) N B = (). According to (a), there exists
a € X5such that a(A+V ) and a(B) are disjoint intervals with sup a(A+V) < inf a(B).
Now a(A + V) is open with a(A) as a compact subinterval, proving (3.10) and (b). [

Definition 3.6. Let I, X, X; be sets, i € I # (). Given a family of functions 7 := ()i

fi : X — Xj, we say that F separates points on X if, and only if,
L1

XLXEX] X1 Z# X, = iHEDfi(xl) Z Ti(x) . (3.11)
If Y = X; foreach i € | and M C Y X, then we say M separates points on X if, and
only if, ()¢ s Separates points on X.

Corollary 3.7. Let (X,7) be a topological vector space over K that is locally convex
(e.g. a normed space).

() If X is Ty, then X"separates points on X.

(b) Let V C X be a vector subspace and X, € X such that X, € V. Then
1 1]
[pr al =0 A a(xp) =1 .

a
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(c) IfV C X is a vector subspace and a € V5 then a has a continuous linear extension
to X, i.e.
3 a.
5 S B L=

(d) Let B C X be convex, balanced, and closed. If xo € X \ B, then
1 1
< :
3. o<1 A axo) €lL, 0]

Proof. Exercise. —1

Example 3.8. In an application of Hahn-Banach to sequence spaces, we show that not
every o € (I°)can be represented by some x € I*: In other words, we will show that

the map
1

. oy 1m0
o: P — (%) 0 @)km Xkmo = aXk, (3.12)
k=1
is not surjective. First, we note that ¢ is defined by the same formula as @, : I* — (co)”
in (2.36a) and that the same estimate used in the proof of Prop. 2.32(b), namely

 —
P@CI < Jawxu] < [IX[|e [l
k=1

1y

shows (axxk)kmn€ 1 and @(a) to be bounded (and, thus, continuous, i.e. (a) € (1*)Y.
From Prop. 2.32(a), we know the functional

] [
Arc— K, A Xdkmn = kI|m Xk,

to be linear and continuous. Thus, we can apply Hahn-Banach in the form of Cor. 3.7(c)
with X :=1* and V := ¢ to obtain B € (I*°)"“such that B [ A. Suppose there were
a € 1! such that B = @(a). Letting e, denote the kth standard unit vector in KN, we
obtain

Jo o= BEk) = Ak =0,

implying a =0 and B = 0. This contradiction shows B £ ¢@(I'), i.e. ¢ is not surjective.

3.2 Weak Topology, Weak Convergence

Definition 3.9. Let X be a set and let 7,7, be topologies on X. We call 7; weaker
or smaller or coarser than 7, and we call 7, stronger or bigger or finer than 73, if and
only if, 7; C 75.
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Given a topological vector space (X, 7), we know that (by definition) each a € X"is
continuous. It turns out to be useful to also consider another topology 7,, on X, the so-
called weak topology, consisting of the weakest (i.e. the smallest) topology on X making
each a € X"continuous, cf. Def. 3.14. We will see that, in many interesting cases, T
is strictly weaker than 7. The weak topology 7, is the so-called initial topology on X
with respect to X It is a special case of the contruction defined in the following Def.
3.10, which is also of general interest (another initial topology we will encounter shortly
is the so-called weak*-topology on X" cf. Rem. and Def. 3.21)*:

Definition 3.10. Let X be a set and let ((Xi, 7i))irbe a family of topological spaces,
I # (. Given a family of functions F := (f)imm fi : X — X, the initial or weak
topology on X with respect to the family (f;)i—(also called the F-topology on X) is
the coarsest topology 7 on X that makes all f; continuous (i.e. 7 is the intersection
of all topologies that make all f; continuous — this intersection is well-defined, since
the discrete topology on X always makes all f; continuous). The name initial topology
stems from the f; being initially in X. If Y = X; for each i € I and M C Y %, then the
M-topology on X is the F-topology on X, where F := (f)f mu-

Lemma 3.11. Let X be a set and let ((Xi, 7i))irbe a family of topological spaces,
I # (). Given a family of functions (f;)irm fi : X — X, the set

1, I
S = fi Gi):0ieTiel (3.13)
is a subbase of the initial topology 7 on X with respect to the family (f;)i =

Proof. Let 1(S) be the topology on X generated by S, and let 7”be an arbitrary
topology on X that makes all f; continuous. Then, clearly, S C 7% also implying
1(S) C T Thus, 1(S) C 7. On the other hand, by the definition of S, 1(S) also has
the property of making every f; continuous, proving T(S) = 7. 1

Proposition 3.12. Let X be a set and let ((Xi, 7i))irbe a family of topological spaces,
I = 0.

(a) Given a family of functions (f;)i o fi : X — X, let 7 denote the initial topology
on X with respect to the family (fi)irm Then 7 has the property that each map
g: Z — X from a topological space (Z,7z) into X is continuous if, and only if,
each map (fioQ) : Z — Xj is continuous. Moreover, 7 is the only topology on X
with this property.

1Some readers might be familiar with the present treatment of initial topologies from [Phil6b, Sec.
F.
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(b) Let (Xx)kmnbe a sequence in X, x € X. Then

;JLTOXK =X < i%j J'jﬂofi(xk) = fi(x). (3.14)

Proof. (a): If g is continuous, then each composition fj o g, i € I, is also continuous.
For the converse, assume that, for each i € I, fj o g is continuous. If O € S, where S
is the subbase from (3.13), then there exist i € | and O; € 7; such that O = f;*(O;).
Since fj o g is continuous, we have

] ]
97} (0)=g7" f'(0i) =(fiog) (O € Tz,

proving the continuity of g. Now let .4 be an arbitrary topology on X with the property
stated in the hypothesis. Letting (Z,7z) := (X,.A) and g := Idx, we see that each f;
is continuous with respect to .4, implying 7 C A. Now let 7 be an arbitrary topology
on X that makes all f; continuous. Letting (Z,7z) := (X, 7Y, we see that g := ldx
is 72.A continuous (since each f; = ldx of; is T=7; continuous) i.e., for each O € A,
we have g71(0) = O € T4 showing A C 7 and A C T, also completing the proof of
A=T.

(b): Iflimc_ Xk =x and i € I, then f; is continuous, implying limy _ o i(Xx) = Ti(X).
Conversely, assume limy _ . Ti(Xx) = fi(x) holds for each i € 1. Let O € S with x € O,
where S is the subbase from (3.13). Then there exist i € I and O; € 7; such that
O = f;7}(O;). Then there exists N € N such that

1 1
ka fi(Xk) €0, e xxke0= fi_l(Oi) ,
showing limy _ - Xx = X by [Phil6b, Cor. 1.50(a)]. 1

L1
Example 3.13. (a) The product topology on X = . is the initial topology with
respect to the projections ()i i : X — Xj (as is clear from Lem. 3.11).

(b) The subspace topology on M C X, where (X, 7)) is a topological space is the initial
topology with respect to the identity inclusion map t: M — X, 1(X) := x: This
is also clear from Lem. 3.11, since

[ . ]
Tu= ONM:0e€7T = 1"}(0): 0T .

Definition 3.14. Let (X,7) be a topological vector space over K. We call the X=
topology on X in the sense of Def. 3.10, the weak topology on X, denoted by 7.
We will use terms such as weakly convergent (and write X, [Xto denote such weak
convergence), weakly closed, weakly compact, weakly bounded etc. to refer to notions in
the space (X, 7w); in contrast, 7 is called the strong or original topology on X and the
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corresponding notions in (X, 7)) are sometimes called strongly or originally convergent,
closed, etc.

The following Lem. 3.15 will be used in the proof of Th. 3.16(d).

Lemma 3.15. Let X be a vector space over K, let a,qy,..., o, : X — K be linear
functionals, n € N, and let

r 1
N =  keraq;.
i=1
Then (i) — (iii) are equivalent, where
(i) ais a linear combination of ay, ..., ay,.
(ii) There exists M € Ry such that
- ) ]
V laX)| <Mmax |oi(X)]:ie{l,...,n} . (3.15)
x X1
(iit) N C kera.
Proof. “(i) = (ii)”: If (i) holds, then there exist A1, ..., Ay € Ksuchthata = ;_; Aiai,
implying,
1 L1
r— 1 r 1 1 1]
YX] la(x)| < Aiai(X)] < Ail max |oi(X)|:i€e{l,...,n} ,
X
i=1 i=1

i.e. (3.15) holds with M := IEM.
“(it) = (iii)” is immediate.
“(iit) = (i)”: Define
] 1]
A: X — K" AKX = ay(x),...,0.,(X) .

Clearly, A is linear. Moreover, for x,y € X with A(x) = A(y), we have a;(X —y) =
- =dp(X—y) =0, i.e. x—y € N, implying a(x) —a(y) = a(x—y) = 0 by (iii). Thus,
A(X) = A(y) implies a(x) = a(y) and

1 [
B: AX) — K, B AKX :=a(x),
well-defines a functional on A(X). Moreover,
1 1 [l (I
v B AA(X) + HA(Y) =B AAX+Hy) = a(AX+y)
ARIKD Xy X = Aa(x) + paly) = AB(A(X)) + UB(A(Y)),
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showing [3 to be linear. Thus, B can be extended to a linear functional 3 : K" — K.
Then there exist Aq,..., A, € K such that

1
B(ze....za) = Aizi,
(z1,.-,Zn) i=1
implying
1
Y a)=BAK) = Aai(x),
i=1
proving (i). 1

Theorem 3.16. Let X be a vector space over K with
V C{(A: X — K): A linear}

also being a vector space over K. Let 7y be the V -topology on X. With each a € V, we
associate the seminorm

Pa: X — Ry, Ppa(X) :=|a(X)]. (3.16)
(@) (X,7v) is alocally convex topological vector space, where 7y is the topology induced
by the family of seminorms F := (pq)onnaccording to Th. 1.40(a).
(b) (X,7v) is Ty if, and only if, V separates points on X.
(c) E C X is 7y -bounded if, and only if, each a € V is bounded on E.
(d) The dual of (X,7y) is V.

Proof. (a): Let 7, be the topology induced by F. If 7o = Ty, then (X,7y) is a locally
convex topological vector space by Th. 1.40(a). It remains to show 7, = 7y . Since each
Po IS To-continuous by Th. 1.40(a)(i), we already know 7y C 7To. For the remaining
inclusion, it su [Cced to show B C 7y, where B is the base of 7y given by Th. 1.40(a).
Thus, letaeV,neN,ye X. Then

.
Bpan-i(Y) = {X € X pa(x —y) <n7'} = xeX: |ax)—aly)|<n!

completing the proof of (a).

(b) and (c) are now a direct consequence of (a) and Th. 1.40(a).
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(d): Let X/ denote the dual of (X, 7y ). Each a € V is 7y -continuous, showingV C X
It remains to show X7 C V. Leta € X{. Then O := a~(B1(0)) € 7v. Thus, according
to Th. 1.40(a), there exist C& R™ and ay,...,0, € V, n € N, such that

1
U= {xeX:|aiXx)| <co.
i=1

AsinLem.3.15, let N := L, kera;. Suppose, thereis x € N such that s := |a(x)| > 0.

Then s™'x € N C U, but |a(s™*x)| = s7*s = 1, in contradiction to U C O. Thus,
N C kera, and the equivalence between (iii) and (i) of Lem. 3.15 yields a € V, i.e.
Xy CV. 1

Corollary 3.17. Let (X,7) be a topological vector space over K, 7, denoting the cor-
responding weak topology on X.

(a) (X, Tw) is a locally convex topological vector space, where 7, is the topology induced
by the family of seminorms F := (pq)arxizaccording to Th. 1.40(a) (py defined by
(3.16)).

(b) (X, 7w) is Ty if, and only if, Xseparates points on X ((X,7) being T, and locally
convex is su Lcieht by Cor. 3.7(a)). If Xseparates points on X, then weak limits
are unique.

(c) E C X is weakly bounded if, and only if, each a € X"is bounded on E.

(d) Let (Xk)kmbe a sequence in X, x € X. Then

X [xX1 & a&p JLTOO‘(X") = a(x). 3.17)

(e) If v € XY then 7y C T C T (i.e. the weak topology is, indeed, weaker than the
strong topology; in many, but not all, cases, it is strictly weaker, cf. Cor. 3.17(g)
and Ex. 3.18(a),(b) below). In consequence, strong convergence implies convergence
with respect to 7y (in particular, weak convergence) and, if (Y, 7y) is a topological
space, then £ : X — Y being 7y -7y -continuous (e.g. 7w-7y -continuous) implies
f to be 7-7y -continuous.

(f) The dual of (X, 7y) is still X"
(9) If Tww denotes the weak topology corresponding to (X, 7w), then Ty, = Tuw.

(h) If E C X, then the strong closure of E is always contained in the weak closure of
E, i.e. E C cly(E).
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Proof. (a) — (c) are just Th. 3.16(a)-(c), respectively, applied with V := X" (where,
for (b), we once again use that, for topological vector spaces, T, implies T, and, thus,
uniqueness of limits).

(d) is immediate from Prop. 3.12(b).

(e): 7v C T holds since each a € V C Xtis T-continuous and 7y is the weakest topology
making each a € V continuous. Then strong convergence implies 7y -convergence, as
every 7Ty -neighborhood is a 7-neighborhood. If f: X — Y is 7y -7y -continuous and
O € Ty, then f71(0) € 7y C T, showing f to be 7-7y -continuous.

() is immediate from Th. 3.16(d), but here the proof is actually easier: Let X\ denote
the dual of (X, 7). Each a € XUis 7-continuous, showing X“C X[. Conversely, each
a € X[ is T-continuous by (e), showing X C X"

(9): Due to Th. 3.16(d), T, and T, both are the X"“topology on X.

(h): From (e), we know 7, € 7. Thus, if E C X is weakly closed, then it is strongly
closed. In particular, cl,(E) is strongly closed, showing E C cl(E). 1

Example 3.18. (a) If (X, T) is a finite-dimensional T, topological vector space over
K, dimX = n € N, then we know from Th. 1.16(a) that (X, 7) is linearly homeo-
morphic to K" with the norm topology. Then every linear functional a : X — K
is continuous, i.e. X7= K" as well. As (X,7) is a normed space, we also know
X "to separate points on X. Thus, by Th. 3.16(b), (X, 7w) is also a T, topological
vector space. By Cor. 1.17, 7, must also be the norm topology on X, i.e. 7 = Ty.

(b) Let (X, 7) be a topological vector space over K, dimX = co. Let O C X be a weak
neighborhood of 0. According to Th. 3.16(a) and Th. 1.40(a), there exist C& R™
and ay,...,0, € XY n e N, such that

r_1
U= {xeX:|aXx)|<IcO.

i=1

i A: X — K" AKX) = (01(X),...,0n(X)), is linear with N := kerA =

i—, kerai, we have dimN = oo (otherwise, dimX < n+dimN < oo). Since
N C U C O, each weak neighborhood of 0 contains an infinite-dimensional subspace
N. Thus, if 7 is T (i.e. if X “separates points on X), then N is not weakly bounded
by Rem. 1.26 and, thus, (X, 7y) is not locally bounded. In particular, if (X,7) is a
normed space, then it is Ty, locally convex, and locally bounded, whereas (X, 7y,) is
Ty, locally convex, but not locally bounded, showing 7, to be strictly weaker than
7T on each infinite-dimensional normed space.

(c) Consider the space (Co, || - ||). We will show that for the sequence (ex)kxain Co,
where, as before, ey is the kth standard unit vector in KN, one has e, [0 for
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k — oo, but ex 4 0 strongly for kK — oo: Since ||ex|| = 1 for each k, ex 4 0
strongly is already clear. To show e, [0, e use the representation (co)~= I! of
Prop. 2.32(b): If a € (co)Y then there exists (a;)imn< I* such that, for each k € N,
a(ex) = ax. Thus, lim,_ . a(ex) = limy_ o ax =0, proving e, 01

Remark 3.19. Weak convergence can often be of use when solving minimization prob-
lems: In a first step, it is often easier to show the existence of a sequence that converges
weakly to a potential solution of the problem.

Theorem 3.20. Let (X,7) be a locally convex topological vector space over K, T
denoting the corresponding weak topology on X. Let C be a convex subset of X.

(a) The weak and the strong closure of C are the same: cl,(C) = C.
(b) C is weakly closed if, and only if, C is strongly closed.

(c) Let AC X, C C A. Then C is weakly dense in A if, and only if, C is strongly
dense in A.

Proof. (a): We know that C C cl,,(C) always holds according to Cor. 3.17(h). For
the remaining inclusion, we use the Hahn-Banach separation Th. 3.5(b): Let X, € X,
Xo € C. We apply Th. 3.5(b) with A := {X,} and B := C to obtain a € X"and s € R
with

YV  Red(Xg) <s < Rea(x).

X [C]
Thus, W := {x € X : Rea(x) < s} is a weak neighborhood of x, such that W N C = 0,
showing Xo € cl(C), proving (a).

(b): If C is weakly closed, then it is strongly closed, as 7, C 7. If C is strongly closed,
then, by (a), C = cl,(C) = C, showing C to be weakly closed.

(c) holds, as

C isweakly densein A < cl,(C)=A @ T=A Cis strongly dense in A,

completing the proof of the theorem. 1

Remark and Definition 3.21. Let (X, 7) be a topological vector space over K with
dual space X" The following construction yields a topology on X“that turns out to be
quite useful: First, define

Vo f XP— K, fi(a) = alx). (3.18)

x X1
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Then each Ty is linear, since

Vo Q-+ pB) = Ao+ up)(x) = Aa(x) + HB(x) = Afk(a) + pfu(B).

AUKI a,B

The map
O X — {(f: X"— K): flinear}, ®(x):=Tf,, (3.19)

is also linear, since

v v PAX + py)(a) = Frerpy () = a(AX +|J_¢y) = Aa(x) + ,ﬁ((y)
ARK] xyDX] o XF = My (a) + pfy(a) = AD(X) + po(y) ().

We call the ®(X)-topology on X"in the sense of Def. 3.10, the weak star (write: weak*)
topology on XV denoted by 7, We will use terms such as weak*-convergent (and write
On [P ato denote such weak*-convergence), weak*-closed, weak*-compact, etc. The
usefulness of the weak*-topology is mainly due to compactness results for the following
Sec. 3.3.

Remark 3.22. Let (X,7) be a topological vector space over K with dual space X
where the map @ is defined as in (3.19), and 7, —¢lenotes the weak*-topology on X"

(@) ®(X) separates points on X" Indeed, proceeding by contraposition, if o, € X"
are such that

Y ax) = 00)(@) = 2)(B) = B(X),
then a = B.

(b) According to (a) and Th. 3.16(a),(b), (X5 7wohis a Ty locally convex topological
vector space over K, where 7, s the topology induced by the family of seminorms
F = (Px)xx» Where

V o e XP—= R, p(@) = |a(x)|.

X X1
According to Th. 3.16(d), the dual of (X5 7y,this ®(X).

(c) In consequence of (b), weak*-limits are unique. Let (ay)xmnbe a sequence in X5
a € X" Then, due to Prop. 3.12(b),

o Bl & v lim ay(x) = a(x). (3.20)

x X1

(d) In general, one can not expect ® to be injective: For example, we know from
Ex. 1.11(b), that X := LP([0,1], £}, A!) with 0 < p < 1 has X"”= {0}, implying
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®(X) = {0} and @ is not injective. However, ® is injective if X separates points
on X (by Cor. 3.7(a), (X, 7T) being T; and locally convex is su [cieht): If x,y € X
with x #y, then let a € Xsuch that a(x) # a(y). Then

P(x)(a) = fx(a) = a(x) # a(y) = fy(a) = d(y)(a),

showing ®(x) # ®(y). In cases, where @ is injective, one often identifies ®(X) with
X.

(e) In general, one can not expect ® to be surjective: Let W be a vector space over K.
The set
Wi = {(A: W — K) : A linear}

is known as the linear dual of W. It is a general result of Linear Algebra that always
dimW < dimW,J}, and dimW = dimW,, if, and only if, the dimension of W is
finite?. If X is a vector space over K, then, using V := X[ in Th. 3.16, we know
from Th. 3.16(a),(d) that (X, Txg ) is a topological vector space with dual X"= X/
Thus, in this case, if X is infinite-dimensional, then dim X < dim X"< dim(X"%j,

and ® : X — (XY}, can not be surjective.

3.3 Banach-Alaoglu

The proof of the Banach-Alaoglu Th. 3.26 is based on Tychono[Th. 3.25. A proof
of Th. 3.25 was already provided in [Phil6b, Sec. H.3], using nets. Here we provide
a dilerknt proof, based on the Alexander subbase Th. 3.24, that does not require the
use of nets. We start by showing that Zorn’s lemma implies Hausdor [’sI Maximality
Principle (both are actually equivalent, see [Phil6a, Th. A.52]):

Theorem 3.23 (Hausdor [’slMaximality Principle). Every nonempty partially ordered
set (X, <) contains a maximal chain, where we recall that a chain is a totally ordered
subset.

Proof. To apply Zorn’s lemma, let
P:={C C X: Cisachain}

and note that P is partially oltd_eﬁed by set inclusion C. Now every chain C in P has an
upper bound, namely W¢ := . C (W¢ € P follows from C being a chain in P). Thus,
Zorn’s lemma yields a maximal element of P, i.e. a maximal chain in X as desired. [

in in the sense that for each basis B of W

, one has #B < #B5(i.e. there does not exist a surjective map f : B — BY.

21f the dimension of W is infinite, then dimW < dimW

and each basis B"of W}}
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Theorem 3.24 (Alexander Subbase Theorem). Let (X,7) be a topological space and
assume S to be a subbase for 7. Let C C X. Then C is compact if, and only if, every
open coverpef-£ with sets from S has a finite subcover, i.e. if (Oi)imis Eﬁnily inS
with C C ; 0i, then there exist iy,...,in €I, N €N, suchthat C C ,_, O;,.

Proof. Since S C 7T, one only has to show that the subbase condition implies compact-
ness. We proceed by contraposition and assume C is not compact. Using Hausdor [’sl
Maximality Principle, we will produce a cover of C with sets from S that does not have
a finite subcover: Let

P:={M C T : Mis cover of C without finite subcover}

with the partial order given by set inclusion (note X ¢ M for each M € P, as {X}
would always constitute a finite subcover). As C is not compact, P # () and, by
Hausdor [CsiIMaximality Principle of Th. 3.23, we let Q C P be a maximal chain and set
L1
Mg = M.

M [O]

Then, clearly, Mq = maxQ: Mq € P, i.e. Mg is a cover of C without a finite subcover,
but if we add any new O € 7 \ Mg, then Mg U{O} does have a finite subcover. Next,
let

MS = MaonNS§S.

By definition, Ms C Mg, i.e. no finite subset of Ms can cover C. So far, we have not
excluded Ms = (), but, in the next step, we will even show that Mg must cover C:
Seeking a contradiction, assume there is X € C, x not covered by Msg. Since Mg covers
C, there exists O € Mg such that x € O. As O is open and S is a subbase, there exist
Si,...,Sh €S, neN, such that

X € S; CO.
i=1

As X is not covered by Ms, Si € Ms, implying S; € Mg for each i € {1,...,n}. Thus,

each Mg U{S;} must have a finite subcover of C. In other words, foreach i € {1,...,n},
there is an open set Uj, being a finite union of sets in Mg, such that C C S;uU;, implying
1

CcUyu---uvpu S CUU---UULUDO,
i=1
i.e. Mg has a finite subcover, providing the desired contradiction. Thus, we have shown

M to be a cover of C with sets from S, not having a finite subcover, thereby proving
the theorem. [
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1
Theorem 3.25 (Tychono )1 Let (X, 7;) be topological spaces, i € I. If X = ;4
is endowed with the product topology 7 and each X; is compact, then X is compact.

Proof. For each i € I, we have the projection 1; : X — X; and we define
1 1
Si:= m0):0cTi .

We know from [Phil6b, Ex. 1.53(a)], that

1 (I I |
S = ni_l(Oi):ieI,Oieﬂ = Si
i1

constitutes a subbase of 7. Let M C S be a cover of X. By Th. 3.24, it su [ced to
show M has a finite subcover. Define

Y Mi=MnNS.
i1

Seeking a contradiction, assume no M; covers X. Then, for each i € I, there is X' € X
not covered by M;. Let x| := m;(x') € X;. Then no x € m; *{x{} can be covered by M;,
since if there exists O € 7; such that x ¢ U := m; }(0) € M; with x € m; *{x!}, then
x! € U as well. Now let z := (x})irme X. Then z is not covered by M, the desired
contradiction. Thus, we have shown there exists some iy € | such that M;, covers X.
There exists C C Tj, such that M;, = {ni‘ol(O) : O € C}, i.e. C must be a cover of Xj,,.
As Xj, is compact, there must be a finite subcover O4,...,0On € C, N € N. Then

M. '(01), ..., M. ' (On) € M, © M
cover X and form a finite subcover of M, completing the proof. 1

Theorem 3.26 (Banach-Alaoglu). Let (X,7) be a topological vector space over K. If
Ue U(O), then 1 1

K:=KU):= aeX"” V Jax)| <1 (3.21)
x [TJ]
is weak*-compact.

Proof. Since U € ¢/(0), we know U to be absorbing. Thus,

v = x e s(x)U,
x[X1  s(x) [RT

implying
Y Vo Jax)| < s(x).

xX1 oKl
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Now define 1
P = §s(x)(o) C K%,
X [X]

letting P denote the product topology on P. As each ES(X)(O) C K'is compact, (P, P) is
compact by Tychono [CsITh. 3.25. By definition, P consists of all functions f : X — K
(not necessarily linear) such that |f(x)| < s(x) for each x € X. In particular, we have
K C XN P, i.e. we obtain two relative topologies on K, namely Px and (7wox. We
will show:

(1) The relative topologies Pk and (7wpk are identical, i.e. Px = (TwDx.-
(2) K is P-closed.

Then K is a closed subset of the compact set P, showing K to be P-compact by [Phil6b,
Prop. 3.9(a)]. Then K is 7, ~¢ompact by (1), proving the theorem. It remains to prove

1), ().

(1): We show Pk and (7w to have identical local bases at each a € K. Let a € K.

A local base for P at a is given by
L1 L1

|:_1|I:I 1] .
B = PN 1m Bo(x) :IJCX,0<#J <oo, &R
x LI

A local base for 7, —at a is given by
1 —1

O] ] .
Byoi= X ml Bga(x)) (JCX,0<#J<oo, [(£R

x LI

A local base for P at ais Kp := {BNK : B € Bp}, and a local base for (7wx at a
is Kw= {BNK : B € Bych Thus, since K € X" P, we see that Kp = Ky, mproving
(1).

(2): Let fy € P be in the P-closure of K. We wish to show T, is linear. To this end, let
x,y € X and A\,p € Kand & R™. Then

O ={feP:[f(X)-To(X)|<BIN{f P [f(y)—To(y)| <Ol
N{f e P : [F(AXx + py) — fo(Ax + py)| <

is an open P-neighborhood of fy, implying O N K # (). Let f € ON K. As f is linear,
we obtain

Eo% +Uy) — Afo(X) — Hfo(yg?
< H(Ax +uy) — F(AX +py) &f () + pf(y) — Afo(x) — Hfo(y)B
< 3 A| & [p[ L2
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showing f, to be linear, since [ (3> 0 was arbitrary. Now, for x € U, [ 0 and T as
above, we have

[Fo()| < [fo(x) — FO)[ + [F()[ < [+ 1,
since [f(X)| <1for x e U and f € K. Thus, |[fo(x)| < 1, showing f, € K, proving (2)
and the theorem. 1

In preparation for the proof of Th. 3.28 below, we provide the following proposition:

Proposition 3.27. (a) Let 7; and 7, be topologies on a set X. If 7; C T, T is
Hausdor [C_(i.e. T,), and 7, is compact, then 7; = 7, (in particular, if (X,7) is
a compact T, space, then each strictly weaker topology on X is not T, and each
strictly stronger topology on X is not compact).

(b) Let (X,7T) be a compact topological space. If there exists a sequence F := (fi)nmo
of continuous functions f, : X — R such that F separates points on X, then
(X, T) is metrizable.

Proof. Exercise. L1

Theorem 3.28. If (X, T) is a separable topological vector space over K and K C X"is
weak*-compact, then K is metrizable in its weak*-topology.

Proof. Let the sequence (Xn)nmnin X be dense. Then each
fr: XP— K, f,(0) := a(xn),
is weak*-continuous by the definition of the weak*-topology. Let a,B € X" If

W Ta@) = Fa(B),

then the continuous maps a, 3 agree on the dense set {x, : n € N}, implying a = 3,
showing (f.,)n o to separate points on X"and, in particular, on K. An application of
Prop. 3.27(b) proves K to be metrizable in its weak*-topology. 1

Caveat 3.29. Theorem 3.28 does not claim that the dual of a separable topological
vector space is itself metrizable in its weak*-topology. Indeed, in many cases, it is not:
For example, if X"separates points on X, then it is an exercise to show (XY 7y his
metrizable if, and only if, the dimension of X is finite or countable.

Corollary 3.30. If (X, T) is a separable topological vector space over K, U € ¢/(0) and
K as in Th. 3.26, i.e.
1 1

K:=KU):= acX™ V |Jax)| <1 ,
x [
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then K is weak*-sequentially compact, i.e. for each sequence (0n)nmnin K, there exists
a subsequence (0, )kmand o € XYsuch that

x¥x1 kILnJO O, (X) = a(x).

Proof. One merely combines Th. 3.26 with Th. 3.28 and recalls that, by [Phil6b, Th.
3.14], compactness and sequential compactness are the same in metric spaces. 1

Remark 3.31. For normed spaces (X, ||-||), we can express the Banach-Alaoglu theorem
by stating that balls in X" are weak*-compact (weak*-sequentially compact if X is
separable): Since translations and non-zero scalings are homeomorphisms, it su [ced to
consider the unit ball

B”={a e X" ||o|| <1},
where |laf| := sup{|a(x)| : x € X, ||X|| < 1} is the operator norm (cf. Cor. 2.15(c) and
Sec. 4.1 below). If U := {x € X : ||x|| < 1}, then B"= K(U), which is weak*-compact

by the Banach-Alaoglu Th. 3.26 (weak*-sequentially compact for X separable by Cor.
3.30).

In preparation for the proof of Th. 3.33 below, we provide the following proposition,
which constitutes another variant of the uniform boundedness principle:

Proposition 3.32. Let (X,7) and (Y, S) be topological vector spaces over K, assume
(X, T) to be T; and K C X to be compact and convex. If 7 C L£(X,Y) is a collection
of continuous linear maps such that

E@ My := {A(X) : A€ F} bounded in Y, (3.22)

X

then F is uniformly bounded in the sense that

vV A(K) CB. (3.23)

=
B [Ylbounded AILF]

Proof. Exercise. 1

Theorem 3.33. Let (X,7) be a locally convex topological vector space over K and
E C X. Then E is weakly bounded if, and only if, E is strongly bounded.

Proof. Since 7, C T, every weak neighborhood of 0 is a strong neighborhood of 0, i.e.
it always holds that a strongly bounded set is also weakly bounded. It remains to prove
the converse: Assume E to be weakly bounded and let U C X be a strong neighborhood
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of 0. We have to show there is s € R* such that E C sU. As (X, T) is locally convex,
we can choose a strong neighborhood V of 0 such that V is convex, balanced, and closed,
and such that V C U. As in the Banach-Alaoglu Th. 3.26, let

1 1

K=K(V):= aeX"” Vv |a(x)| <1
x V1

We show that in the present situation
1 1

V=V:i= xeX: V la(x)| <1 : (3.24)
o K1

We have V C V directly from the definition of K. Now suppose X, € X \ V. Applying
Cor. 3.7(d) (with B := V), we obtain
1 1
<
OEX]] labd| <1 A a(Xo) €11, 0]
i.e. X £V, proving V CV and (3.24). In the next step, we intend to apply Prop. 3.32,
using (X5 Twohfor (X, 7), K for Y, K for K, and F := ®(E), where @ is as in (3.19),
i.e.
v o(x) =T, F:X"—K, ffia):=ax).

Note that (X 7wohis a T, topological vector space by Rem. 3.22(b), K is, clearly,
convex, and K is 7y, —¢ompact by the Banach-Alaoglu Th. 3.26. Moreover, each Ty is
Twr-gontinuous by the very definition of 7y, Since we assume E to be weakly bounded,
by Cor. 3.17(c), each a € X"is bounded on E, i.e.

= <
e e i (@) =000 < n),

implying
E@ My := {a(x) : x € E} bounded in K.
a

Thus, we have verified all hypotheses of Prop. 3.32 and conclude

= VoV jaX)| <M,
MI[RT x[El aolKI

which, together with (3.24), yields

Y MTixeV Cu.
x [E]

In other words,
ECMV CMU,

showing E to be strongly bounded. 1



3 CONVEXITY 85

Corollary 3.34. Let (X,

| - ||) be a normed vector space over K, E C X. If

a\I?X]j sup{la(X)| : x e E} < o0, (3.25)

then
3 cXeE <M. 3.26
M [RT Sup{||x|| % } o ( )

Proof. As (X, || - ||) is locally convex, we can apply Th. 3.33. As (3.25) means that E is
weakly bounded, E must be strongly bounded, which is (3.26). 1

3.4 Extreme Points, Krein-Milman
Definition 3.35. Let X be a vector space over K.

(a) Let C C X be convex. Then E C C is called an extreme set of C if, and only if,
p=sx+(1-s)yecE withx,y e C and 0<s<1implies X,y € E (i.e. extreme
sets of C are precisely those subsets E of C that do not contain interior points of
line segments in C with endpoints outside of E). Moreover, p € C is called an
extreme point of C if, and only if, {p} is an extreme set of C, i.e. if, and only if,
p=sx+(1—-s)ywithx,ye Cand0<s<1impliesp=x=Yy. The set of all
extreme points of C is denoted by ex(C).

(b) Let A C X be arbitrary. The convex hull of A, denoted conv(A), is the intersection
of all convex subsets of X containing A (by Prop. 1.8(a), conv(A) is convex, i.e. it
is the smallest convex set containing A).

(c) Let A C X be arbitrary and let 7 be a topology on X. The closed convex hull of
A, denoted conv(A), is the T-closure of conv(A).

Lemma 3.36. Let X be a vector space over K, and let C C X be convex.

1
@) If (Ed)icm | # 0, is a family of extreme subsets of C, then E := . Fi is an
extreme set of C as well.

(b) For p € C, the following statements are equivalent:

(i) p € ex(C).
(i) p=Z(x+y) with x,y € C implies p=x =y.
(iii) p+x € C with x € X implies x = 0.

Proof. Exercise. —1
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Example 3.37. (a) Clearly, for real intervals with a,b € R, a <b, one has ex([a, b]) =

(b)

©)

(d)

)

{a,b} and ex(Ja, b)) = 0.

Let (X, - ||) be a normed vector space over K, dimX > 0, C := B;(0). Then
ex(C) € S;(0) = {x e X : |x]| =1}: If x =0, and |ly|| =1, then x+y € C,
showing x € ex(C). If x € X with 0 < ||x|| < 1, then

X 1] ]
X =[x I + 1—|x] 0,

showing x & ex(C).

] 1 _ o I
Let X, (.,-) be an inner product space over K with induced norm ||x|| ;== (X, X)
(cf. [Phil6b, Def. 1.66]). Then ex(B1(0)) = S;(0): According to (b), we only have
to show S1(0) C ex(B1(0)). Thus, let p € S;(0) and x € X with p &+ x € B1(0):
Then
1> [p£x|2 = [|p|? £ 2Re(p, x) + x|,

i.e. |x||> < F2Re(p,x), i.e. x =0, showing p € ex(B1(0)).

Consider (Co, || - [|«)- Then ex(B1(0)) = 0: Let X = (X )k € S1(0). According to
(b), it su [ced to show x & ex(B1(0)). Since limy .. Xk = 0, there exists ko € N
such that x| < 3. Then x + ley, € B1(0), where ey, € ¢ is the standard unit
vector corresponding to Ko. Thus, x & ex(B1(0)).

Consider X := L([0, 1], £%, AY). Then ex(B1(0)) = 0;—Let f € S;(0). According to
(b), it su Lced to show f & ex(B1(0)). Since |[f|l; = , |[f|dA! =1 and

.
F:[0,1] —R, F():= |[fldAl,
0

is continuous, with F(0) = 0 and F (1) = 1, there exists sq €]0, 1[ such that F (sq) =
%. Lettlng fl =2f X[Q'SO], f2 = ZfX[SO,l],_VVE have Hflul = Hszl = 1, f]_ # f,
f, # £, but f = 2(f, +f,), showing f & ex(B1(0)).

The following variant of the Hahn-Banach separation Th. 3.5(b) will be used in the
proof of the Krein-Milman Th. 3.39 below:

Proposition 3.38. Let (X,7) be a topological vector space over K with the property
that X Mseparates points on X. Assume A, B C X such that A, B are nonempty, convex,
and compact with AN B = (). Then there exists a € X' satisfying

sup(Re a)(A) < inf(Rea)(B). (3.27)
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Proof. Let 7,, denote the weak topology on X. Since A, B are 7-compact and 7, C 7T,
A, B are also 7,,-compact. By assumption, X separates points on X, i.e. (X, 7y) is T,
as a consequence of Cor. 3.17(b). Thus, A, B are 7,,-closed as well. As (X, 7y) is locally
convex, we can apply Th. 3.5(b) to obtain a € X{, satisfying (3.27), where X\ denotes
the dual of (X, 7). Since X"= X by Cor. 3.17(f), the proof is complete. 1

Theorem 3.39 (Krein-Milman). Let (X, 7) be a T, topological vector space over K with
the property that Xseparates points on X. If K C X is compact and convex, then K
is the closed convex hull of its extreme points, i.e.

K = conv(ex(K)). (3.28)

Proof. The main ingredients are Prop. 3.38 and another application of Hausdor [’sIMax-
imality Principle of Th. 3.23. If K = (), then there is nothing to prove. Thus, assume
K # (). Define

P :={E C K: E nonempty, compact, extreme set of K}

and note K € P. We will use the following two properties of P:

L1 L1
(1) Foreach ) Z M C P,wehave o yE=0or gEcP
(2) IfE € P, aec XYand p:=max{Rea(x) : x € E}, then

Eq ={X€E: Rea(x) =pu} e P.

L1
(1): LetC:= g E. Since (X,7) is T, C is compact by [Phil6b, Prop. 3.11(b)]; C
is an extreme set of K by Lem. 3.36.

(2): Let E € P and a € XY Then p = max{Rea(x) : x € E} is well-defined, since
() # E is compact and Rea is continuous. As a closed subset of the compact set E,
Eq Is compact. Suppose p =sx+ (1 —s)y € Eq with X,y e K and 0 <s < 1. Then
p € E implies X,y € E, i.e. Rea(x) < p and Rea(y) < u. Since Rea(p) = 4 and Rea
is linear, this implies Rea(x) = p = Rea(y), i.e. X,y € Eq. Thus, E4 is an extreme set
of K, proving (2).

Fix S € P and define
Ps:={E€P:ECS}

partially ordered by set inclusion. Note Ps # (), as S € Ps. By Hausdor CSIMaximality
Principle of Th. 3.23, Ps contains a maximal chain C. Set

1
M = E.
E [C]1
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Since () € C and C is totally ordered, the intersection over finitely many elements of C is
always nonempty. Morever, each E € C is compact and, thus, closed (having used that
(X, T) is T, once more). Since the compact set S has the finite intersection property,
we obtain M # () and (1) implies M € Ps and M = minPs. As C is maximal, no
proper subset of M can be an element of P. Now (2) implies that each o € X"must be
constant on M. Since, by assmumption, X separates points on X, M contains precisely
one point, showing M C ex(K). Thus, we have proved

Y Snex(K) #0. (3.29)

Next, we have conv(ex(K)) C K, since K is convex, implying conv(ex(K)) C K, since
K is also closed. As a closed subset of the compact set K, conv(ex(K)) must itself be
compact. Seeking a contradiction, assume there exists X, € K\ conv(ex(K)). Then

Prop. 3.38 furnishes a € X"such that
1 1
max Rea(x) : x € conv(ex(K)) < a(Xop). (3.30)

Let p:= max{Rea(x) : x € K}. According to (2),
Kq :={x € K: Rea(x) =p} €P.

However, (3.30) implies Ky N ex(K) = § in contradiction to (3.29). Thus, K =
conv(ex(K)), completing the proof. 1

Example 3.40. (a) We apply the Krein-Milman Th. 3.39 to show, for each normed
space X, that the closed unit ball B”of the dual X always has extreme points:
From Rem. 3.31, we know

B"={a ¢ X": ||a|| < 1},

is weak*-compact. We apply the Krein-Milman Th. 3.39 with (X, 7) replaced by
(XY Twohand K := BY According to Rem. 3.22(b), the dual of (X5 Ty his ®(X),
which separates points on X"”by Rem. 3.22(a). As (X5 7wohis also T, and K is
convex and weak*-compact, Th. 3.39 implies

B"= cly,, (conv(ex(BY)),
in particular, ex(BY # 0.

(b) The spaces ¢q and L([0, 1], £, A!) can not be isometrically isomorphic to the dual
of any normed space: According to Ex. 3.37(d),(e), the closed unit balls of ¢, and of
L1([0, 1], £, A1), respectively, do not have any extreme points. On the other hand,
we know from (@), that the closed unit ball of every dual of a normed space always
has extreme points.
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4 Duality, Representation Theorems

4.1 General Normed Space, Adjoint Operators

While the weak*-topology 7. —is defined on the dual X"for every topological vector
space (cf. Rem. and Def. 3.21, Rem. 3.22), for normed spaces (X, || - ||), there turns out
to be an even more natural and useful topology on X5 namely the topology induced by
the so-called operator norm on X"(in special cases, we have encountered this norm and
topology before).

Definition 4.1. Let (X, | - [|x) and (Y, || - |ly) be normed vector spaces over K and let
A X — Y be linear (in this context, the map A is often called a (linear) operator).

The number
Ax||
” YixeX, x Z0

Al =
Al =sup T

=sup [JAX|ly : xe X, |[X]|]x <1
=sup ||AX]ly : xe€ X, [[X|[x =1 €0, ] (4.2)

is called the operator norm of A induced by |- ||x and || - ||y (strictly speaking, the term
operator norm is only justified if the value is finite, but it is often convenient to use the
term in the generalized way defined here).

From now on, the space index of a norm will usually be suppressed, i.e. we write just
| - || instead of both || - ||x and || - ||y, and also use the same symbol for the operator
norm.

Theorem 4.2. Let (X, || -||) and (Y, || - ||) be normed vector spaces over K.

(a) The operator norm does, indeed, constitute a norm on the set of bounded linear
maps L(X,Y).

(b) If A € L(X,Y), then ||A| is the smallest Lipschitz constant for A, i.e. ||A] is a
Lipschitz constant for A and ||[Ax — Ay| < L||x —y|| for each x,y € X implies
1A < L.

(c) If (Y, || -] is a Banach space, then (L(X,Y),] - ||) is a Banach space as well (this
holds, indeed, even if (X, || - ||) is not a Banach space).
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Proof. We leave the proofs of (a) and (b) as an exercise.

(c): Assuming Y to be complete, we show (L(X,Y),] - ||) to be complete: Let (An)nmn
be a Cauchy sequence in £L(X,Y). Fix x € X. According to (b),

Vo IAmG) = An Ol < |Am — Anll[x]], (4.2)

m,

showing (An(X))nmnto be Cauchy in Y. As Y is complete, there exists A(x) € Y such
that A(X) = lim,_ o An(X), defining a map

A: X —Y, AX) := lim Ay(X).
n - oo

As a pointwise limit of linear maps, A is linear by Prop. 2.16. Let [& R*. From (4.2),
we obtain
v v [Am(X) — An(X)|| < L]
NN mn>N x[X] XI=1

implying, as limy, . o Am(X) = A(X),

S el 1AG =G0 < @3

Thus,

xI=1
T etz ACOT S TAG) = AnGll + [AnG < T3 [[Anl]

showing A € £(X,Y). From (4.3), we obtain lim,_ ||[A — A,|| = 0, completing the
proof. 1

Corollary 4.3. For a linear map A : X — Y between two normed vector spaces
O, 1] -] and (Y, || - ||) over K, the following statements are equivalent:

(a) A is bounded.

(b) Al < .

(c) A is Lipschitz continuous.
(d) A is continuous.

(e) There is Xg € X such that A is continuous at Xo.
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Proof. The equivalence of (a), (c), (d), (e) is due to Th. 1.32 and [Phil6b, Th. 2.22].

“(b) = (a)”: Let ||A]| < oo and let M C X be bounded. Then there is r > 0 such that
M C B((0). Moreover,

o IAXIE< (AT < rlIAf,
showing A(M) C B, (D). Thus, A(M) is bounded, thereby establishing the case.

“(a) = (b)™: Since A is bounded, it maps the bounded set B.(0) € X into some
bounded subset of Y. Thus, there is r > 0 such that A(B1(0)) € B,(0) C Y. In
particular, ||Ax|| < r for each x € X satisfying ||x|| = 1, showing ||A|| <r < oco. 1

The most important special case of the above considerations is the case Y = K, where
L(X,Y) = XY which we treat in the following corollary:

Corollary 4.4. Let (X, || - ||) be a normed vector space over K and consider (X5 - |,
i.e. the dual with the operator norm according to Def. 4.1 ((X5||-||) is called the normed
dual of the normed space X).

(@) (X - | is a Banach space (even if X is not).

(b) BY:= {a € X": ||a|| <1} is weak*-compact.
Proof. (a) is due to Th. 4.2(c), as K is a Banach space; (b) is due to Rem. 3.31. 1

Let (X, | -||) be a normed vector space over K. Recall the map ® on X from Rem. and
Def. 3.21, X — ®(x) = f, where

o XP— K, (o) := a(x).

As X is a normed space, X separates points on X, @ is injective, and we may identify
x with ®(x). Thus, if a € X5 then a acts on x and x acts on a, the result being a(x)
is both cases. This symmetry (or duality) gives rise to the following notation:

Definition 4.5. Let (X, || - ||) be a normed vector space over K.
(a) The map
() X x XP— K, (x,0):=a(x), (4.4)

is called the dual pairing corresponding to X.

(b) The normed dual of (XY
writes X™:= (X§Y

- |]) is called the bidual or the second dual of X. One
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(c) The map @ : X — X™Tis called the canonical embedding of X into X™(cf. Th. 4.6
below). The space X is called reflexive if, and only if, the map ® is surjective, i.e.
if, and only if, ® constitutes an isometric isomorphism between X and its bidual.

Theorem 4.6. Let (X, ||-||x) be @ normed vector space over K. The canonical embedding
® : X — X™does, indeed, map into X™ It constitutes an isometric isomorphism
between X and a subspace ®(X) of X™ Moreover, if X is a Banach space, then ®(X)
is closed (i.e. a Banach space).

Proof. By the definition of the operator norm,

YooY 1000(@)] = [aGd)] < [lallxox]ix,
showing ®(x) to be a bounded linear functional on X"(i.e. ®(x) € X5 and ||®(X)||xm<
IX|][x. On the other hand, given x € X, by the Hahn-Banach Cor. 3.4(b), there exists
a € X5such that

[P (@)] = [a()] = [Ix][x,

implying ||®(X)||xm = ||X|[x. Thus, ® is an isometric isomorphism onto ®(X). In
particular, if X is complete, then so is ®(X), showing ®(X) to be Banach as well as a
closed subspace of X™ —1

Remark 4.7. Let (X, ||-||) be a normed vector space over K with normed dual (X5 ||-|).

(a) Clearly, the dual pairing, as defined in (4.4), is bilinear.

(b) Consider the following three topologies on X% The (operator) norm topology 7"
(also called the strong topology on X9, the weak*-topology 7. and the weak
topology (i.e. the X™topology) 7, Since ®(X) € X™ we have

Twre T C TH

that means, the strong topology is, indeed, the strongest of the three, whereas the
weak*-topology is the weakest. If dimX = n € N, then X®= XY=~ K" and all
three topologies are the same (cf. Ex. 3.18(a)). If dim X = oo, then dim X"= oo
and we know that 7. is strictly weaker than 7" according to Ex. 3.18(b), implying
Twto be strictly weaker than 7 as well. If X is reflexive, then 7,;'= T, {since
®(X) = XB. In general, Ty —can be strictly weaker than 7.5 but 7. does not
appear to be of particular use in such cases (for an example, where 7, s strictly
weaker, see Ex. 4.8(e) below).

Example 4.8. (a) If (X, | - ||) is @ normed vector space over K, dimX = n € N, then
XM= X P KN (cf. Rem. 4.7(b) above). In particular, (X, || - ||) is reflexive.
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(b) If X, |- |]) is a normed vector space over K that is not a Banach space, then it can
never be reflexive, since X ™is always a Banach space.

(c) In Sec. 4.2 below, we will see that every Hilbert space is reflexive. In Sec. 4.4 below,
we will see that, for each measure space (Q, .4, ) and each 1 < p < oo, LP(p) is
reflexive.

(d) As a caveat, we note that it can occur that a Banach space (X, || -||) is isometrically
isomorphic to its bidual, but not reflexive, i.e. the canonical embedding ® is not
surjective, but there exists a dilerent isometric isomorphism ¢ : X = X ¢ #
®. An example of such a Banach space was constructed by R.C. James in 1951
(see [Werll, Excercise 1.4.8] and [Werll, page 105] for the definition and further
references).

(e) The spaces ¢ and L([0, 1], £*, A1) are not reflexive, since we know from Ex. 3.40(b)
that they are not isometrically isomorphic to the dual of any normed space. For
Co, We know (co)” = I' from Prop. 2.32(b). In Sec. 4.4 below, we will see that
(Co)™= (1Y) 1. As before, let ey, k € N, denote the standard unit vector in KN.
Then (ex)xmnis a sequence in 1. If X = (X )k mnis in co, then

lim (x, ex) = kI|m Xi(ek)i = kI|m Xk =0,
_, 00 — 00 i=1 _ 00

showing ex weak*-converges to 0. However, o := (1)xmmis an element of 1*° and

__1
vV ale) = ()i =1,

k NI .
i=1

showing that e, does not converge to 0 in the (co)™topology on (co)5 showing the
weak*-topology on (co)™to be strictly weaker than the weak topology on (co)"(i.e.
TwL L} in terms of the notation from Rem. 4.7(b)).

Definition 4.9. Let (X, || - |]), (Y, - ||) be normed vector spaces over K, A € L(X,Y).
Then the map

A”: YP— XH A AB)(X) = (x, A{B)) := B(A(X)) = (A(X),B)  (4.5)

is called the adjoint operator or just the adjoint of A. Caveat: In Hilbert spaces X,Y,
the present adjoint is, in general, not the same as the Hilbert adjoint to be defined in
Sec. 4.2 below.
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Note that the dual pairings in (4.5) are defined on diLerent spaces. Still, in particular
when dealing with adjoint operators, the dual pairing notation is quite useful, since we
see we can move a linear operator across the comma in a dual pairing, provided we
replace the operator by its adjoint.

Lemma 4.10. Let OX, |- 1), (Y,|l - 1), (Z, || - |I) be normed vector spaces over K and
consider A € L(X,Y), B € L(Y,Z). Then

1B oAl < |[BI[IA] (4.6)

holds with respect to the corresponding operator norms.

Proof. Let x € X with ||x|| = 1. If Ax =0, then ||B(A(X))|| =0 < ||B]| ||A]|. If AX # 0,

then one estimates
s A B
BlwoH jaxi Bl o Hiaie

thereby establishing the case. 1

Definition 4.11. Let (X, | - ||) be a normed vector spaces over K and let V C X be a
vector subspace. Then the vector space
1 1

VELE ae X v (x0a) =0 4.7)

X

is called the annihilator of V (analogously, one can define the annihilator V =& X of a
subspace V of X5.

Theorem 4.12. Let (X, || -

), (Y, || - |]) be normed vector spaces over K.

(a) For each A € £(X,Y), the adjoint A"is well-defined by Def. 4.9, i.e. A(B) ¢ X"
for each B € Y Moreover, A"is the unique map on Y Ysuch that (4.5) holds.

(b) One has that A — Ais a (linear) isometric isomorphism of £(X,Y) onto a sub-
space of £(Y 1} X5 (not necessarily surjective onto £(Y 1} X5, see Ex. 4.13(c) below).

(©) (Idx)"= ldxa
(d) If(Z,]-]]) is another normed vector space over K, A € £L(X,Y), B € L(Y,Z), then

(B o A)"= A% B (4.8)
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(e) If dx : X — X™and &y : Y — Y Mare the canonical embeddings, then

v A by = dy 0 A (4.9)
ALQX,Y)

(thus, we can interpret A™as an extension of A from X to X™. Moreover, B €
L(Y FXY is an adjoint of some A € £(X,Y) if, and only if, B{®x (X)) C ®y (Y).
(f) If Ac L(X,Y), then ker(AY = (A(X)) -
(g) If X,Y are both Banach spaces and A € £(X,Y), then A7t ¢ £(Y, X) exists if,
and only if, (A5~ € £(X5Y Y exists, and, in that case,
(AY = (A (4.10)

Proof. (a): IfA € L(X,Y),B €Y' then A(B) =BoA € X5 as both A and B are linear
and continuous. For each B € Y5 x — (A(x),B) uniquely determines a map AXB) on
X, i.e. B — AXP) is uniquely determined by (4.5).

(b): Exercise.
(c): One has

Y (0T = a),

showing (ldx)"= ldx
(d): Exercise.

(e): We have to show A{dx (X)) = ®y (A(x)) for each x € X. To thisend, let B € Y
and compute

L] [ P N Iy I Sy I L] L]
AN Ox())(B) = Ox(x) A(B) = A{B) () =B(AX) = Oy (AX)) (B),

proving the desired identity. Now let B € £(Y 7 X5. Suppose, there exists A € L(X,Y)
such that B = AY Then

B{Ox (X)) = ATox (X)) = @y (A(X)) C By (Y).
Conversely, assume B(®x (X)) C @y (Y). Then we can define
A: X —Y, A=0"0B% dy.

In consequence,
4.9
AT oy ) oy 0 A = B 0y,

implying A™= B As we know from (b) that forming the adjoint is an injective map,
AP=B,
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(f): We have

Beker(A) « ¥V AP)X)=(AX).B)=0 <« Be(AX)

(9): Exercise. 1

Example 4.13. (a) Let m,n € N, let X be K" and Y be K™, each with the norm
topology. Then £(X,Y) = K™ and each A € L£(X,Y) can be represented by

..........

.....

(B1,---,Bm) € YHand x = (Xy,...,Xn)t € X, where we interpret B as a row vector
and x as a column vector such that the application of the respective linear maps is
just matrix multiplication with the representing matrices. Then

(BA)X = (A'BY)'x = B(AX), (4.11)

which holds due to matrix multiplication being associative. Note that, even for
K = C, the adjoint is just the transpose, without complex conjugation (in contrast
to the Hilbert adjoint of Sec. 4.2 below).

(b) Consider the left shift operator
A co — Co, A(Xl,Xz,...):: (X2,X3,...).

We know from Prop. 2.32(b) that (co)™= I*. We claim that the adjoint is the right
shift operator

A 1P — 1t Afag,a,...):=(0,a,a,...):

Indeed,
(
v 4 a(AXx) = aXk+1 = A(a)(X).
o @ Xtz ) e )
(c) Consider 1 1

S
B: I —1I', B(aa...):= a., 0,0,...

k=1

We will see in Sec. 4.4 below that (1*)”=¢ 1*°, where the assignment rule is still the
same as for the isomorphism (co)™= I'. Here, we use this to verify

BD: 1 — Ioo, Ble,bz, . ) = (bl,bl,bl, .. ) .
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Indeed,
e b {
B=(b )k [N a=(a) (g [121 B(Ba) - 18k B)(a)

In particular, we see that Bcy) Z co. Thus, according to Th. 4.12(e), B is not
the adjoint of some A € £(co,Co), showing ": £(co,co) — L((Co)5 (co)Y is not
surjective.

4.2 Hilbert Space, Riesz Representation Theorem |

Let X be a vector space over K and let (-,-) be an inner product (also called a scalar
product) on X. We know from [Phil6b, Prop. 1.65] that the inner product induces a
norm on X via 1
-1l X =Ry, X[ = (X, X).

In [Phil6b, Def. 1.66], we called X, (-,-) an inner product space or a pre-Hilbert space.
Moreover, we called an inner product space a Hilbert space if, and only if, it was complete
(i.e. a Banach space).

L] L1
Theorem 4.14. Let X, (-,-) be an inner product space over K with induced norm || -||.
Then the following assertions hold true:

(a) Cauchy-Schwarz Inequality:

o) < Iyl

(b) For each x,y € X, the maps

o, X — K, oya):=(@ay),
Bx: X — K, Bx(d):=(x,a),

are both continuous (ay is linear, B« is conjugate-linear).
(c) Parallelogram Law:

) ) L1 ) 2I:I
VX FY[TH X = ylT =2 [x]T + ly]T (4.12)
X,y X1

(d) If K=R, then

V_o(Xy) =
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If K=C, then
11 . ) . ] ]
VoY) =5 Ix+yllP = Ix—ylP+ilx+iy]> —illx—iy| .
x,y X1 4

Proof. (a) was proved as [Phil6b, Th. 1.64].
(b) holds, as (a) says that a, and Bx are bounded linear functionals on X.

(c): The computation

[+ y 17+ [Ix = I = XU+ 06 y) ) + Iy 7+ 11X = 0y) = (v, ) + Y1
=2 [Ix|* + [lyll*

proves (4.12).
(d): If K=R, then

% +y[? =[x —y[|* = 4(x,y).
If K=C, then

Ix +y[* =[x =yl + illx +iy[|* — i x — iy||* = 4Re(x, y) + 4i Re(x, iy)
= 4Re(x,y) +41Im(x,y) = 4(x,y),

proving (d). 1

One can actually also show (with more e [ort) that a normed space that satisfies (4.12)
must be an inner product space, see, e.g., [Werll, Th. V.1.7].

Example 4.15. (a) Let (Q, A, ) be a measure space, Q # (). Then L?() constitutes
a Hilbert space, where | - ||, on L?(u) is induced by the inner product
L1

()0 L2 x L2 () — K, (f,9) = fodus (4.13)

First, note that (4.13) is well-defined, since fg € L(u) by the Holder inequality.
We now verify that (4.13), indeed, defines apnner product: If f € L2(w), f #0,
then there exists A € A with p(A) >0and , [f|*du >0, implying
1 1
(F.f)=[fPdp > [f|>du >0.
Q A

Next, let f,g,h € L?(n) and A, p € K. One computes
1 ] 1

(Mf +pg,h)y = (Af+pg)hdy =N  fhdu +p  ghdu = A(f,h) +uA(g, h).
Q

Q Q
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Moreover, ] -

v (fg)= fgdu= Tgdu={(gf),
foagy (09T Todw= Tgdu=(g.f)

showing (-, -) to be an inner product on L2(p). That the inner product induces the
2-norm on L2(u) is immediate from the definition of the 2-norm. Finally, L2(J) is
a Hilbert space, since it is complete by [Phil7, Th. 2.44(a)].

(b) As aspecial case of (a), consider (S, P(S), 1), where S # () is a set and [ is counting
measure on S (cf. [Phil7, Ex. 1.12(b)]) and define

12(S) := L%(S, P(S), W.
Then 12 = 1?(N). In general,

1 {seS: f%s% # 0} is finite or countable [—
2 — . .
)= 155 = Kiand ()l <o 1
s[S]

1
where, due to the given absolute convergence, the sum < f(s)|? can be evaluated
using an arbitrary enumeration of {s € S : f(s) # 0}. If f,g € 12(S), then, by the
Holder inequality, fg € I*(S) := LY(S, P(S), n) and

L] 1
(f,g)= fgdu = f(s)g(s)
S s[S1

is well-defined.

(c) As an example of an inner product space that is not a Hilbert space consider the
space Cqg of sequences in K that are finally constant and equal to 0 with the 2-norm.
Then ¢y is a vector subspace of 12, but not complete: Define

X = (Xp)nmni= (2_17 272, D)
L1

K sk k. Xn forn<Kk,
kaSD X2= Kadnows X 0 forn>k.

Then limy . X* = x in 12 and (xX)xmnis a Cauchy sequence. However, X € Cgo,
showing cqoo nNot to be complete.

L] ]
Definition 4.16. Let X, (-,-) be an inner product space over K.

(a) x,y € X are called orthogonal or perpendicular (denoted x L y) if, and only if,
(x,y) =0.
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(b) Let E C X. Define the perpendicular space E “tb E (called E perp) by
1 1

ED= yeX: Vo (xy)=0 . (4.14)

L] L]
Lemma 4.17. Let X, (-,-) be an inner product space over K, E C X.
(@) EnE™E {0}.

(b) E C (EHT
(c) Ei$ a closed vector subspace of X.

Proof. (a): If x € E N E5then (x,x) =0, implying x = 0.
(b): If x € E and y € E “-then (x,y) = 0, showing x € (E 5™
(c): We have 0 € E “dnd

AuIK yl,yszzI:' x%ﬂ (X, Ay1 + Uy2) = A(X, Y1) + (X, y2) =0,

showing Ay; + Hy, € E 5.e. E 58 a vector space. Using the notation from Th. 4.14(b),
we have

i
E = Bx ({O})l

x [E]1

where each set B ({0} is closed (as Bx is continuous), showing E ™to be closed as
well. 1

] ]
Theorem 4.18 (Projection Theorem). Let H,(-,-) be a Hilbert space over K with
induced norm || - ||. Let Xo € H. If C C H is nonempty, closed, and convex, then there
exists a unique y € C such that

ly — Xo|| = inf{||x — Xo|| : x € C}. (4.15)

Proof. First, consider X, = 0. Set d := inf{||x|| : x € C}. For X,y € H, apply the
parallelogram law (4.12) to Zx and 1y to obtain

1 PR ST S ST +y E
—_ — —_ + — —
Tl = yIP = x|+ 2y @ﬁz

If X,y € C, then the convexity of C implies 3 € C and, thus,

V) = ylP < 2]+ 2]ly][* — 4% (4.16)
X,y [C]
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In particular, if x,y € C with ||x|| = |ly|| = 9, then x =y, proving the uniqueness
statement of the theorem. According to the definition of 8, there exists a sequence
(Ch)nmnin C such that & = lim,_ « ||Cn||. Applying (4.16) with x := ¢, and y := ¢, for
m, n € N, shows (c,)nmpto be a Cauchy sequence in H. As H is complete, there exists
y ;= Ilim,_Ch € H. Since C is closed, we know y € C as well. By the continuity of
the norm, |ly|| = limy_ ||Cn|| = 0, proving (4.15). Now let X, € H be arbitrary. Then
we know from above that C — X, contains a unique Yo such that

Yol = inf{||x| : x € C —xo} = inf{||x — Xo|| : x € C},
implying y := Yo + Xo to be the unique element of C, satisfying (4.15). L1

L] L]
Lemma 4.19. Let X, (-,-) be an inner product space over K with induced norm |- ||.
Let C C X be convex, y € C. Then, given Xy € X, (4.15) is equivalent to

VY Re(Xo—Yy,x—y)<0. (4.17)

x [C]

Proof. Exercise. —1

Theorem 4.20 (Orthogonal Projection Theorem). Let I:lH () I:ble a Hilbert space over
K with induced norm || - ||. Let V C H be a closed vector subspace of H. Then Th. 4.18
gives rise to maps

P :H—V, PyjcaH —VE!

where, given Xy € H, Py (Xo) (resp. Py c{Xo)) is the unique elementy € V (resp. y €
V B'satisfying the equivalent conditions (4.15) and (4.17) with C replaced by V (resp.
with C replaced by V 5! Then the map Py (resp. Py o)is called the orthogonal projection
onto V (resp. onto V 5! Moreover, the following assertions hold true:

(a) For each xo € H, Py (Xo) and Py {X,) are the nearest points to X, in V and in V &
respectively.

(b) Given xq € H, Py (Xo) is the unique element of V, satisfying

L (V,Xo — Py (Xp)) =0 (4.18)

(justifying the name orthogonal projection).

(c) Py and P, —are continuous linear maps with ker(Py) =V “and ker(Py r)»=V. If
V # {0}, then ||Py || = 1; if V # H, then ||Py cth=1.

(d) Py = Id—Py.
(e) H=V gV
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(f) V = (v 5
(@) [IX[I> = [[Pv (9 + [Py c€x)||? holds for each x € H.

Proof. (a) is merely a restatement of (4.15).
(b): Let xo € H. According to (4.17),

v RE<X0 — PV (Xo), vV — P\/ (X0)> < 0,

\VARVA]

which, as v — v — Py (Xp) is a bijection on V, is equivalent to

vm Re(Xo — Py (Xo), V) < 0. (4.19)

\"

Since, for each v € V, (4.19) also holds for v replaced by —v and by iv (for K = C), we
see that Py (Xo) satisfies (4.18). Conversely, if (4.18) holds, then we can use the bijection
v — VvV — Py (Xy) on V again to conclude

LI (o= Pyv(x0), v—Py (X)) =0,
which implies (4.17) (even with equality and without Re, which is due to V being a
vector subspace).
We can restate (b) by saying Py (Xo) is the unique element of V such that xo — Py (Xo) €
V E-Thus, if A\, p € K and x1, X, € H, then
L] L1 [ 1
AXp — APy (X1) + pxz — MPy(x) €V 5
showing
Pv (AXy + pX2) = APy (X1) + HPy (X2),

i.e. Py is linear. Next, we obtain
Pi(X)) =0 < XxoeVH!

proving ker(Py) = V “-'From (4.18), we see that Id —Py is a linear map, mapping H
into V =-Thus, combining

vV Xo = Py (Xo) +Xo — Pv (X0) = Py (Xo) + (Id —Pv )(Xo)
Xo [HI1
with Lem. 4.17(a) proves (e). From Lem. 4.17(b), we know V C (V HTf x ¢ (v B
write X = X; + X, With X; € V, X, € V 5-Since x, = x — x; € (V HTAV 5-ve obtain
X =0and x =x; € V, proving (f).
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To prove (d), note that one can replace V by V h the above arguments, i.e. we
already know P, —to be a linear map with ker(Py c)»= (V 5=V and such that, for
each Xo € H, Py c{Xo) is the unique element of V =With xo — Py {xo) € (V D=2 V.
Since y := (Id —Py )(Xo) € V HHas the property Xo —y = Xo — Xg + Py (Xo) € V, the
proof of (d) is complete.

(g): Since, for each x € X, x = Py (X) + Py fx) as well as Py (x) L Py £x), (g) is
immediate from Pythagoras’ theorem of [Phil6b, (1.48)].

If |x|| = 1, then (g) implies
IPv Ol =1 —[[Py X)[| < 1,

showing ||Py || < 1. If there exists 0 # v € V, then Py (v) = v, showing [Py || = 1.
Replacing V by V Sshows ||Py =1 for V # H, completing the proof of (c) and the
theorem. 1

] (I
Theorem 4.21 (Riesz Representation Theorem). Let H,(-,-) be a Hilbert space over
K with induced norm || - ||. Then the map

v:H-—HY wy):=aqy, (4.20)
where
o,: H—K, oya)={@y),

is the map from Th. 4.14(b), is bijective, conjugate-linear, and isometric (in particular,
each a € HYcan be represented by y € H with [ly|| = |a||, and ¢ is an isometric
isomorphism (i.e. linear) for K = R).

Proof. We already know from Th. 4.14(b) that, for each y € H, ay is linear and contin-
uous, i.e. U is well-defined. Moreover,

v Y v WYL + Hy2)(@) = (&, Ay1 + Wy2) =A@, y1) + H(a, Y2)
AMIKI y1yz (HI alHl = (AW(y) + HY(y2))(a),

showing Y to be conjugate-linear. By the Cauchy-Schwarz inequality, we have

G

showing [|[W(y)|| < |ly||- On the other hand, if y # 0, then

WM _ y.y)
1yl Iyl

= lyll,
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showing [|[@(y)|| = ||y||, i-e. W is isometric and, in particular, injective (so far, we have
actually not used that H is complete). It remains to show, (i is surjective. Let a € HY
o # 0,V :=ker(a). Then V is a closed vector subspace of H, H =V @V Sy Th.
4.20(e), and, as a # 0, V= {0}. Let x € H and let z € V "He such that ||z|| = 1.
Moreover, let u := (a(x))z — (a(z))x. Then a(u) =0, i.e. u eV and (u,z) =0. Thus,

a(x) = a(x)(z,z) — (u,z) = a(z)(x,z).
In consequence, if y := a(z) z, then

WYX = (X y) = a(z){x,z) = ax).

Since x € H was arbitrary, this proves Y(y) = a, i.e. Y is sujective. 1

L] L]
Corollary 4.22. Let H,(-,-) be a Hilbert space over K with induced norm || - ||.

(a) H"is a Hilbert space over K, where, using the map § of (4.20),

() HOXHP—= K, (0, B) := (@7 (B), v (@), (4.21)
defines an inner product on HY satisfying, with regard to the operator norm on HY

vl = (aa.

(b) H is reflexive.

(c) A sequence (Xx)k mconverges weakly to x € H if, and only if,

L Jim ) = (x,y). (4.22)

Proof. (a): As we already know (H"||-||) to be a Banach space, we merely need to check
that (4.21) defines an inner product that induces the operator norm. If 0 # a € HY
then x .= ¢~ () #0, i.e. (a,a) = (x,x) > 0. Next, let o, B,y € HYand A, u € K. One
computes

D—l -1 L] I:I—l N1 -1 -
(Aa+pB,y) = Y2 (), WA EER) = WTHY), AW () + YR
=APTHY), UTHa) +pTHY), UTHB)
= Aa,y) + u(B,y).

Moreover,

(o, B) = (W (B), WH(@) = (Wi(0), y~H(B)) = (B. ),
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proving (4.21) to define an inner product on H" Moreover,

1 —
v llal =Tl = @), i) = (a,a),

a @

showing that the inner product defined by (4.21) induces the operator norm on H"

(b): Asin (a), let y : H — H"be the map of (4.20). Let T be the corresponding map
on HY i.e.
T: H"— HT 1(a) :=f,,

where
fo: H'— K, fo(B) = (B, ) = (¢~ (a), y™(B)).

From Th. 4.21, we know ¢ and t to be surjective. Thus, if we can show that the
canonical embedding satisfies

o:H—HY o=r1o0y, (4.23)
then @ is surjective and H reflexive. Indeed, we have

VoY 000(@) = at) = (x,uTH() = (a, () = (T)))(@) = (T o W)(x)(a),

x [H]

proving (4.23) and H to be reflexive.
(c) follows by combining (3.17) with Th. 4.21. 1

] ]
Remark 4.23. Let H,(-,-)4 be a Hilbert space over K. Let (:,-)qobe the inner
product on H5given by (4.21). Moreover, let (-,-) : H x HY— K denote the dual
pairing according to (4.4). If ¢ : H — His the map of (4.20), then

LY a0 = (6,00 = (X)) = (0, W)k (4.24)
o L] Ll .

Definition 4.24. Let X, (-,-) be an inner product space over K and S C X. Then S
is an orthogonal system if, and only if, x L y for each X,y € S with X # y. Moreover,
S is called an orthonormal system if, and only if, S is an orthogonal system consisting
entirely of unit vectors (i.e. S C S;(0)). Finally, S is called an orthonormal basis if, and
only if, it is a maximal orthonormal system in the sense that, if SCT C X and T is an
orthonormal system, then S = T (caveat: an orthonormal basis of X is not necessarily
a vector space basis of X, see below).

Example 4.25. Consider the Hilbert space H := L?([0, 2rt], £, A). For each n € N,

define )
sinnt

f.:[0,2n] — R, Tf,(t):= Nl
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Then S := {f, : n € N} constitutes an orthonormal system in H: One computes, for
each m,n € N,

L1
(f f>—1gnsin2ntdt -1 E——Sinntcosnt@—l
A oy o2 2n 0
1 : :
(Fm, fn) = = sinmtsinntdt
nli‘l =
_ 1 sinmtcosnt — cosmtsinnt  sinmtcos nt — cos mtsin nt
T 2(m — n) 2(m + n) o
=0 form=#n.

The set S from above is not an orthonormal basis (cf. [Werll, Ex. V.4(a)]).

L] L1
Theorem 4.26. Let X, (-,-) be an inner product space over K with induced norm ||-||.
Let S C X be an orthonormal system.

(a) Bessel Inequality: If S = {e,: n € N}, then

v [{x, en) * < [IX]%. (4.25)
x X1 h=1
(b) If S ={en: n e N}, then
) I
oo e eny)l < oo

() IfS={en:neN},xeX,and x = n;;=l)\n en With A, € K, then A\, = (X, e,) for
each n € N (i.e. the coe [ciehts, called Fourier coe [ciehts®, are uniquely determined
by S and x).

(d) For each x € X, the set Sy :={e € S: (x,e) # 0} is finite or countable.
Proof. (a): Let x € X. For each N € N, define Xy :=X — n;=1£X, en)en. Then

(xN,ek) = <X, ek) — <X, ek)(ek, ek> =0

3Originally, the term Fourier coe [ciehts comes from the Hilbert space H := L2([0, 2m], £, AY) of
Ex. 4.25, using trigonometric functions such as the f, of Ex. 4.25 (together with corresponding cosine
functions) as orthonormal basis functions. For f € H, the expansion of T into a series with respect to
such basis vectors is a (traditional) Fourier series and the corresponding coe Lciehts are (traditional)
Fourier coe Lciehts.
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and, from Pythagoras’ theorem [Phil6b, (1.48)],

| S | 1
X2 = K+ (xen)en [ IXn 12+ [ (xen)en [T [Ixn]Z+ [(Xen)[?
1 n=1 n

=1

| —
> [{x.en)l.

n=1
Letting N — oo in the above inequality proves (4.25).

(b): Let x,y € X. According to (a), the sequences ((X,en))nma ({Y,€n))nmnare in I2.
Then, by Holder’s inequality, ((X,en){en,Y))nma< I}, proving (b).

(©): Ifx= 2, Ane, with A, € K, then the orthonormality of the e, implies

YV (X,en) = An(€n,en) = An.

n [N

(d): Let x € X. According te-(g), for each n € N, the set Sy, == {e € S: [(x,e)| > =
must be finite. Thus, Sy = | [ Sx,n Must be finite or countable. —1

] 1]
Example 4.27. Let H,(-,-) be a Hilbert space over K with induced norm || - ||. Let
{en : n € N} C H be an orthonormal system. If a € HY then, according to the Riesz
Representation Th. 4.21, there exists y € H such that a(x) = (x,y) for each x € X.

Thus,

Y aen) = (en,y) 37 0= a(0),

n [N

showing e, 010N the other hand (e,)nmndoes not converge strongly to 0 — actually,
as

lem — €nl|* = (ém — €n, ém — €n)
= |lem||* — 2Re(em,en) + |len|* =2 for each m #n, (4.26)

(en)nmnis Not even a Cauchy sequence. A concrete example is given by the orthonormal
sine functions f, from EXx. 4.25.

Definition 4.28. Let (X, ||-||) be a normed vector space over K (the following definition
actually still makes sense if X is merely a topological space on which an addition with
| element 0O is defined). Let (X;)i e a family in X. Then we say that the “series”

i i converges unconditionally to x € X if, and only if, (i) and (ii) hold, where

(i) Theset Ip:={i €l : x; # 0} is finite or countable.
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(ii) For each enumeration Iy = {iy, iy, ...} of lo, one has n;;=1 Xi, = X ( the sum
must be replaced by a finite sum for #1y < o0), i.e. the result of  _, X;, does
not depend on the order of summation.

If ;i converges unconditionally to x € X, then we write ; Xi = X.

As a caveat it is pointed out that, in contrast to the situation on finite-dimensional
spaces, on infinite-dimensional Banach spaces, the condition of absolute convergence is
strictly stronger than the condition of unconditional convergence (cf. [Werl1, p. 235]).

L1 L]
Corollary 4.29 (Bessel Inequality). Let X, (-,-) be an inner product space over K

with induced norm || - ||. Let S C X be an orthonormal system. Then
2 2
Y (%, &)|" < [Ix]%, (4.27)
els]

where the convergence is unconditional in the sense of Def. 4.28.

Proof. Let x € X. According to Th. 4.26(d), the set Sy := {e € S : (x,e) # 0} is
finite or countable. If Sy Iﬁiﬁu, then (4.27) is clear. If Sy is infinite and (en)nmniS an
enumeration of Sy, then ~~_ [(X,en)|> converges absolutely by—Th4.26(a), i.e. each
rearrangement of the series converges to the same number, i.e. (X, e)|? converges
unconditionally and (4.27) holds by (4.25). 1

L] L]
Theorem 4.30. Let H,(-,-) be a Hilbert space over K with induced norm || - ||. Let
S C X be an orthonormal system.

(a) For each x € H, the series egx, e) e converges unconditionally.

(b) The map 1
P:H—V:=spanS, P(X):= (x,e)e,
e[S
is the orthogonal projection onto V.

Proof. (a): Fix x € H and set Sy := {e € S : (X,e) # 0}. Then (a) is clear if S is
finite. Thus, let Sy infinite and let (en)nmobe an enumeration of Sy. We show that
the partial sums of ', (X, en) e, form a Cauchy sequence in H: The orthonormality
of the e, implies

k<| (X,en)e (X, en)| ,
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and, sinc;; 1 |{(x,en)|? converges due to the Bessel inequality (4.25), the partial

n

S f  ._;(X,en)e, are Cauchy. Since H is complete, there exists a limit y =
nzgzlgx, en)en € H. Analogousw : N — N is a bijection, then there exists a limit

for the rearranged series, yn =  _;(X, €xm)) €n(n) € H. Now
1 (o 1
v W)= (Xen) (8n2) = (X erm) (Bn(n), Z) = (Y 2),
n=1 n=1

showing y — yr € HY==% {0}, i.e. y = yu, proving (a) (at (x), we used that we may
rearrange the series, as it converges absolutely by Th. 4.26(b)).

(b): According to Th. 4.20(b), we have to show

L1 L1
1

va XYED X— (X,en)en, v =0, (4.28)
n=1
where (en)n mois an enumeration of Sy = {e € S : (x,e) # 0}, where (4.28) is equivalent

to 1 1
1

e¥53 X¥ED F(e,x):= Xx-— n=1<x,en) en, e =0. (4.29)
Fix x € H. Since S forms an orthonormal system, if e € S\ Sy, then F(e,x) =0—-0=10
and (4.29) is valid; if e € Sy, then F(e,x) = (x,e) — (x,e) -1 = 0 and (4.29) is valid
again. 1

] ]
Theorem 4.31 (Orthonormal Basis). Let H,(-,-) be a Hilbert space over K with
induced norm || - ||

(a) If S C H is an orthonormal system, then there exists an orthonormal basis B with
S € B C H (in particular, if H # {0}, then H has an orthonormal basis).

(b) Let S C H be an orthonormal system. Then the following statements are equivalent:

(i) S is an orthonormal basis.

(i) S&= {0}.
(iii) H =spansS.
(iv) x= X, e) e holds for each x € H.

(V) (X,y) = .siX €) (ey) holds for each x,y € H.
(vi) The Parseval Identity holds, i.e.
, 1
v X[T= [(xe)
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(c) Let (K, {:,-)) be another Hilbert space. Let S C H be an orthonormal basis of H
and let T C K be an orthonormal basis of K. Then H and K are isometrically
isomorphic if, and only if, #S = #T (i.e. if, and only if, there exists a bijective
map @: S —T).

Proof. (a) follows from Zorn’s lemma: Let

P:={T CH:SCT andT is orthonormal system},

partially ordered by “C”. Let C C P be a chain and define T¢ := %T. Then S C T¢
and, since C is a chain, T¢ is an orthonormal system, showing T¢ € P. Clearly, T is an
upper bound for C. Thus, Zorn’s lemma applies and P must have a maximal element,
i.e. there exists an orthonormal basis containing S. As an aside, we remark that, if
H is separable, then H has a countable orthonormal basis (see below), which can be
constructed without using Zorn’s lemma via Gram-Schmidt orthogonalization (cf. Th.
E.1 in the Appendix).

(b): “(i)=-(ii)”: If there is 0 # x € S then SU{x/||x||} is an orthonormal system, i.e.
S is not maximal.

“(ii)=-(iii)”: Let V :=spanS. Then (ii) implies V == {0}. Thus, since V is a closed
vector space,

y Th 42000 v T2 (0} 2 .
“(ii)=(iv)”: If (iii) holds, then, by Th. 4.30(b), the map X — egx, e) e must be the
identity on H.

“(iv)=(v)”: Plug the formula for x, given by (iv), into (x,y) to obtain (v) (note the
unconditional convergence due to Th. 4.26(b)).

“(V)=(vi)”: Set x =y in (v).

“(vi)=(i)”: If S is not an orthonormal basis, then the jsts x € H \ S such that
S U{x} is an orthonormal system. Then [x|| = 1, but g /(x,€e)|> =0, i.e. (vi) does
not hold.

(c): First, assume ¢ : S — T to be bijective and define

1 1
®P:H—-K, x= Aee = O(X) = Ae 0(8).
e[s] e[s]

We need to check that ®-isywell-defined, where one can argue analogous to the proof of
Th. 4.30(a): Fixx= A€ € H andset Sy :={eecS: (x,e) #0}. Note that

e¥53 Ae = (X, €).
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We need to show that Iijlkecp(e) converges unconditionally to some ®(x) € K. This
is clear if Sy is finite. Thus, let Sy qﬂnite and let (en)nmpbe an enumeration of Sy.
We show that the partial sums of Z, A¢,, @(e,) form a Cauchy sequence in K: The
orthonormality of the @(e,) implies

| 1 I |
T H Aenoen) Pealf = Ixen),
B n=k n=k

n=k

and, sinc (X,en)|? converges due to the Bessel inequality (4.25), the partial
SE’ES_—P]C n=1 e, ©(en) are Cauchy. Since K is complete, there exists a limit y =
n=1 e, 0(en) € K. But then, for each n € N, A, = (y, @(en)) must be the Fourier
coe Lcieht of y with respect to T, also implying unconditional convergence. Thus, ® is
well defined. If A,p € K and x,y € H, then
1

OAX+Hy) = (AX+py, e)o(e)

i — 1
=A (e eE) +u (Y, e) pe) = AD(X) + ud(y),
els] e[S
showing @ to be linear. Also
1 1
L1 1 1
T (@0, 0)) = (xe)0E),  (v.e)e®) = (xe)ey)=(Xy)
i e[S e[S e[S
showing @ to be isometric and injective. If
1 1
y= (yeleecK, x:= (ye0 () €H,
elMl elT]

then ®(x) =y, showing ® to be surjective. Now, conversely, assume ® : H — K to
be an isometric isomorphism. As one can recover the inner product from the norm by
Th. 4.14(d), we then also have

T (900, 0()) = (x,y).

Thus, if S is an orthonormal basis of H, then ®(S) is an orthonormal basis of K. In
consequence, we may now consider K = H, ® = Id, i.e. it only remains to show that,
if S, T are both orthonormal bases of H, then there exists a bijection ¢ : S — T. If
#S =n € N, then dimH < oo, i.e. we know #T = n from Linear Algebra. Suppose
S is infinite. For each s € S, let T := {t € T : (s,t) 70}. Then each Ts is finite or
countable and there exists a bijection ¢ : S — U := _ o Ts. However, if t € T, then
0 #t,i.e. t € U. Thus, there exists an injective map @, : T — S. One can now switch
the roles of S and T to also obtain an injective map @, : S — T. Then there exists a
bijection ¢ : S — T by the Schroder-Bernstein theorem (cf. [Phil6a, Th. A.56]). [1
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] ]
Corollary 4.32. Let H,(-,-) be a Hilbert space over K with induced norm || - ||.

(a) If S C H is an orthonormal basis, then H = 12(S), i.e. H isometrically isomorphic
to 12(S), the space defined in Ex. 4.15(b).

(b) The following statements are equivalent for H # {0}:

(1) H is separable.

(i) H has a finite or countable orthonormal basis.
(i) Each orthonormal basis of H is finite or countable.
(iv) H=K"withne Nor H =12

(c) Riesz-Fischer: 12 = L2([0, 1], £, AY).

Proof. (a) is immediate from Th. 4.31(c), since T := {X¢s3 : S € S} forms an orthonor-
mal basis of 12(S).

(b): The equivalence of (ii) — (iv) is immediate from Th. 4.31(c).

“(i)=(i)”: If S is an orthonormal basis of H, then, clearly, linear combinations of
elements from S with coe Lciehts from Q (for K = R) or from Q +iQ (for K = C) are
dense in H. Thus, if S is finite or countable, then H is separable.

“(i)=(ii)”: If S is an orthonormal basis of H, then |le — f| = /2 for each e, f € S with
e # . Thus, if S is an uncountable orthonorgal basis of H and A C H is countable,
then, for each a € A, {x € H : ||x — a|| < -2} can contain at most one element of
S (due to the triangle inequality). Thus, A can not be dense in H and H can not be
separable.

(c) follows from (b), since 1> and L2([0, 1], £*, A') both are infinite-dimensional Hilbert
spaces and both separable by [Phil7, Th. 2.47(e)]. —1

Remark 4.33. Let % (-,-)Dbe a Hilbert space over K and let B € H be an or-
thonormal basis. If dimH < oo, then B is a vector space basis* of H as well. We
show that this only occurs for dimH < oo: If B is not finite and x € H is such that
B« :={e € B: (x,e) # 0} isinfinite (clearly, such x € H always exist), then x ¢ span B
(as the Fourier coe Lciehts are unique). Thus, B can not be a vector space basis of H.

Definition 4.34. Let Hy, (), H(-,-) be Hilbert spaces over K. Moreover, let
A € L(H1,Hy), let A¥¢ L(H5 HD be the adjoint operator according to Def. 4.9, and

4Sometimes called a Hamel basis in this context.
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let ¢; : Hy — Hp P, 1 Hy — H'be the maps given by the Riesz Representation Th.
4.21. Then the map

A H, — Hy, AM=yto Aoy, (4.30)
is called the Hilbert adjoint of A.
] ] o
Corollary 4.35. Let Hi,(-,-) , Haz,(-,-) be Hilbert spaces over K, where || -|| denotes

the induced norms.

(a) For each A € L£(H4,H,), one has AY¢ L(H,,H;), and A™lis the unique map
H, — H; such that

\4 W AX,y) = (X, AY). 4.31

Y (Axy) = (xAY) (4.31)

(b) One has that A — A™s a conjugate-linear isometric bijection of £(Hy, H,) onto
‘C(H21 Hl)

(©) (Idy,) "= 1dy,.
L] L] .
(d) If Hgs, () isanother Hilbert space over K, A € L(H, Hy), B € L(H2, H3), then
(BoA)E=ASBH
(e) One has
AL A
AQH1,H2)

(f) If A € L(Hy, Hy), then ker(AY' = (A(H.)) =

(9) If A € L(H, Hy), then A~ € L(H,, Hy) exists if, and only if, (AY™ € £(Hy, H,)
exists, and, in that case,

(AH =AY
(h) A € L(H4, H,) is isometric if, and only if, A-= A™L,
Proof. (a): Let A € £(H1, H3). Then A~ £(H,, H,), since each of the maps y;*, A

W is continuous, Ais linear, and Y;* and ), are both conjugate-linear. Moreover, we
know Alis the unique map on Hsuch that

BEVE%jX[VEu AB)(X) = B(A(X)).

Thus,

VooV (AlY) = (X o AT )(y)) = Alb(0))(X) = a(Y)(AX) = (Ax,Y),

x[Hl y[H}
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proving (4.31). For each y € Hy, x — (AX,y) uniquely determines a continuous linear
functional ay : H; — K. Then the Riesz Representation Th. 4.21 and (4.31) imply
A) = wr(ay), showing ATto be uniquely determined by (4.31).

(b): If A,B € L(H;,H,) and A € K, then, for each 'y € H,
(A+B)'Y) = (Wt o (A+B)oP)(y) = (U1t o (A™+ B o g)(y)
= (Wit o Ao Uo)(y) + (U1t 0 B o ) (y) = (A BOHYY)
and
AA) ) = (W o AA) o B)(Y) = AU o Ao W) (y) = AADY),

showing A — A™to be conjugate-linear. Moreover, A — As isometric, since the maps
W1, Yo, A — AMall are isometric; A — AMs surjective, since H; and H, are reflexive.

(c): One has (Idw,) ™= Y o (Idw,) Y1 = Y7t o IdyoPs = Idy,.
(d): Let Y3 : Hz3 — Hbe given by Th. 4.21. Then
AR BEE YT o A P o Pyt o B s = Pt o (B o A)o i3 = (B o A

(e): According to (a), A™is the unique map H; — H, such that
v vV (AY x) = (y,ATX).

x[Hl y[H}
Comparing with (4.31) yields A = A™H
(f): We have
y € ker(AY < XEvK x,AY)=0 <« x|:vE|1 (Ax,y) =0 << ye(AH))=

(9): One has
A7l e L(Hy Hy) exists < (A HP= (AF ™! e £(HO HY) exists
s (AH =t o A% )Tt € £(H4, Hy) exists.
Moreover, if At € L(H,, H,) exists, then
(A" =t (A oy = (AT
(h): If A is isometric, then

A = (Ax, AAYy) = (x, A™!
oy (AXY) = (A AATY) = (X ATY),

such that (a) implies A== A%, Conversely, if A-= A™1, then

WY (AuAY) = (U ATRY) = (),

proving A to be isometric. 1
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Example 4.36. (a) Let m,n € N, let X be K" and Y be K™, each with the norm

(b)

topology. Then £(X,Y) = K™ and each A € £L(X,Y) can be represented by and

,,,,,,,,,, n}- We know from Ex. 4.13(a) that the
adjoint A”of A is represented by the transpose matrix At. Now consider K" and
K™ with the standard inner product. The map §; : X — X"according to Th.

4.21 is given by . .
X1

U] (Xl,...,Xn)I

Xn
Indeed, if a = (0y,...,a,) € XYand x = (X1, ...,%Xn)t € X, then

r— 1
ax) = oxXk = (x,aY).
k=1

We claim that the Hilbert adjoint AS6f A is represented by the conjugate transpose

..........

L1 L1
oy AY =W e AT U)Y) = bt B YA

1 11 L1
) T 1 T 1 ™ 1 ™ 1
=y, A1Yir oy anYx = AaYks - AknYk
k=1 k=1 k=1 k=1

showing A™to be represented by A

As in Ex. 4.13(b), consider the left shift operator, but this time on the Hilbert space
12:

AP — 12, A(Xy, Xo,...) = (X2, X3, ...).

The Hilbert adjoint A~bf A is, once again, the right shift operator

A 12— 12, AY,y.,...) = (O,y1,Y2,...):

Indeed,
1

V V AX, = V. X — X,A ,
Y=k 12 X=Xy )k e 12 { y) k:lyk k+1 = ( |§>

i.e. the right shift is the Hilbert adjoint by (4.31).
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4.3 Complex Measures, Radon-Nikodym Theorem

To prove the Riesz representation theorem for LP-spaces, which says that, for every
measure space (Q, A, 1), one has an isometric isomorphism (LP(u))“= Li(p) if 1 <
p < ocand ;+ ¢ =1, one needs the Radon-Nikodym theorem of measure theory,
constituting itself an extremely important result. While we thoroughly studied [0, oc]-
valued measures in [Phil7], in preparation for the Radon-Nikodym theorem, we will now
have to study so-called complex measures, which are C-valued measures.

Definition 4.37. Let (Q,.A) be a measurable space. A map u: A — C is called a
complex measure on (Q,.A) if, and only if, p satisfies the following conditions (i) and

(ii):
(i) u® =o.

(i) p is countably additive (also called g-additive), i.e., if (Ax)kmniS a sequence in A
consisting of (pairwise) disjoint sets, then
1 1
P | ) 1
M A = HAW. (4.32)
k=1 k=1

If 1 is a complex measure on (Q, A), then the triple (Q, A, ) is called a complex measure
space. A signed measure is a complex measure that is R-valued; the corresponding
measure space is then also called a signed measure space. Note that (i) is separately
stated for emphasis only, as it, clearly, follows from c-additivity (as p(f)) = oo is not
allowed). Let Mc(Q, .A) denote the set of complex measures on (Q, A), let Mgr(Q, A)
denote the set of signed measures on (Q, A).

Remark 4.38. In the present context, we will call the [0, co]-valued measures of [Phil7]
positive measures. Thus, a positive measure is a complex measure if, and only if, it is
finite; a complex measure is a positive measure if, and only if, it is Ry -valued.

L1

Lemma 4.3 j=18 b ries in C. Then j;:; 1 8; converges absolutely if, and
only if, both 57, Rea; and 7, Ima; converge absolutely.

Proof. Recall from [Phil6a, Th. 5.9(d)] that
vm max{|Rez|,|Imz|} < |z| <|Rez|+|Imz|.
z
Thus’liili;i 1 8; converges absolutely, then, as j;i . |aj| dominates both j;i . |Reaj|
aﬁg:”:l Im a; se series converge absolutely asli”;ﬂl Conversely, if both series
j—1 Reaj and 72, Ima; converge absolutely, then | Rea;| +|Ima;|) converges
absolutely as well, implying absolute convergence of 1 a;j. 1
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Remark 4.40. We know from [Phil6a, Th. 7.95(a)] that, if the series I%Iaj converges
absolutely, then every rearrangement converges to the same limit. If (Q, A, ) is a
complex measure space and (Ax)kmnlis @ sequence in A consisting of disjoint sets, then
[ffi;__ﬂ'ls?(“) impliesltlfy_ﬁlthe convergence in (4.32) is absolute: Otherwise, by Lem. 4.39,

1 ReM(AY) or | Z; Impu(Ax) were to converge, but not converge absolutely and,
then, Def. 4.37(ii) could not hold due to the Riemann rearrangement theorem [Phil6a,
Th. 7.93].

Example 4.41. (a) Let (Q,.A) be a measurable space. If p1, U2, U3, K4 are finite postive
measures on (Q, .A), then

H: A—C, W= — M +i(Hs — Ha),

constitutes a complex measure on (Q, .A): The g-additivity of u is clear, since each
M is o-additive and finite.

(b) Let (Q,.A, 1) be a positive measure space and let f : Q — C be integrable. Then
1

fu: A—C, (fWA):= fdu,
A
defines a complex measure on (Q, .A) in consequence of (a): Since
C] ]
f=(Ref)" —(Ref)" +i (ImF)* — (Imf)™

we know from [Phil7, Prop. 2.62], that each of the measures (Re f)*u, (Ref) |,
(ImF)*u, (Imf)~u is positive, and each of the measures (Ref)™u, (Ref)™q,
(Im )", (Im )~ is finite, since f is integrable.

Definition 4.42. Let (Q, A, 1) be a measure space (positive or complex). One calls the
function

f I | 1
IL|(A) :=sup ILCAK)| © (Ak mnis disjoint sequence in A with A = Ac
k=1 k N1

the total variation of the measure .

Remark 4.43. (a) Clearly, if (Q, A, 1) is a positive measure space, then |u| = p.

(b) Even thought the notation |u| for the total variation of p is customary, one has
to use some care: While |4|(A) > |u(A)| is clear from the definition of |p|, the
inequality can be strict: For example, if Q = {1, 2}, p({1}) = 1, p({2}) = —1, then
H(Q)] =0, but [u|(Q) = 2.
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We will show in Th. 4.45 below that the total variation of a complex measure always
constitutes a finite positive measure. In preparation, we provide the following lemma:

Lemma 4.44. Let N € N and z;,...,zy € C. Then there exists a set J C {1,...,N}
of indices such that

1 ¥ 1

|Zk]. (4.33)

=N

Il P
K [I1 k=1

Proof. For each k € {1,.. N}, choose ax € R such that zgz—F |z«|e'®. For each
6 € [0,2m], define J(B) ;== k € {1,...,N} : cos(ax —8) > 0 and, using [e7®| = 1,
estimate

| | 1 L 1
Zk T (S] —i9

Zv=> Re e Yz = |z| cos™ (o — 6).
LI(0) k [I(0) k=1

L.1(6)

Now note that the right-hand side in the above inequality constitutes a continuous
function of 8 and, thus, must assume its maximum on the compact interval [0, 21], say,
at 6 € [0, 2m]. Since

- -y
cos™ (o —t)dt =2 costdt = 2[sint]}’? = 2(1 — 0) = 2,
0 0
one obtains
L1
1 | — e —
Zk |z«| cos™ (ax — Bo) = o |2« | cos™ (0 — Bp)  dt
[I(80) k=1 T o |:Ik=l
1 o m— N —
> o |zx|cos™ (o —t) dt == |Zk|,
T o k=1 M =1
thereby proving the lemma. 1

Theorem 4.45. Let (Q, A, 1) be a complex measure space. Then the total variation ||
of W, as defined in Def. 4.42, constitutes a finite positive measure on (Q, A).

Proof. As p(0) = 0 implies |u|(0) = 0, to prove || constitutes a positive measure, we
have to show it is o-ad@e. Thus, let A € A and let (Ax)kmnbe a disjoint sequence
in A such that A = | A« If tx € R is such that tx < |p|(Ax), then,|49_y—|the
definition of |p|, there exists a disjoint sequence (Ax)imuin A such that Ay = | A«
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and =<5 |;=;1 H(Ak)|. Since (A, ma is a countable disjoint family in A such that
A= 1maAx, one obtains

1 L1
max{0, i} < [H(AQ)| < [H[(A),
k=1 (k) N3
implying
L1 L1
1 1
IM|(Ax) = sup max{0,t} : ¥t < [H[(A) < [HI(A).

k=1 k=1

To pr%he opposite inequality, let (E)),mpalso be a disjoint sequence in A such that
A= .. Then, for each k € N, (Ax N E))mnis a disjoint sequence in A such that
A = ,m{‘ﬁw E)), and, for each I € N, (Ax N E))xmnis a disjoint sequence in A such
that E, = kEISIﬁAk N E;). Thus,

1 | | PPPrIT 1 1
IM(ED)| = H(A N Ep) HANE)[ < [HI(AW).
=1 I=1 k=1 1I=1 k=1 k=1

As we may take the sup on the left-hand side, we obtain |u|(A) < k;;zl H|(Ax), com-

pleting the proof of the o-additivity of |u| and showing |u| to be a positive measure.

It remains to show |p| is finite, which we will accomplish arguing by contraposition.
Consider an arbitrary set E € A such that [L[(E) = oo and set t := m(1+ |pufE)}. Then
te HF there exists a disjoint sequence (Ey)kmnin A such that E = | Ex and
t< | _;H(Ex)| for some N € N. We apply Lem. 4.44 with z, := p(Ex) to obtain a
setJ C {1,...,N} such that

1 [ 1 t
B« BFH rEIRE - MEJ> =1
k

k LI k LI =1

Letting A:= |, g FE« and B := E \ A, this yields

H(B)| = I(E) — WA > (A~ W(E)| > © — [u(E)| = 1.

Thus, we have decomposed E into disjoint sets A, B with |[u|(A) > [u(A)| > 1 and
Iu|(B) > |u(B)| > 1. Since we already know |p| to be a positive measure and |U|(E) =
0o, |U[(A) or |u|(B) must be infinite. If |u|(Q) = oo, then we can now use an inductive
construction to oqﬂn_—p disjoint sequence (Ax)kmnin A such that |u(Ax)| > 1 for each
k € N. But then | Z, H(Ax) does not converge absolutely and p can not be a complex
measure. L1
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One of the advantages of complex (or signed) measures over positive measures is that
they form vector spaces:

Remark 4.46. Let (Q, .A) be a measurable space. From the rules for convergent series
in K, it is immediate that X := Mg(Q, .A) forms a vector space over K (a subspace of
the vector space KA of K-valued functions on .4). We can make X into a normed space
over K by defining

-0 X — RS, Ikl = (@) :

Let p € X. Then p = 0 implies ||u|| = 0. If u # 0, then there exists A € A4 with

H(A) # 0 implying |[p[| =(Q) = [H(A)] > 0. If A € K and (Ax)kmnis disjoint
sequence in A with Q = | A, then

S A | P 1
IAMCA| = [A| IU(A) ],

showing [|Ap| = |AR[(Q) = |A] [K[(Q) = A [[p]|. If p,v € X and (Ax)kmnas before, then

1 P 1 1
(L+VIA) < [HA+ VAL
k=1 k=1 k=1

showing ||+ V|| = [u+V|(Q) < [U[(Q) + [VI(Q) = [[u] + [[v].

Definition and Remark 4.47. (a) Let (Q, A,1) be a signed measure space. The
measures ]

I 1 10
K=o+, W= -

are called the positive variation and negative variation of , respectively. Both mea-
sures p*, u~ are actually positive, since |p|(A) > |[U(A)| for each A € A. Clearly,

H=p" =, (W =p"+u,

where the decomposition g = u™ — u~ into the diLerknce of the two positive mea-
sures U, M~ is known as the Jordan decomposition of .

(b) Let (Q, A, 1) be a complex measure space. Then, clearly, both Rep and Imu are
signed measures. Thus, by (a), we obtain the decomposition

O O
p=(Rew)" —(Rep)” +i (Imp)" —(Imp)~ .

Definition 4.48. Let (Q, .A) be a measurable space. Let A, 1 be measures on (Q, A),
where p is positive and A is arbitrary (i.e. positive or complex; note that a positive
measure may be infinite).
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(a) We call A absolutely continuous with respect to p (denoted A < ) if, and only if,

L] L]

Y OHA) =0 = AA) =0 .

(b) A is said to be concentrated on A € A if, and only if,

7 AE)=NENA). (4.34)

(c) If v is another arbitrary measure on (Q, .A), then A, v are called mutually singular
(denoted A L v) if, and only if, there exist disjoint sets A,B € A such that A is
concentrated on A and v is concentrated on B.

Proposition 4.49. Let (Q,.A) be a measurable space. Let a, A, |,V be measures on
(Q, A), where p is assumed to be positive.

(a) A is concentrated on A € A if, and only if,

L] L]

Vo ENA=0= MNE)=0 . (4.35)

(b) If Ais concentrated on A € A, then so is |A|.

(c) If A,B € A and A is concentrated on A as well as concentrated on B, then A is
concentrated on AN B.

(d) If A Lv, then |A| L |v|.

(e) If a, A are complex witha L v and A L v, thena+ A Lv.
(f) If a, A are complex with o < p and A < 4, then o+ A < .
(9) If A<y, then |A] < P

(h) fagpand A Ly, then a L p.

(i) fA<Kpand A Ly, then A =0.

Proof. (a): It is immediate that (4.34) implies (4.35). Conversely, assume (4.35). If
E € A, then

AE) = AMENA)+AE \A) LI NENA)+0=AENA),

proving the validity of (4.34).
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(b): We use (4'35)iﬁt E ¢ Awith ENA = 0. If (Ex)kmnis a disjoint sequence in
A such that E = | Ex, then ExNA = () and p(Ex) = 0 for each k € N, implying
W[(E) =0.

(c): Let E € A. Then

AE) =AE NA) =NENANB),

showing A to be concentrated on A N B.
(d) is immediate from (b).

(e): There exist disjoint A;, B; € A such that a is concentrated on A; and v concen-
trated on B;. Likewise, there exist disjoint A,, B, € A such that A is concentrated on
A, and v concentrated on B,. Then, by (c), v is concentrated on B; N B,. Moreover,
for each E ¢ A,

(a+A)(E) = a%mA1)+}\(E mAZI):I -
=a Eﬂ(lé][UAz)ﬂAl 5}\ Eﬂ(A]_UAz)ﬂAZ
=(@+A) EN(ALUA,) ,

showing o + A to be concentrated on A; U A,. Since A; U A, and B; N B, are disjoint,
we have a+ A L v.

(f) is clear.

(9): Letg € A with p(E) = 0. If (Ex)kmnis a disjoint sequence in A such that
E = | Ex then p(Ex) = A(Ex) = 0 for each k € N, implying |A|(E) = 0 and
Al < W

(h): Assume o < g and A L p. Due to A L W, there exists A € A such that A is
concentrated on A and p(A) = 0. Then a(E) = 0 for each E € A with E C A, implying

EVIE a(E) = a(ENA)+a(ENA®) =a(ENA°).

Thus, a is concentrated on A°, showing a L L.

(): A< pand A Ly, then (h) implies A L A. Thus, A is concentrated on two disjoint
sets. Then (c) implies A to be concentrated on (), i.e. A =0. 1

Example 4.50. Let (Q, A, 1) be a positive measure space and let f : Q — C be
integrable. We noted in Ex. 4.41(b) that

1
fu: A—C, (fpA):= fdu,

A
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defines a complex measure on (Q, .A). It is then immediate that fu < yu. The Radon-
Nikodym Th. 4.53(b) below will show that, for o-finite u, every complex measure that
is absolutely continuous with respect to [ is obtained in this way.

In preparation for Th. 4.53, we need two more lemmas:

Lemma 4.51. Let (Q, A, 1) be a finite positive measure space, let f € £1(Q, A, ), and
let C C C be closed. If

] ; Y ]
AYE H(A) >0 = za(F) = M) Af du € C (4.36)

then f(x) € C for p-almost every x € Q.

Proof. Let z € C\ C and r € R* such that B,(z) C C\ C. Let A ;= f1(B,(2)). We
claim p(A) = 0: Indeed, if p(A) > 0, then

L]
U= R - N i
AN —2l= s B (- o [F-zlon <,

in contradiction to |(i3|6). Since there are sequences (ry)xmnin R™ and (z) € C\ C
such that C\ C = | Br.(z«), we obtain p(f~*(C\ C)) =0, proving the lemma. [

Lemma 4.52. Let (Q, A, 1) be a positive o-finite measure space.

(a) There exists w € £(u) such that 0 <w < 1.

(b) There exists a finite positive measure v on (Q, .A) such that the set of p-null sets is
identical with the sets of v-null sets.

L1
Proof. (a): As p is o-finite, there exists a sequence (Ax)kmnin A such that Q = | A«
and p(Ax) < oo for each k € N. Define

2—k
kvmj Wi s Q — [0,1], wy = mXAk
as well as
1
w: Q—]0,1, w:= Wy.

k=1
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Then, as a series of nonnegative measurable functions, w is measurable. Moreover,
0 < w is clear, whereas w < 1 is seen by estimating w from above by the the geometric
series. Similarly,

L] ) I!‘
wdp = W = 1 (2") < 2_k =1,
Q k=1 @ er LHHAD
showing w to be integrable.
(b): Let w € £1() be as in (a) and set v := wy. 1

Theorem 4.53. Let (Q,.A) be a measurable space. Let A, be measures on (Q, .A),
where U is positive and o-finite, and A is complex.

(a) Lebesgue Decomposition: There exists a unique pair (A;, As) of complex measures
on (Q, A) such that

A=A+ A A A<K<PE A A L (4.37)

The pair (A, As) is called the Lebesgue decomposition of A relative to p. Moreover,
if A is positive and finite, then so are A, As.

(b) Radon-Nikodym: There exists a unique h € L(u) such that
L1
AIVE A(A) = hdu (4.38)

A

(one then calls h the Radon-Nikodym derivative of A, with respect to ).

Proof. We start with the uniqueness statements. Suppose (A5, A is another Lebesgue
decomposition of A relative to p. Then

Prop. 4.49(f) Prop. 4.49(e)

)\aD_ )\a = ASD_ )\3, )\aD_ )\a << I“l’ )\SD_ )\5 J_ u,

and A = A, as well as A’ = A follows from Prop. 4.49(i). The uniqueness of the
Radon Nikodym derivative h € L(u) is due to [Phil7, Th. 2.18(d)].

The following argument will show both the existence of the Lebesgue decomposition
and the existence of the Radon-Nikodym derivative. First, assume A to be positive as
well. As p is positive and o-finite, we use Lem. 4.52(a) to obtain w € £'(u) such that
0 <w<1 v:=wl Then the measure ¢ := A + v is still positive and finite. If
f: Q—[0,0¢0] is .A-measurable, then

] 1 1

fdp = FdA+ fFdv (4.39)

Q Q Q
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(as (4.39) holds for T = xa with A € A, it then holds for simple f, and then also for
nonnegative measurable f). For each f € L?(¢$), we know f € L(¢) (as ¢ is finite, cf.
[Phil7, Th. 2.42]) and we estimate

1 1] [ 11
faAd  [fldA < [fldo < [F2dd  &(@) 7,
Q Q Q Q

where the last estimate holds by the Cauchy-Schwarz inequality. Thus,
1

a: L2(¢) — K, ao(f):= fda,
Q
defines a bounded linear functional on L?(¢). By the Riesz Representation Th. 4.21,
there exists a unique g € L?(¢) such that
L1 L]

v a(f) = fdAx = fgdd. 4.40
fLa0) (f) . . gdo (4.40)
Instead of g € L?(¢), we will now consider a representative g € £2(¢) (still denoted by
g for simplicity of notation). From (4.40), we obtain

1] 1]

W MA) = QXAO|7\= Agdd),

implying, since 0 < A < ¢,
L] p X
w70 0S5 0 T e <

Thus, Lem. 4.51 yields g(x) € [0, 1] for ¢-almost every x € Q. By changing g on a ¢-null
set, we see that there exists g € £2(¢) such that (4.40) holds and

vV 0<g(x)<1l

x [Q]
We can combine (4.39) and (4.40) to obtain
L1 L] L]
v 1—g)fdA = fgdv = fgwdp. 4.41
e A9 o Towdn (4.41)

Set
E={xeQ:0<g(x) <1}, F:={xeQ:gkx) =1}

and define measures

A A— R, A(A):=AANE), (4.42a)
At A— R, A(A) = MANF). (4.42b)
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Next, we use T := Xg in (4.41) to conclude
1 1

0= (@{@—-9g)dA= dv =v(F) =u(F),
F F
showing As L . Since ¢ is finite and g is bounded, for each A € A and each n € N, we
may apply (4.41) with
F=0+g+---+g")Xa

to obtain 1 1

v 1-g""HdA = g(l+g+---+gM)wdpu. (4.43)

A

n [N A

If x € F, then 1 —g"*1(x) = 0 for each n € N; if x € E, then lim, . (1 — g"*"}(x)) = 1.
Thus, by the dominated convergence theorem [Phil7, Th. 2.20],

1
lim  (1—g"hdA = AMANE) = A(A). (4.44)

n- oo A

As the nonnegatvie integrands on the right-hand side of (4.43) increase monotonically,
we obtain a measurable pointwise limit

h:=Ilimg@ld+g+---+g")w
N - oo

and the monotone convergence theorem [Phil7, Th. 2.7] together with (4.43) and (4.44)
implies ] ]
Aa(A) = lim - g(l+g+--+gwdu = hdy,
— 0O A

thereby proving (4.38). Since jhdu =A(QNE) < oo, we have h € L*(w), concluding
the proof of (b). Since (4.38) also implies A; < W, the proof of (a) is also complete.
Finally, if A is complex, then we decompose A according to Def. and Rem. 4.47(b) and
apply the positive case to (ReA)™, (ReA)™, (ImA)*, and (ImA)~, which, in combination
with Prop. 4.49(e),(f), establishes the case. 1

4.4 LP-Spaces, Riesz Representation Theorem 11

Proposition 4.54. Let (Q, A, 1) be a positive measure space and p, q € [1, co] such that
% + % = 1. For each g € LY(u), define the map

L1
Og: LP(n) — K, 0ay(F) := Qfg du. (4.45)

(a) For each g € L9(u), the map oy is continuous and linear with [|og|| < ||g]lq-
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(b)) f 1l <p<ooorp=1and p is o-finite, then, for each g € L), one has
o]l = llgllq-

Proof. Let g € L(p).

(a): According to the Holder inequality of [Phil7, Th. 2.7], fg € L(p) for f € LP(l)
and ay is well-defined. The linearity of oy is immediate from the linearity of the integral.
Using the Holder inequality again, we estimate

ﬁ:l ]
v o log(f) = Qfgdu Q!fgldu < [IFllp llgla,

T AW
showing both the continuity of ag and ||ag|| < ||g]lq.

(b): In view of (a), it remains to show |0g4|| > ||g|lq. Let g € £(p) denote a representa-
tive of g € L(p). If |[g]|q = O, then there is nothing to prove. Thus, assume ||g||q > 0.
Let 1 <p < oo. Define

1 9(x)
f:Q0—K, fx):= 901%™ |g(x)| for g(x) # 0,
0 for g(x) = 0.

Then T is measurable with
] 1 1

[fPdp = [gPCPdu= |9y < oo,
Q Q Q

showing f € LP(u). Moreover,

- Em| Liygl LT L
ag(f) = Q!g!qdu= Q\g\qdu nglqdu = I9llq [IFllp,

showing [|ag|| > ||g||q as desired. Now let p be o-finite, p = 1, ¢ = co. Recalling
19]lc > 0, we consider an arbitary 0 <'s < ||g||. Then u({|g| > s}) > 0 and, since u
is o-finite, ] ]

3 AC{lgl>s} A O<p(A) <oco .

As [Al
Define

T
£ Q- K, fup) = Xa®ie Toret) #0
0 for g(x) = 0.

]
Then fs is measurable with |[fs[|; =  [fs|du = p(As) < oo, showing fs < L(W).
Moreover, 1

og(fs) = 9] du > sp(As) = s||fs][1.

As

Since s €]0, ||g]|[ Was arbitrary, we obtain ||og|| > ||g]|« also in this case. 1
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Theorem 4.55 (Riesz Representation Theorem). Let (Q, A, 1) be a positive measure
space, p € [1,oc[, q €]1, oc] such that >+ ; = 1. Consider the map

¢ LI — (LP(W), 9(9) = ag, (4.46)

where g is as in (4.45), i.e.
1

Og: LP(W) — K, oay(f):= fgdu.
Q
Ifl<p<ooorp=1and pu is o-finite, then ¢ is a (linear) isometric isomorphism.

Proof. The map ¢ is well-defined by Prop. 4.54(a) and its linearity is, once again, an
immediate consequence of the linearity of the integral. Let 1 <p<ocorp=1and p
is o-finite. Then ¢ is isometric (and, thus, injective) by Prop. 4.54(b). In consequence,
it only remains to show ¢ is surjective.

First, let u be finite. Given a € (LP(W))" we will construct g € L9(u) such that o = a,
using the Radon-Nikodym Th. 4.53(b). If A € A, then p(Q) < co implies Xa € LP(R).
Thus, we can define

A A—K, AA):=alXa)

We veltii—f\ to be a complex measure: Let (Ax)kmnbe a disjoint sequence in A and let
A= Ak Then

L1 L1

_ ) 1

lim X2 ac = Xallp = lim p Ac =0,
k=n+1

showing X "= o, — Xa in LP(n). Thus, we can apply the linearity and continuity of a
to obtain

1 r 1 r 1 .
MAQ = lim - AA) = lim alxa) "= lim a(x T a) = alxa) = AA),
k=1 k=1 k=1
proving A to be o-additive and a complex measure. Next, we note A < [ Indeed, if
A € A with p(A) = 0, then ||Xallp = 0, i.e. A(A) = a(Xa) = 0. We now apply the
Radon-Nikodym Th. 4.53(b) to obtain g € L(p), satisfying
1

AYE AA) = Agdp.

We need to show g € L9(p) and a = ay, i.e.
1
a(f) = fgdp = ay(f) (4.47)

Q
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holds for each f € LP(). Due to the continuity of a and ay, it su Lced to show they
agree on a dense subset of LP(p). From [Phil7, Th. 2.47(a)], we know the set of simple
functions

S =span{xa: A€ A}

to be dense in LP() for p < oo (as p is finite). Since g € L*(p), so far, we know oy (f)
to be defined for each f € L*°() and, in particular, for each f € S (as u is finite, which

also implies L*(u) C LP(w)). If A € A, then
L]

a(xa) = AA) = Ag du = 0g(Xa),

i.e. (4.47) holds for each T = xa, A € A, and, in consequence, for each f € S. It
remains to show g € L%). To this end, it will be useful to verify (4.47) holds for
each f € L*(u). Let T € L£>(W) be a representative that is bounded everywhere by
|Fllo. Then, by [Phil7, Th. 1.89], there exists a sequence (Qx)xmnin S that satisfies
|@k]leo < ||F]leo for each k € N and converges uniformly to f (i.e. ¢, — f both in L*(u)
and pointwise). Again using p to be finite, limy_ o ||@x — Fl|p = liMk_ o |k — F||ec =0,
implying limy _ o a(@x) = a(f). Since @xg — Fg pointwise with |okg| < ||F||w]|g], We
can apply dominated convergence to obtain
1 1

a(f) = lim ag) = lim og(ee) = lim = @gdp = Fgdu = ay(F),
- - - Q Q

proving (4.47) to hold for each ¥ € L*(u). For the verification that g € L%(u), let
g € £1(n) be a representative. Consider q = oo. For each A € A, define

L1 )
fa: Q—K, fa(x):= Xa(X) 9o for g(x) # 0,
Xa(X) for g(x) = 0.

Then fa € £7°(n) and we use (4.47) to obtain
1 1 1

gldu = fagdu = a(fa) < aff [[fall = lof/dy.
A Q A

Then [Phil7, Th. 2.18(d)] yields |g| < |la|| p-almost everywhere, in particular, g €
L*(p). Consider 1 < q < co. For each s € R™, let As := {|g| < s} and define

—1 -
g—1 9()
Xas(X) [g(x)|[ for g(x) = 0.
Then f5 € £°°(u) and we use (4.47) to obtain
[ 1] [ ] Copl

gffdu = fsgdp = a(fs) < [|af| [|fs]l, = [|afl . 9/" du

As Q
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Thus,

1] vl
id < .
by, 9an <ol
If we take the limit s — oo (by use of the monotone convergence theorem), we obtain
19]lq < |Ja]], in particular, g € L().

Second, let p be o-finite. As before, given a € (LP(l))5 we need to find g € L9() such
that o, = a. Using Lem. 4.52(a), choose w € £!(u) such that 0 < w < 1, v := wp.
Define
a: LP(v) — K, @&(F):= aWwPF).
Clearly, @ is well-defined, linear, and bounded, i.e. & € (LP(v))Y As v is finite, we
already know there exists G € L%(v) such that
1 1
\ d(F)= FGdv = FGwdp.
F [IR(v) o) o)

Set g := w¥9G (i.e. g := G for q = 0). Then

L1 L1
- gffdu = |G'dv = ||G|jq < oo = g € LW,
19]le0 = [|Glleo < o0 = g € L=().
Since
1 1]
a(fy=aw PF)= w ¥PMfGdv = w YPw ifgdy
4 1 Q Q
e = wlfgwdyu = oy(F),
Q

we have established the case.

Third, and last, let p be arbitrary, 1 < p < co. Once again, given a € (LP(W))5 we
need to find g € L9(u) such that a; = a. For each A € A, we can restrict p to A[A,
obtaining pa = M [a]a, and we can consider L, := LP(A, AJA, pa) as a subspace of
LP(u) by extending f € L by 0 to A°. Let aa = alh. Define

B:={A € A: pa is o-finite}.

From the o-finite case, for each B € B, there exists a unique gg € L% such that
198]lq = lloe | and ]

mvzg ag(F) = Bngdu. (4.48)
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Note that, if A € A, then restriction T — T [Alis well-defined as a map from L"(p) to L,:
If f1,f, € L"(n) both are representatives of T, then f, [al and T, [A] are representatives
of the same element of L"(u), which we define to be f [l Now, if B;,B, € B are

disjoint, then the uniqueness of gg, and gg, implies gg, = Ug, =3 [, U8, = Us, =3 [BL-
In consequence (here we use 1 < (q < o0),

1o, rel* = |98, w3 llq = 119815 + 198, [l = lloe, |* + [[as, ||, (4.49)

Since
0 :=sup{||agl|| : B € B} < ||a]| < oo, —
there exists a sequence (By)xmnin B such that 0 = limy . [|0g,||. Let B :== | B«-

Clearly, B € B. Since (4.49) implies
L1 L1

C <
e CED = ac| <llapll

we conclude 0 = |jog||. Moreover, as B € B, there exists gg € L{, such that(4.48) holds.
Note that 0 = ||ag|| together with (4.49) implies

CVIEB:I Oc\g = 0.
Now let f € £LP(p), C := {f # 0}. Given n € N, define C, := {|f| > 1}. Then
L] L]

p
MC) = —du<  nPlfPdu < oo,
np o

Cn

1
showing C, € B. Since C = | Cn, we have C € B as well. Thus,

a(XgeT) = a(XgencT) + a(Xcrgef) = 0+ ac\e(fLekg) =0,

and
1 1

a(f) = a(xef) + a(xe:f) =as(fle) = fgsdu = fgsdu = ag,(F)

B Q
completes the proof. 1
Example 4.56. Let (Q, A, 1) be a positive finite measure space. Consider the contin-

uous linear function
A K— LYy, A(@s):=f=s.

We want to find the adjoint A”: (L*(n))"— K. From the Riesz Representation Th.
4.55, we know (L1(n))"= L*=(u), and we know the adjoint is uniquely determined by
the condition ]

v v A(9) s =A(9)(s) = 9(A(s)) = ¢ du. (4.50)

g sKI

]
Thus, A{g) = ,gdu for each g € L*=(p).
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4.5 Borel Measures on Locally Compact Hausdor [Spaces and
Riesz Representation Theorems Ill and IV

Recall from [Phil7, Def. 2.48(a)] that, given a topological space (X,7) and a function
T . X — K, the support of T is defined by

suppf := {x € X : f(x) # 0},

and that C.(X) denotes the set of continuous functions from X into K with compact
support.

Definition 4.57. Let (X, 7) be a topological space. Define

C*(X):={f e C(X): fis Ry-valued},
CS(X) = {f € C(X) : fis Rj-valued}.

We call a function F : C(X) — K (resp. a function F : C.(X) — K) positive if, and
only if, F(f) € Ry for each f € C*(X) (resp. for each f € C}(X).

Remark 4.58. In the situation of Def. 4.57, let F be positive and linear.

(a) F is monotone in the sense that g < T implies F(g) < F(f): Indeed, if g < f, then
f—9>0, implying F(f) — F(9) = F(f —9) > 0 and F(g) < F(f).

(b) If —F isalso positive, then F = 0: If f > 0, then F(f) > 0and —F (f) > 0, showing
F(f) =0. Thus, for arbitrary f: F(f)=F(f"—f7 ) =F((f")—-F(f7) =0, proving
F=0.

Definition 4.59. Let (X,7) be a topological space and let B := o(7) denote the
corresponding Borel sets. Let (X, A, 1) be a measure space (positive or complex).

(a) pis called a Borel measure on X if, and only if, B C A.

(b) If p is a positive Borel measure, then it is called locally finite if, and only if, for
each x € X, there exists an open neighborhood U of x such that p(U) < oc.

Lemma 4.60. Let (X,7) be a T, topological space and let (X, A, 1) be a positive mea-
sure space. Assume L to be a locally finite Borel measure.

(a) If K C X is compact, then u(K) < co.
(b) Co(X) C LHW).
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Proof. (a): Since (X,7T) is T,, the compact set K is closed, i.e. K € A and u(K) is
defined. Since p is locally finite, for each x € K, there exists an open neighborhood Uy
of x such that p(Uy) Since K is compach—n%re exist finitely many Xy, ..., Xn,
ne N, such that K C i, Uy,. Thus, p(K) € .2, p(Uy;) < oo.

(b): If ¥ € C.(X), then
. ®
[F]dp < [[F]leo u(supp F) < oo,
X

proving f € £1(p). 1

Example 4.61. Let (X,7) be a T, topological space and let (X, A, ) be a positive
locally finite Borel measure space. Then C.(X) C £*(u) by Lem. 4.60(b) and we can
define ]
a: C(X)— K, a(f):= fdu. (4.51)
X
It is then clear from the properties of the integral that (4.51) defines a linear functional
that is positive in the sense of Def. 4.57.

Example 4.61 now raises the question if every positive linear functional on C.(X) can
be written in the form (4.51) with a suitable Borel measure u (for the time being, there
IS no continuity involved). This turns out to be a di Ccult question in general and there
are several subtleties. We will show in Th. 4.62 below that the answer is positive if
(X, T) is a locally compact T, space (one can actually even obtain such a representation
for the larger class of so-called completely regular spaces, cf. [EIsO7, Sec. VIII.2]). It
also turns out that, in general, a functional can be represented by several di [Lerknt Borel
measures. To select a specific measure, it is customary to impose regularity properties.
Many diLerent variants can be found in the literature (again, we refer to [ElsO07, Sec.
VI11.2] and references therein). Here, we will mostly follow [Rud87, Th. 2.14].

Theorem 4.62 (Riesz Representation Theorem). Let the topological space (X,7) be
locally compact and T,. Moreover, let a : C.(X) — K be a positive linear func-
tional. Then there exists a unique positive locally finite Borel measure space (X, 5, ),
B = a(T), such that a is given by (4.51) and such that p has the following regularity
properties:

() MW(K) < oo for each compact K C X.

(i) It holds that

AvEBj H(A) = inf{n(O) : A C O, O open}.
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(iii) It holds that
1 1

AVEBj (A open V p(A) < o0) = H(A) =sup{u(K): K C A, K compact} .

One can also obtain a complete Borel measure space (X, A, 1) with the above properties
(with B replaced by A) by letting (X, A, i) be the completion of (X, B, ) in the sense
of [Phil7, Def. 1.50]. In the above situation, we then say that a is represented by the
measure 1 : B — [0, oo] (resp. by the measure p: A — [0, oc)).

Proof. As before, since (X, 7) is T,, each compact set K is closed, i.e. K € B, u(K) is
defined. In particular, statements (i) and (iii) make sense.

Uniqueness: If p satisfies (iii), then its values on compact sets uniquely determine its
values on all open sets. If it satisfies (ii) as well, then it is uniquely determined on each
A € B (and on each A € A in case of the completion due to [Phil7, Th. 1.49(a)]). Thus,
it su [ced to show that if yu,v : B — [0, co] are measures satisfying the conditions of
the theorem, then u(K) = v(K) for each compact K C X. Let p,v be such measures
and K C X compact. Fix C& R™. As a consequence of (i) and (ii), there exists an open
O C X with K € O and v(0) < v(K) + [L1Due to Cor. F.8,

[ 1
= 0<FfF<1ATLI=1 A suppfCO .
£ [CA(X)
Thus,
] ] ] ]
WK) = xedu < Fdp “La@® Y fdv < xodv =v(0) < v(K) + [
X X X X

implying W(K) < v(K), as [C& R™ was arbitrary. As we can switch the roles of p and
v, we obtain p(K) = v(K), completing the proof that p is unique on B.

It remains to show the existence of u, which requires some work. The idea is to define
an outer measure p: P(X) — [0, o] (cf. [Phil7, Def. 1.32]) such that the restriction
of p to A (i.e. to the completion of B) is a measure with all desired properties. We first
define p on open sets O by letting

] 1
H(O) :=sup a(f): FeC(X),0<T <1 suppf CO . (4.52)

Note that f = 0 € C.(X) with suppf = () C O for each O, such that p(O) is well-defined
by (4.52). If O;,0, C X are open with O; C O,, then p(0O;) < H(O,) is immediate
from (4.52). Thus, if we define

R 1
n: P(X) —[0,00], H(A):=inf p(O): ACO, O open , (4.53)
then the values given by (4.52) and (4.53) are the same.
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Claim 1. p is an outer measure on X.

Proof. We have to show p() = 0, p is monotone, and o-subadditive. Since, for each
f € C.(X), we have suppf = 0 if, and only if, f = 0, u(0) = 0 is clear from (4.52)
as well as p > 0. If A;,A, € X with A; C A, then pu(A;) < H(Ay) is immediate
from (4.53), proving monotonicity. To prove o-subadditivity, we first consider oqﬁﬁets
O1,...,.00 € X, N eN. Letf € C(X)with0 < f <1andsuppf C .,0;.
Then (O4,...,0y) is an open cover of the compact set supp f and Th. G.1 provides a
corresponding partition of unity, i.e. ¢y,...,dn € C.(X) such that

— e —

iE{]]Y.,N} 0<¢i<1 A suppd; CO; , _ i Ledppr=1,
implying
1 (. 1
iF) CO;, 0< if < = i
il PPN COL 0O <1, f= @)
and

1 1
a(f) = a(dif) < wGy).

i=1 i=1
AsT e C.(X)with0 <f <1landsuppf C IEIO was arbitrary, we obtain
%F'
0 < p(o ). (4.54)

i=1 i=1

1
Now let (Ax)xmnibe a sequence of subsets of X, A:= | /Ax. We need to prove

1
H(A) < H(AW. (4.55)

k=1

If there exists k € N with p(Ax) = oo, then (4.55) holds. Thus, we now assume
H(AK) < oo for each k € N. Fix [& R™. Then, by (4.53),
1 ) 1
o Okﬂm Ok open A Ax € Ok A M(Ok) < M(AK) + [27° .
1
Then O := | Ok is open. Consider f € C;(X) with0 < f E;J__Iand suppf C O.
Since supp f is compact, there exists N € N such that suppf € |, _, Oy. Then

(4.52) % @5a) ¥ I 1

a(f) < p Ok < H(OK) < HA) + [
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Cc(X) with 0 < f < 1 and suppf C O was arbitrary, we obtain p(0O) <
k1 H(AK) + LISince A C O, this implies

 a—
HA) <uO) < pAY + D
k=1

Since [C& R™ was arbitrary, (4.55) holds. 1

We now define the following collections of subsets of X:
1 1

E= ACX: puA) <o A MA) =sup{u(K) : K C A, K compact} , (4.56)
L1 L1

M= ACX: vV  AnKeé€ . (4.57)

K [=XI compact

It now su [ced to show that M is a o-algebra with B C M and that pL is a complete
measure, satisfying (4.51) and (i) — (iii) with B replaced by M (then, in particular,
BCACM).

Claim 2. If K C X is compact, then K € £ and

H(K) = inf{a(f) : f € Co(X), 0 < F <1, Fld= 1}. (4.58)

Proof. Let K C X be compact and let ¥ € C.(X) with 0 < f <1 and f = 1. Define

— 1
L 0s=F71(s, D).

Then each Os is open, K C Og, and
1

1
v . su CO, = sg<f = g<s'f .
s L[ g(I):CB(Xl)' pPpg € Os g =< g=<
=g=

Thus,

(4.52) ] .,
quml[ H(K) < W(Os) "="sup a(g): g€ Cc(X),0<g<1 suppg COs <s a(f).
For s — 1, the above inequality yields

H(K) < a(f),

showing p(K) < oo and K € £. Now fix C& R™. By (4.53), there exists O C X open

with K C O and p(0) < u(K) + [As before, Cor. F.8 yields
1 1
3 0<F<1IATLI=1 A suppf CO .
f [CY(X)

Then pu(K) < a(f) < u(0O) < u(K) + Ldproving (4.58), as [& R* was arbitrary. 1



4 DUALITY, REPRESENTATION THEOREMS 137

Claim 3. If O C X is open with p(O) < oo, then O € €£.

Proof. Let O C X be open with u(O) < co. Let s € R with s < p(O). Then, by (4.52),
there exists T € C(X) with 0 < f <1, suppf C O, and s < a(f). Let K :=suppf. If
W C X is open with K € W, then a(f) < u(W), again by (4.52). Now (4.53) yields
s < a(f) < u(K). Since K C O and s < u(K), the proof of O € £ is complete. 1

(I
Claim 4. Let (Ex)xmnbe disjoint sequence in &, E ;= | (Ex. Then

N
HE) = H(EW. (4.59)

k=1

If W(E) < o0, then E € €.

Rroof. We first show that, if Kq,..., Ky C X are disjoint and compact, N € N, K :=
i—y, then
1
HK) = (Ki): (4.60)
i=1
It su [ced to consider N = 2, since, then, (4.60) follows by induction. So let N = 2 and
fix C& R*. Due to Cor. F.8,

(I L1
<ft< = - .
mg(x) 0<F<1IATLI=1 A suppf C X\ K;
Moreover, by (4.58),
1 1
3 0<9g<1 Agld=1 A a(g) < iu(K)+ [

g [CI(X)

Then fg, (1 —f)g € C(X), 0 < fg, (1 —f)g, (Fo)Ld =1, (1 — F)g) L= 1, such that
(4.58) and the linearity of a imply

H(K1) + p(Kz) < a(fg) + a(g — fg) = a(g) < u(K) + L]

As & R* was arbitrary, we obain pu(K;) + u(K,) < p(K). Since we already know p
to be o-subadditive, (4.60) is proved. Next, notice that the o-subadditivity of p also
implies (4.59) in the case, where W(E) = oo. In the case, where p(E) < oo, we, again,
fix C& R*. For each k € N, since Ex € &, there exists a compact Ky C X, Ky C Ey,
such that

H(K) > u(Ex) — 27 [0
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If we now let Hy := ii;=l Ki, then (4.60) implies

 § 1
WE) > u(H) = u(K;) >

i=1 i=1

1
H(Ei) — 1

previous inequality holds for each k € N and each [ R™*, we have p(E) >
—1 H(Ek). As the opposite inequality holds due to the o-subadditivity of p, (4.59) is
proved. 1

Claim 5. For each E € £ and each [& R™, there exist O, K C X such that O is open,
K is compact, K CE C O, and p(0 \ K) < [

Proof. Let E € £ and (& R™. From the definition of 4, we optain an open O C X,
E C O, and from the definition of &£, we obtain a compact K C E, satisfying

H(0) — 5 < H(E) < u(K)+ 5
As O\ K is open, we have O \ K € £ by CI. 3. Thus, by CI. 3,
H(K) + (O \ K) = p(0) < i(K) + L]
thereby establishing the case. 1

Claim 6. IfE,F €&, thenE\F € £, EUF e £,and ENF € &.

Proof. Let E,F € £ and fix (& R™. According to Cl. 5, there exist O, 0,, Ky, K, C
X such that O, O, are open, Ki, K, are compact, K; C E C O, K, C F C Oy,
H(O; \ K1) < [E&nd p(O; \ K3) < [dThen, since

E\F CO;\K; C (01 \K)U(K;\O)U (V2 \ Kp)
the o-subadditivity of p shows
HE\F) < 3K\ Op) + L] (4.61)

As K; \ O, is compact, (4.61) and the definition of £ show E\F € £&. Then EUF =
(E\F)UF €&byClL.4andENF =E\ (E\F) € & as well. 1

Claim 7. M is a o-algebra and B C M.
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Proof. Let K C X be compact. Suppose A € M. Then ANK € £ and A°NK =
K\ (ANK) € & by Cl. 6. Thug, A® € M by the definition of M. Now let (Ax)x mnbe
a sequence in M and A= | A« Set E; ;= A;NK and

kL1
Ek = (Aka)\ Ei.

i=1

k=2

Then, Cl. 6, (Bk)kmnis a disjoint sequence in &, implying ANK = I%SIDEK e & by Cl.
4. Thus, A € M by the definition of M. Now let C C X be closed. Then CNnK € €&,
since CNK is compact. As B is generated by the closed subsets of X, we obtain B C M
and the claim is proved. 1

Claim 8. We have £ = {E € M : H(E) < oo}.

Proof. Denote F :={E € M : p(E) < oo} Let E € £. Then u(E) < > and, if K C X
is compact, then E N K € &, showing E € F. Conversely, let E € M with p(E) < oo
and fix (& R™. Since W(E) < oo, there exists an open set O C X such that E C O.
Since O € &, there exists a compact set K C O with p(O \ K) < [ Moreover, since
ENK € &, there exists a compact set H C E N K with

HME NK) <u(H)+ 1
Thus, we use E C (ENK) U (O \ K) to obtain
H(E) < WE NK) +u(0 \ K) < p(H) +2L]
showing E € £ as desired. 1

Claim 9. ulp is a locally finite complete measure.

Proof. To see that pu L is @ measure, one merely observes that p is g-additive on M
as a consequence of Claims 4 and 8. Moreover, for each x € X, {x} is compact, i.e.
MG is locally finite as a consequence of Cl. 2 and (4.53). To see that plph is complete,
let A €¢ M with py(A) =0and E C A. Then w(E) = 0 and also A € £ by CI. 8.
Since 0 = W(E) = sup{u(K) : K C E, K compact, we have E € £ C M, proving
completeness. 1

Claim 10. p satisfies (4.51), i.e.

W a(f) = fdu.
A ORI LT
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Proof. Let T € C.(X). AsT =Ref +ilmf, it su[ced to prove (4.51) for R-valued f.
Next, we observe it su [ced to show

1
fECgV(XR) a(f) < xf du : (4.62)
If (4.62) holds, then
1 L1
fm\?xm —a(f) =a(-f) < x(—f)du = fdu,

showing (4.62) to imply (4.51). It remains to prove (4.62). Let f € C.(X,R), K :=
suppf. As f is continuous, f(X) = f(K) U {0} is compact. In particular, there exist
a,b € R such that a < b and f(X) C [a,b]. Fix (& R™. Now choose Sg,S1,...,5h € R,
n € N, such that

So<a<s <---<s,=b A 4 Sij — Sj—1 < [ (4.63)

If 6 := (b—a)/(ZR) £ N, then let n := min{i € N: b—i([ZR) < a} and s¢ := b—n([ZR).
If & € N, then y := (b — a)/([ZV2) € N (otherwise, v2 = 2y/d € Q). In this case, let
n:=min{i € N: b—i((ZV2) <a} and sp := b — n((ZW/2). Next, define

W Ei=Kn{xeX:si; <f(Xx)<si}

i ({1....n}
and observe that each E; due to the continuity of f. Moreover, Ei, ..., E, are,
clearly, disjoint with K = ._, E;. Since each E; € &, there exist open sets Oy,...,0, C
X, satisfying
1 ﬁl
“ﬂV - EiCOi Cf'(Q—oo,si+ M A O <HUE)+ ~E (4.64)

As the Oq,...,0Opn cover K, we can apply Th. G.1 to obtain a corresponding partition
of unity, i.e. ¢1,..., ¢, € C.(X) such that

L1 L1 I:||:||:I
v 0<¢i<1 A suppd; CO; , ¢ =1,
i,...,.n} =1
implying f = ;i=1(¢if). From CI. 2, we obtain
L1 [ 1
r 1 T 1
H(K) < a o = a(di). (4.65)
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Next, we observe that (4.63) and (4.64) imply
1 1
\ Oif < (si+DIp; A sj— [Ksj—1 < fl___gl , (4.66)
i 1,...n}
and, using the monotonicity of a, we estimate
P 1 @e I 1
a(f) = a(eif) < (si + Dlo(di)
i=1 i=1
1 1
= (la] +si + Dl(di) —  [a] a(di)
i=1 i=1
452,465 T 1
< (la] + si + DM(Oi) — [a] u(K)
i=1
(4.64) 1 1
< (Ja| +si+ D1 wE) + oo ] u(K)
i=1
1 o E—1
= (si— DW(Ei) +20(K) + - (Ja| +si+ D
i;__l.l n i=1
(4.66) L] 1
< fdu + Pu(K) + |a| +b+ [ (4.67)
X
As [& R* was arbitrary, (4.67) proves (4.62) and the claim. 1

Now (i) holds by CI. 2, (ii) (with B replaced by M) holds by (4.53), (iii) (with B replaced
by M) holds by CI. 8, and p satisfies (4.51) by CI. 9. Since B C M and plp} is complete,

A C M, concluding the proof.

L1

Corollary 4.63. Let the topological space (X, 7) be locally compact and T,. Moreover,
let a: C.(X) — K be a positive linear functional. Then a is continuous with respect
to || - [l 0N Cc(X) if, and only if, the measure p, representing o and given by Th. 4.62,

is finite. Moreover, in that case, ||a| = pu(X).

Proof. If p is finite, then

1
(4.51)
vl :Efd& fdu < |[f]le 1(X),
AR O] s Tk < Tl p(X)

implying a to be continuous with |al| < u(X). On the other hand, if a is continuous,

then

W4 a(f)] < lall [|F]es-
e 1] < [l [
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Let K C X be compact. Due to Cor. F.8,

1] 1
3 OSngl/\meEl
T [CI(X)
Then 1 1
(4.51)
HK)=  Xkdu < ficdy "= a(fk) < [|af [fi[le = [la],

X X

implyin
PIng Th. 4.62(Gii) L] 1]
HX) =" "=sup p(K): K C X, K compact < ||af,

showing p to be finite and, in combination with |a|| < p(X) from above, ||a| =
H(CX). 1

Corollary 4.64. Let the topological space (K,7) be compact and T,. Moreover, let
a: C(K) — K be a positive linear functional.

(a) Then the measure [, representing a and given by Th. 4.62, is finite and satisfies

Av@ H(A) = inf{u(0) : A C O, O open}, (4.68a)
AVDE H(A) = sup{u(H) : H C A, H compact}, (4.68b)

where, as in Th. 4.62, (X, A, W) is the completion of (X, B, ).

(b) a is continuous.

Proof. If (K,7) is compact, then it is locally compact and Th. 4.62 applies, yielding
the measure L, representing a. Then p is finite by Th. 4.62(i). In consequence, A is
continuous by Cor. 4.63, proving (b). Moreover, (4.68a) is the same as Th. 4.62(ii), and
(4.68b) is implied by Th. 4.62(iii), thereby proving (a). 1

While Th. 4.62 and Cor. 4.63 provided representations of positive (resp. continuous
positive) linear functionals on C.(X) for X being a compact T, space, one would also
like to obtain representations for continuous linear functionals that are not necessarily
positive (i.e. a representation of the dual of (C.(X), || - ||)). It turns out we can build
on Th. 4.62 and Cor. 4.63 to achieve the desired representation in the following Th.
4.75. First, we still need some preparations:

Proposition 4.65. Let (X, .A) be a measurable space and let pu,v : A — [0, ] be
positive measures. If p <v and f: X — K is v-integrable, then it is p-integrable.
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Proof. Lef : X — K be v-integrable. If A € Aand f = Xa, then Elf dp = p(A) <
V(A) =  fdv < oo, showing T to be p-integrable. Thus, the assertion also holds if f
is a nonnegative simple function. If T is an arbitrary v-integrable nonnegative function,
then let (¢x)k mbe an increasing sequence of v-integrable nonnegative simple functions
with @ T . Then, by the monotone convergence theorem,
1 1 1 1
fdu = Ilim  o@dp < lim  @gdv = fdv <oo,
k - co X Kk — oo X

X X

showing T to be p-integrable also in this case. Finally, if T is an arbitrary v-integrable
function, then |f| is v-integrable, implying |f| to be p-integrable, which, in turn, implies
T to be p-integrable. 1

Remark 4.66. (a) Let (X,.A, 1) be a signed measure space, where |u| denotes the
total variation of u. From Def. and Rem. 4.47(a), we recall the decomposition
|| = p* + u~, where the positive measures p*, u~ were also defined in Def. and
Rem. 4.47(a). Thus, if f : X — K is |u|-integrable, then Prop. 4.65 implies f to
be u*-integrable and p~-integrable.

(b) Let (X, A, ) be a complex measure space. Since, for each z € C, one has the
estimate max{|Rez|,|Imz|} < |z|, Def. 4.42 implies, for the total variations,
max{|Rep|, |[Imp|} < |p|. Thus, if f: X — K is |p|-integrable, then (a) and
Prop. 4.65 imply f to be (Rep)™-, (Rep)™-, (Imp)*-, and (Im )~ -integrable.

Given a complex measure W, recall the decomposition

+ - H L] + —D
H=Rew)” —(Rew)” +i (Imw)™ — (Imp)~ .
from Def. and Rem. 4.47(b). This gives rise to the following definition:

Definition 4.67. Let (X, A, 1) be a complex measure space. For each f € £(Jy|),
define the integral

1] 1] ] [ 1] 1] 1
fdu = fd(Rep)™ — fd(Rep)” +i fd(impw*™ —  fd(Imp)~
X X

X X X

where all integrals in this definition are well-defined by Rem. 4.66(b).

Proposition 4.68. Let (X, A, 1) be a complex measure space.

(a) The integral, as defined in Def. 4.67, is linear on £(|u|).
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(b) One has E:I @ [
=L

f IIE""(IHI)

Note: Using the Radon-Nikodym theorem, one can even show the above inequality
to hold for each f € £*(|u|) (cf. [Rud87, Th. 6.12, Eq. 6.18(1)]). In the following,
we will only need the inequality for ¥ € £°°(|p|), which allows a more elementary
proof.

Proof. (a): One computes, for each s € K, f € C.(X),

1] 1] ]
sfdu=s fdRep)" —s Fd(Rep)™
X X7 * 1
+i s  fdmp*" —s fd(Imp)~
1 X X
=s fdu
X

and, for each f,g € C.(X),

] ] ]
(F+g)du = (F+g)d(Rep)” — (F+g)d(Rep)”
X X o 1
+i (F+g)d(Imp)* — (F+g)d(Imp)~
1 X [ X
= fdu+ gdu,
X X

proving the linearity of the integral.
(b): Let A€ A. Then

1

. _ B O

Xadp = (Rep)"(A) — (Rep) (A) +i (Imp)"(A) — (Im)~(A) = pu(A).

X

Thus, if f = k;_lxkxAk, N € N, with Ag,..., Ay € C and Ay, ..., Ay € A disjoint,

then ]
E:' N  —
fdu |7\k||IJ(Ak)| < INHIA) = |Fldy],
X

k=1 k=1

proving (b) to hold for each simple function ¥ € S(Ju|). Now let f € L£=(|u|) be
arbitrary. Then, by [Phil7, Th. 1.89], there exists a sequence (@x)kmnin S(Ju|) that
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satisfies ||@k|le < ||F|/c for each k € N and converges pointwise (and even uniformly)

to f. Thus, the dominated convergence theorem applies, yielding

E: ] EE ] ]
Q fdu Im  gedu e lim el dpf = |f[d[u
X - X - X

X

completing the proof of (b).

Proposition 4.69. Let (X, .4) be a measurable space.

(a) If y,v are complex measures on (X, .A), then
L1 1 L]

fd(u+v) = fdu+ fdv.
FAu)NLE(VD X u ) X 2 X

(b) If pis a complex measure on (X, .A) and s € C, then
] ]

4 fd(sp) =s  fdu.
f Ay X (SH) X H

Proof. (a): It is an exercise to prove the case, where |,V are positive measures.

Ai=p+v, fel(u)nLi(v]). If u,v are signed measures, then
PN S VI A VAR VR VAR D

and, thus, the case of positive measures yields

Let

1 1] 1 (I 1 1]
fd\"+  fdu + fdv = fdu"+ fdv'+ fdA~
X X X X X X
and
L1 1 L] L1
fd(u+v) = fdh= FfdA\*— fdr
X ES| o o 1 1 1
= fduyt+ fdvt—- fduy - fdv = fdu+ fdv.
X X X X X X

The case of general complex measures now also follows, since ReA = Reu + Rev and

IMA=Imu+ Imv.

(b): First, we consider the case, where [ is a positive measure, s € Ry: If A € A, then

] ]
Xad(sp) =spu(A)=s  Xxadp.
X X
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Thus, as the integral is linear, the claimed equality holds for each simple function f €
ST (A). If T is nonnegative and measurable, then there exists a sequence (fy)kmnin
S*(A) with f 1+, implying
] 1 1
fd(sp) = lim fd(sp) =s lim fudp =s  fdu.
X kooo x kooo

X

The general case of f € £() now also follows, since
. 1
f=(Ref)" —(Ref)"+i (ImH)" — (Imf)™ .

Now let p be a general complex measure, f € £1(Jy|). If s € Ry, then

L] L] L]
fd(sp) = Fd(Re(sw)” —  Fd(Re(sp)~
x x * 1
+i fd(Im(sp)™ —  Fd(Im(sp)~
[ [ 1 X
= fds(Rep)” — fds(Rep)™
X X 1
+ i fds(imp)™ —  fds(imp)~
] X X
=s fdu.
X
The case s = —1 is obtained from
L] 1 L]
fd(—p) =—- fd(Rew)™ + fd(Rep)”
X g X 1
—i fd(Imp)*™ —  fd(Imp)~
1] X X
=— fdu.
X
Since ip = iReu — Imy, the case s =i is obtained from
L1 [ 1] ] L1

fd(ip) =i fdRew* — Fd(Rep)”
X [T ol 1
— fd(imp)*™ —  fd(Imp)~
|:|X X
=1 fdu,

X

completing the proof. 1
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In the following Def. 4.70, we define so-called regular Borel measures. As a caveat, it is
pointed out that one finds several variations of this definition in the literature, so one
should always verify what precisely is meant by a regular Borel measure in any given
text.

Definition 4.70. Let (X,7) be a T, topological space and let (X, A, 1) be a Borel
measure space (positive or complex).

(a) If p is positive, then  is called outer regular if, and only if,

YV u(A) = inf{u(0): A C O, O open}.

A LAl

If uis complex, then p is called outer regular if, and only if, each of the positive
measures (Rep)™, (Re)™, (Imu)™, (ImyW)~ is outer regular.

(b) If u is positive, then p is called inner regular if, and only if, p(K) < oo for each
compact K C X and

AYE H(A) = sup{u(K) : K C A, K compact}.

If uis complex, then p is called inner regular if, and only if, each of the positive
measures (Rep)™, (Re)™, (Im)*, (Imw)~ is inner regular.

(c) pis called regular if, and only if, p is both inner and outer regular.

Moreover, let My (X, .A) denote the set of all K-valued regular measures on A.

Example 4.71. (a) Let n € N. If A € £" (i.e. if A C R" is Lebesgue-measurable),
then (A, £",A\") is a regular Borel measure due to [Phil7, Th. 1.60(a)] (also cf.
[Phil7, Ex. 1.58]).

(b) Let (X,7) be a T, topological space and a € X. Then the Dirac measure

—1
1 ifaeA,

0a: P(X) — {0,1}, 0.(A):= .
P(X) {0,1} (A) 0 ifalA

is a regular Borel measure: Let A C X. Then
—1
1 =203,({a}) = d.(X) ifaecA,

0a(A) = 0=25.(0) = 8.(X \ {a}) ifadA,

where {a}, () are compact and X, X \ {a} are open, showing 3, to be regular.
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Proposition 4.72. Let (X, 7) be a T, topological space.

(a) If (X, A,p) is a complex Borel measure space, then p is regular if, and only if, for
each A € A and for each (& R™, there exist K, O C X, where K is compact, O is
open, K CACO, and |p|(0O\ K) <[]

(b) If (X,.A) is a measurable space with B C A, then Mg (X, .A) is a vector subspace
of the normed vector space Mg(X, .A) over K.

Proof. (a): Suppose pis regular. Let A € A4 and & R™. First, assume U to be positive,
i.e. 4 = |u|. By the regularity of H, there exist K,O C X, where K is compact, O is
open, KCACO, O\ A) <i'and p(A\ K) < 2 Then

u(O\K)=u(0\A)+u(A\K)<§D+ =

as desired. If p is K-valued, then the positive measures p; := (Rep)™, Ho ;= (Rep)™,

Mz = (Imp)™, g := (Imp)~ are all regular. For each k € {1,...,4}, choose K, Ox C

X W%Kk is comﬁﬁ Ok is open, Ky € A C Oy, and p(Ok \ Kk) < £ Let
= =1 Kk, 0= _;Ok. Then K is compact, O is open, K C A C O, and

1 [
MIO\K) < W(O\K)<47=1L]

k=1

as desired. For the converse, assume J to satisfy the condition of (a). Let A € A and
set

= inf{|p/(0) : AC O, O open}, m:=sup{|p[(K): KA, K compact}.

The condition of (a), clearly, implies m = M. Since m < |p|(A) < M, this yields m =
I1|(A) = M, showing |u| to be regular. Now letv € {(Rew)™*, (Rep)~, (Impw)™, (Imw)~}.
Then v = |v| < |y| (cf. Rem. 4.66(b)). Thus, if A € A, [k R™ and K, O are given
according to the condition of (a), then v(O \ K) < |u|(O \ K) < [OThus, by what we
have already shown above, v is regular, showing p to be regular as well.

(b): Clearly, 0 € Mg (X, A). Let y,v € M (X, A). We have to show p+v is regular.
Let A € Aand C R*. As p,v are regular, by (a), there exist K,,K,,0O,, O, C

X, where Ku,K\, are compact, O, 0O, are open, K, € A € O,, K, € A C O,,
I/(Op \ Kp) < £'and [v|(Oy \ Ky) < £ Let K := K UK,, O :=0,N0,. Then K is

compact, O is open, K C A C O, and
I:I ]
H+V[(0\K) < MO\ K) +[V|(0\ K) < 7+ =[]
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showing p + v to be regular by (a). Now let 0 # s € K and let A, [y be as before.
This time, choose K,O C X, where K is compact, O is open, K C A C O, and
IU|(O\ K) < ;= Then

Isl”

Sul(0\ K) = [s||u/(0\ K) < s |?E||: 0

showing sp to be regular and completing the proof. 1

Example 4.73. Let (X,7) be a T, topological space and let (X, .4, ) be a Borel
measure with p being K-valued. As C.(X) C £(|u|) by Lem. 4.60(b) and we can define
1
o, Cc(X) — K, oyu(f):= fdu. (4.69)
X
Then, by Prop. 4.68(a),(b) oy, constitutes a continuous linear functional on the normed
space (Cc(X), || - [|eo), Where

L]
et |DI=H FaBE Fld] < o WO = [l 1]
shows

1] < [[u] (4.70)
Proposition 4.74. Let (X,7) be a topological space.

(@) Let a : (Cc(X,R),|| - |lee) — R be linear and continuous. Then there exists a
unique decomposition
a=a*—a” (4.71)

of a into positive linear maps a™,a™ : C.(X,R) — R that is minimal in the sense
that, for each decomposition a = 3 —y with positive linear maps B,y : C.(X,R) —
R, the map B — a* =y — a™ is positive. Moreover, a*, a~ are then continuous

and
v o’ (f) =sup{a(h): he CS(X,R), 0 <h < f}. (4.72)
f [T (X,R)
(b) Let a : (Cc(X,C),| - |[cw) — C be linear and continuous. Then there exists a

unique decomposition
a=o" —a +i(@"—-a") (4.73)

~—

of a into positive linear maps a™,a™,d", & : C¢(X, C) — C that is minimal in
the sense that, for each decomposition a = B —y + i (B — ¥) with positive linear
maps B,Y,B,¥: Cc(X,C) — C,themaps B —a"=y—a” and B —a" =y -0~
are positive. Moreover, a®, a~ &@*, &~ are then all continuous.
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Proof. (a): Uniqueness: If the decompositions a = a* —a~ and a =y — 3 of a into
positive linear maps a*, a7, B,y : C.(X,R) — R are both minimal in the stated sense,
then B —a* =y —a™ is positive as well as (— —a™) = —(y —a™). Thus, B = a* and
y = a~ by Rem. 4.58(b). Existence: For f € CJ (X, R), we define a* by (4.72) and note
0 < a*(f) < oo: a(0) =0 yields a™(f) > 0, whereas a*(f) < oo, since the continuous
linear map a maps the bounded set {a(h) : h € CF(X,R), 0 <h < f} C Brr5(0) into
a bounded set. Next, we show

*(F+g)=a*(f)+a*(g): .
f,gECQV*(X,R) a (f+g)=a"(f)+a"(9) (4.74)

Let f,g € C/(X,R). If hf,hg € CF(X,R) with 0 < hs < f and 0 < hy < g, then
hs + hy € CS(X,R) with 0 < h¢ + hy < f +g. Thus, a(hg) + a(hg) = a(he + hg) <
o™ (f +g), showing o™ (f) + a*(g) < o™ (f +g). To show the opposite inequality, let
h e CS(X,R) with 0 < h < f +g. Define hf := (h —g)", hy := min(h,g). Then
hf, hg € CH (X, R) with

0<hsg<f A 0<hy<g A hg+hyg=h.

Thus, a(h) = a(h¢) + a(hg) < a™(f) +a™(g), showing a™ (f +g) < o™ (f) +a™(g) and
proving (4.74). Moreover, we also have

Y W at(sf) =sa*(f): 4.75
LA . (sf) () (4.75)

For s = 0, there is nothing to prove. If s € R™ and f € C(X,R), then

a*(sf) =sup{a(h): he C/(X,R), 0 < h < sf}
=sup{a(h): he CS(X,R), 0 <s*h < f}
=ssup{a(s™*h): he CS(X,R), 0 <s*h < f}
=ssup{a(h): he C/(X,R),0<h<f}=sa"(f),

proving (4.75). Now we can extend a™* to C.(X, R) by defining
a": Cc(X,R) — R, a"(f):=a"(f") —a*(f). (4.76)

We claim a* to be positive, linear, and continuous: As positivity was built into the
definition of a™, we proceed to show linearity. Let f,g € C.(X,R), h:=f +g. Then

h*+f +g =f"+g" +h",
such that (4.74) implies
oaf (") +a™(F)+a"(g7) =a" (F) +a"(g") +a"(h),
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that means

o (f+g)=a"(h)y=a*(h") —a’(h") =a’(F) +a"(g") —a"(f) —a™(g7)
= o (f) + a™(9).

If s € Ry, then

(4.75)

at(sf)=a"(sf") —a™(sf7) ="sa"(f") —sa"(f7) =sa* (f).
As also
o (—fF)=a"(f7) —a*(f") = —a* (),

the linearity proof for a™ is complete. Still considering f € C.(X, R), we now estimate

+ + e+ +/£— “72)
(O <a”(F) +a"(F7) < 2|af [|f]e,
showing a™ to be bounded and, thus, continuous. If we now let
a : C(X,R) —R, a =a"—aq,

then the validity of (4.71) is clear as well as the linearity and continuity of a—. If
f € C7(X,R), then, by (4.72), a*(f) > a(f), implying a~(f) = a*(f) — a(f) > 0,
verifying a~ to be positive. It remains to show the minimality of the decomposition: Let
o = [3 — y with positive linear maps 3,y : C.(X,R) — R. Consider f,h € C.(X,R)
with 0 < h < f. Then B(f) > B(h) > a(h). Thus, (4.72) implies B(f) > o™ (f),
showing B —a™ =y — a~ to be positive.

(b): By Lem. 3.2, a satisfies

. L10d
v a(f) =Rea(f) —i Rea if ,
f [TI(X,C)

where Rea is R-linear and continuous. By (@), there exists a unique decomposition

(Rea) lc)xry= (Rea)™ —(Rea)™ of Rea into positive R-linear maps (Rea)™, (Rea)™ :
C:.(X,R) — R that is minimal in the sense of (a). If we define

Ima: C.(X,C) — R, Ima(f) := —Rea(if),

then there also exists a unique decomposition (Ima) [g](x ry= (Ima)™ —(Ima)~ of Ima
into positive R-linear maps (Ima)™*, (Ima)™ : C.(X,R) — R that is minimal in the
sense of (a). Uniqueness: If we have a decomposition of a according to (4.73) that
is minimal in the stated sense, then a* — a~ is a minimal decomposition of Rea and
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a* — @ is a minimal decomposition of Im a, such that the uniqueness follows from the
uniqueness statement of (a). Existence: Define

o’ C.(X,C) — C, o (f) ;= (Rea)"(Ref) +i(Rea)" (Imf),
a : C/(X,C)—C, a (f) . =(Rea) (Ref) +i(Rea) (Imf),
a": C(X,C) — C, a (f) :=Uma)*(Ref) +i(Ima)"(Im¥f),
a : C(X,C) —C, a (f):=(Uma) " (Ref) +i(Ima) (Imf).

Then o™, a—, &@*, @ are C-linear: Let f,g € C.(X,C) and r,s € R. Then
o (f+g)=(Rea)"(Ref +Reg) +i(Rea)"(Imf + Img)
= (Rea)*(Ref) +i(Rea)"(Imf) + (Rea) " (Reg) + i (Rea)" (Img)
=a"(f) +a’(g)
as well as

ar((r+is)f) =(Rea)"(rRef —sImf)+i(Rea)"(rimf +sRef)
= r(Rl%x)*(Re f) —s(Rea) " (Im¥f)
+i r(Rea)"(Imf) +s(Rea) " (Ref)

= (r +is)a™ (f),
showing a™ to be C-linear. Analogously, the C-linearity of a—, @™, @ follows. The
positivity of a™, a=, &, &~ is an immediate consequence of the positivity of (Rea)™,
(Rea)™, (Ima)*, (Ima)~, respectively. Likewise, the continuity of a™, a=, @*, &~
is an immediate consequence of the continuity of (Rea)™, (Rea)™, (Ima)*, (Ima)~,
respectively. For each T € C.(X,R), we compute

: Ll
a(f) =Rea(f) —i Rea if O O
= (Rea)" (f) — (Re O(E](f) +i (Im O(EI(f) — (Ima)™(f)
=a"(f)—a (F)y+i a'(f)—a (f),
proving (4.73) on C.(X, R). However, as both sides of the above equality are C-linear,
(4.73) then also holds on C.(X, C). Finally, the claimed minimality of the decomposi-

tion (4.73) follows from (Rea)™ — (Re a)™ being a minimal decomposition of Re a and
(Ima)* — (Ima)~ being a minimal decomposition of Ima. 1

Theorem 4.75 (Riesz Representation Theorem). Let the topological space (X,7) be
locally compact and T,, B := a(7). Consider the map

0 Mii(X, B) — (Ce(X))5 (W) == ay, (4.77)

where o, is as in (4.69). Then ¢ is a (linear) isometric isomorphism (in particular,
M (X, B) is a Banach space).
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Proof. From Ex. 4.73, we know ¢ to be well-defined; its linearity is a consequence
of Prop. 4.69. We verify surjectivity next: Let a € (C.(X))” According to Prop.
4.74, a can be written as a linear combination of positive continuous K-valued linear
functionals aj € (C.(X))"(in the form (4.71) or in the form (4.73)). For each o, the
Riesz representation Th. 4.62 yields a positive Borel measure |; such that a; = ay.
Moreover, the p; are finite by Cor. 4.63 and, thus, regular, by Th. 4.62(ii),(iii). In
consequence, Y € My (X, B) with ¢(1;) = a,; = 0j. As ¢ is linear, this proves
surjectivity. Thus, it merely remains to prove that ¢ is isometric (which, as usual, then
also yields ¢ to be injective as well as the continuity of ¢ and ¢~1). Let p € My (X, B).
While Ex. 4.73 already yields ||¢(W)|| < |||, it remains to show the opposite inequality.
To this end, fix & R™. By the definition of |y|, there exist disjoint sets Ay, ..., An € B,
n € N, such that

r 1
IM(AK) | > [u[(X) — F ||u|| — 3

k=1
As pis regular, |p is regular and there exist compact sets Ky, ..., K, such that Ky C Ay
and
1
(K[ > ]| — 2L
k=1
Moreover, as a consequence of Prop. 2.5(a), there exist disjoint open sets O4,...,0, C X

with Ky C Og. Due to Prop. 4.72(a), we see we can even choose the disjoint open sets
O4,...,0, C X such that they also satisfy

L]
L MO\ C) <

.....

with compact sets C4, . .., C, such that K, C C, C A, and still k;=1 H(Cy)| > |lu|| -2

(by possibly making the original Oq, ..., O, smaller). We now use Cor. F.8 to conclude

L] L]

v 3 0<f. <1 A flgl=1 A suppf C Oy .
KO{D...n} i [TICX) = Tk = kel PP T & Ok

)

= T,
T

Define
1 1
= ke{l,....,n}: p(Cy) #0 .

As the Oy are disjoint, we have ||f|l. < 1. Due to

——h e rop. 4.68(0) =1
T du fdu — T du < fdu |F|d|p
X k=1 Ok\Ck X k=1 Ok\Ck

k=1 Ck
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one estimates

@
[b(a)(F)| = ﬁ fdu f du Fldlu
X k=1 Ok \Cxk
'_E'u(
> e ) a Iu(Ck)! — 3 [u =30
As [& R™ was arbitrary, this shows ||¢(p)|| > ||n|| and concludes the proof. 1

Corollary 4.76. Let the topological space (K, 7) be compact and T,, B := o(7). Then
the map

b1 Micr(K, B) — (C(K))T o) = ay,

where ay, is as in (4.69), constitutes a (linear) isometric isomorphism (in particular,
Mk (K, B) is a Banach space).

Proof. Since (K, 7) is compact, C.(K) = C(K), and the corollary is merely a special
case of Th. 4.75. 1

Corollary 4.77. Leta,b € R, a <b. Let (fi)k mnbe a bounded sequence in (C[a, b], ||-||)-
Then the following statements are equivalent:

(i) (fw)k moconverges weakly to 0.

(i) (f)kmnconverges pointwise to 0.

Proof. “(i)=(ii)”: If f, [0, then

aropaye o, 8T =0
Thus, as [a, b] is a compact T, space, Cor. 4.76 implies
1
lim fdy =0. 4.78

M ([ab]BY)  k—oo (4 <OH (4.78)

According to Ex. 4.71(b), 3 € M (([a,b], B) for each t € [a,b], implying
L1
N lim fi (t) = lim T ddy =0,
ey MO = lim - fidd,

i.e. fx — 0 pointwise (note that we did not actually used the boundedness of the sequence
for this direction).
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“(i)=(i)": As[a,b] is a compact T, space, fx [_01i$ actually equivalent to (4.78). Thus,
it remains to show that f, — 0 pointwise implies (4.78). Let u € My ([a,b], B*) Since
(f)kmnis bounded, there exists M € Ry such that, for each k € N, [fy| < g = M,
where g is |u|-integrable, since |p| is finite. Thus, if f — 0 pointwise, then (4.78) holds
by the dominated convergence theorem. 1

A Exhaustion by Compact Sets

Definition A.1. Let (X,7) be a topological space, A C X. Let (K;)impbe a sequence
of compact subsets of A. Then this sequence is called an exhaustion by compact sets of
A if, and only if, it satisfies the following two conditions:

1
A= K (A.1a)
i [N
VK C Ky (A.1b)

i (N1
(where (A.1b) says that K;j lies in the interior of Kj.,).

Theorem A.2. Let n € N, and let O C K" be open. Then there exists an exhaustion
by compact sets of O.

Proof. If O = K", then the closed balls (B;(0)); m (with respect to some fixed norm,
e.g., || - |l2), clearly, form an exhaustion by compact sets of O. If O # K", then the
function

d: 0O — Ry, d(x):=dist(x,0°), (A.2)

is well-defined and continuous (cf. [Phil6b, Ex. 2.6(b)]). Define

R e
v Ki=Bi(0)nd VT oo (A.3)

Then (K;)imnis a sequence of compact subsets of O. We show the sequence to be an
exhaustion by compact sets of O: If x € O, then it is immediate that there exists
i; € NBsych tlﬁ X € El(O). Since O is open, there also exists i, € N such that
xed? [;;: 00l - Thus X € Kmaxgi, i3, showing (A.1a) to hold (with A replaced by O).
If Xx € Kj, 1 € N, then dist(x,0) < i+ 1 and dist(x, O°) > % showing x € K{,,. Thus,
(A.1b) holds, completing the proof. 1
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B Interchanging Derivatives with Pointwise Limits

While interchanging derivatives with pointwise limits is not always admissible, it does
work if the derivatives converge uniformly:

Theorem B.1. Leta,b € R, a<bh. Foreachn € N, let f, : [a,b] — K be continuously
diLerkntiable. Let f : [a,b] — K and assume f,, — T pointwise in [a,b]. If there exists
g: [a,b] — K such that f;’— g uniformly in [a, b], then f is continuously di [erentiable
with fF=g, i.e.

1

1 _
Xqvmb] %) = lim f, (x) = JL@OfRX) = g(x). (B.1)

Proof. Since the f are continuous, the uniform convergence to g implies g to be con-
tinuous, and we can compute, for each x € [a, b],
= - O] O]
g(t) dt lim  figydt T 2O him F () - fa(a)
n- n- oo

oo
a a

= f(x) — f(a). (B.2)

[Phil7, Prop. G.4]

Since g is continuous, [Phil6a, Th. 10.20(a)] implies the left-hand side of (B.2) to be
di Lerkentiable with respect to x with derivative g. In consequence, (B.2) implies T to be
di [erentiable with f-= g as desired. 1

C Weierstrass Approximation Theorem

Theorem C.1 (Weierstrass Approximation Theorem). Let a,b € R with a < b. For
each continuous function f € C[a, b] and each [ 3 0, there exists a polynomialp: R —
R such that ||f — plaly || < Lwhere plaly denotes the restriction of p to [a, b].

Theorem C.1 will be a corollary of the fact that the Bernstein polynomials corresponding
to T € C[0, 1] (see Def. C.2) converge uniformly to f on [0, 1] (see Th. C.3 below).

Definition C.2. Given T : [0,1] — R, define the Bernstein polynomials B, T corre-

sponding to T by
I
Y

B.f:R— R, (B,f)(X):= f a x'(L—x)"V foreachneN. (C.1)

v=0
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Theorem C.3. For each T € C[0, 1], the sequence of Bernstein polynomials (Bnf)nmn
corresponding to T according to Def. C.2 converges uniformly to  on [0, 1], i.e.

lim [ — (BaF) ey [0 = 0. (C-2)
Proof. We begin by noting
(Byf)(0) =f(0) and (B,f)(1) =f(1) foreachneN. (C.3)
Foreachne Nandv € {0,...,n}, we introduce the abbreviation
n
v (X) = v xV(1 —x)"V. (C.49)
Then
] b 1
1= x+(1—-—x) = Onv(X) foreachneN (C.5)
v=0
implies
Fth I
f(xX) — (Bf)(X) = f(x)—f o gnv(X) for each x € [0,1], n € N,
v=0
and

= LI
E(x) — (an)(x)E'g ' T(x; —f % [Qnv(X) foreach x €[0,1], ne N.  (C.6)

v=0

As T is continuous on the compact interval [0, 1], it is uniformly continuous, i.e. for each
[3 0, there exists & > 0 such that, for each x € [0,1], n€ N, v € {0,...,n}:

Q—%E@ N @(x)—flﬁuj<%:_l C.7)

For the moment, we fix x € [0, 1] and n € N and define

N; = ve{O ., n}
N, = VE{O

Then

1
(X) —f ! Inv(X) < E an(X) <
v [N] n v [N] v=0

=110
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and with M := |||,

= = e
T(X) —f ﬁ jnv(x) § T(X) —f ﬁ jnv(x) 62n
v [N} v [N}
om F—1 1 L]
< 6_2 an(X) % ﬁ : (C_9)
v=0
To compute the sum on the right-hand side of (C.9), observe
L1y ] [
X— 2 2—2x!+lgI (C.10)
n n n
and
IIﬂvl o n—v! — Ii_—n%ll 1 XV~ 1 (n—1)—(v-1) (C.5)
v x'(1 —Xx) o= 1-x) =" X (C.11)
v=0 v=1
as well as
. 1, r— /1 1
Xv(l . X)n—v I? — 5 (V . 1) n 1 Xv—l(l . X)(n—l)—(v—l) + 5
veo Vv n n.o_, v—-1 n
I‘__%II —1
— X_Z(n - 1) 2 XV—Z(l . X)(n—Z)—(v—Z) + i
n v-—2 n
1 1‘1;_2—|X y
=x> 1-= +=-=x*+=(1-x). C.12
X 1o+ =X (1) (C.12)

Thus, we obtain

| — ) B N P

gnv(X) X — n
v=0

(C10.(C9 LA (C12) x2.1—2x.x+x2+§(1_x)

IN

1
— f h 1 N
an or each x € [0,1], n € N,

and together with (C.9):

=1 L M 1
A(x) —f n jnv(x)__ﬁ<

%:l for each x € [0,1], n > —— 520 (C.13)
v [N}

Combining (C.6), (C.8), and (C.13) yields

E(X) - (an)(X)B< §D+ %Il: [ for each x € [0,1], n > gﬂ

proving the claimed uniform convergence. 1
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Proof of Th. C.1. Define

X —a
h—a
0 1:00,1] — [a,b], ¢ (X):=(—a)x+a.

¢: [a,b] —[0,1], o(x):=

Given [3 0, and letting
0, O
g [O’ 1] — R’ g(X) =f 0 (X) )
Th. C.3 provides a polynomial q : R — R such that ||g — q[glyj ||e < [JDefining
L1 [ 1

L1 [ X —a
p:R— R, p(X):=q o) =q 0

—a
(having extended @ in the obvious way) yields a polynomial p such that

F(X) —p()| = %(cp(x)) - q(cp(x))a [ for each x € [a, b]

as needed. 1

D Topological Invariants

[Phil6b, Prop. 1.1] already provides several topological invariants (i.e. properties pre-
served under homeomorphisms). The following Prop. D.1 provides additional topological
invariants relevant to the present class:

Proposition D.1. Let (X, 7x) and (Y, 7y) be topological spaces, let f: X — Y be a
homeomorphism, A C X.

(@) (X, 7Tx) is locally compact if, and only if, (Y, 7y) is locally compact.

(b) A is nowhere dense (resp. of the first category, resp. of the second category) in X
if, and only if, f(A) is nowhere dense (resp. of the first category, resp. of the second
category) in Y.

Proof. We will make use of the topological invariants already proved in [Phil6b, Prop.
1.1]. Since f is a homeomorphism if, and only if, f~1 is a homeomorphism, it always
su [ced to prove one direction of the claimed equivalences.

(@): If (X, Tx) is locally compact and x € X, then there exists a compact C € U(X).
Then T(C) is a compact neighborhood of f(x), showing (Y, 7v) to be locally compact.
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(b): If A is nowhere dense, then (A)° = ), implying
1 [ 1 .1
fA) = fA =f (A =10

0,

showing f(A) to be nowhere dense. If A is of the firﬁt;_eptegory, then A = IE_llAk
with nowhere dense sets Ay, k € N. Then f(A) = 2, T(Ax) with f(Ax) nowhere
dense, showing f(A) to be of the first category. If A is of the second category, then A is
not of the first category, i.e. T(A) is not of the first category, i.e. f(A) is of the second
category. L1

E Orthogonalization

L1 L1
Theorem E.1 (Gram-Schmidt Orthogonalization). Let X, (.,-) be an inner product
space with induced norm || - ||. Let Xo,Xs,... be a finite or infinite sequence of vectors
in X. Define v, Vvy,... recursively as follows:

" (E.1)

Vo := Xg;, Vp:=Xpn— W Kk

k=0,

\=10]
for each n € N, additionally assuming that n is less than or equal to the max index of
the sequence Xo, X1, ... if the sequence is finite. Then the sequence Vg, vy, ... constitutes
an orthogonal system. Of course, by omitting the v, = 0 and by dividing each vy # 0 by
its norm, one can also obtain an orthonormal system (nonempty if at least one vy # 0).
Moreover, v, = 0 if, and only if, X, € span{Xo,...,Xn—1}. In particular, if the Xo, X, . ..
are all linearly independent, then so are the v, vq,....

Proof. We show by induction on n, that, for each 0 < m <n, v, L v,,. Forn =0,
there is nothing to show. Thus, let n > 0 and 0 < m < n. By induction, (vk,Vm) =0
for each 0 < k, m < n such that k # m. For v,, =0, (vn, V) = 0 is clear. Otherwise,

—-—
n
%; 7V Xn, V
(Vn,Vim) = Xp — ”—';>vk, Vm = (Xn,Vm) — n ”2‘> (Vim, Vm) =0,
ceo, Vil [Vin||
ngo

thereby establishing the case. So we know that vg,vy,... constitutes an orthogonal
system. Next, by induction, for eac&_&j/ve obtain v, € span{Xo, ..., Xn} directly from

(E.1). Thus, v, = 0 implies Xo = =5, entsy Vi € span{Xo, ..., Xn-1}. Conversely, if
VKEO
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Xn € span{Xo, ..., Xn—1}, then

dimspan{vo, ..., Vq-1,Vn} = dimspan{xo, ..., Xn-1,Xn} = dimspan{xo, ..., Xn-1}
= dimspan{vo, ..., Vn-1},

which implies v, = 0. Finally, if all X, Xy, ... are linearly independent, then all vy # 0,
k=0,1,..., such that the vg, vy, ... are linearly independent. 1

F Tietze-Urysohn Theorem

We will state and proof the Tietze-Urysohn theorem as Th. F.7 below. The proof will
make use of the following preparatory notions and results:

Lemma F.1. Let a,b,c,d € R with a <b and ¢ < d. Then the intervals [a, b] and [c, d]
are homeomorphic.

Proof. An a [nelhomeomorphism is given by

d—c
h—a

¢0:[ab] —[c,d, o) :=c+ (x—a),

where the a [nelinverse is

ol e, d — [ab], ¢7(x):=a+ =

i(X—c),

thereby proving the lemma. 1

Definition F.2. Let (X,7) be a topological space and let (Y,d) be a metric space.
Moreover, let (f,)nmobe a sequence of functions, f,: X — Y,and f: X — Y. We
define (f,)nmpto converge uniformly to T if, and only if,

A B A Y dl%l f I:<|I_.__I F.1
[MRT NINI n=N x[XI n(X). T(x) (F.1)

Proposition F.3. Let (X,7) be a topological space and let (Y,d) be a metric space.
Moreover, let (f,)nmnbe a sequence of continuous functions, f, : X — Y, and T :
X — Y. If (fn)nmoconverges to T uniformly, then £ is continuous.

Proof. We show T to be continuous at each & € X. Thus, given ¢ € X, we need to show

v 3 Y f(X)eV. (F.2)
vV OOgf(g)) vmugg) xo



F TIETZE-URYSOHN THEOREM 162

To this end, choose [3 0 with B{f(¢)) C V. As the T, converge uniformly to T, there
exists N € N such that O
XYX] d(fn(x), T(X) < 3

Since Ty is continuous at &, there exists U € U/(&) such that

Y, A0, (@) < 5

X

In consequence,

¥ d(F(, F©) < d(FEO, Fia () + d(Fu 00, Fry(€) + d(Fi (), F(©) < gEL 4 O

=L
proving f(x) € B{f(§)) C V and (F.2). 1

Definition F.4. Let (X,7) be a topological space. Let I C R be an index set and
let (Op)¢be a family of open sets. The family (O¢)¢is then defined to be normally
ascending if, and only if,
] B -
C . :

Sytvm s<t = O0OgsCO0O (F.3)
Proposition F.5. Let (X, 7) be a topological space, let a,b € R witha <0, let I Cla, b[
be dense in Ja, b[, and let (O)¢be a normally ascending family of open sets. Then

1 1
fiX —[ah] fX)= . forx e Xa wrPe £y
infitel: xe O forxe P
is well-defined and continuous.
Proof. Note that (F.3) together with the density of I in ]a, b[ implies
I 1 I ]
Ot = 6t. (FS)
t 1 t
We now show 1 -
Y N fX)>t = x£€0;¢ : (F.6)
x[X1  tOakh[

Let f(x)>t. Ifx ¢ %IDOS, then x € O by (F.5). Ifx € %s, then f(x) > t means
that t is not the biggest lower bound of {s € | : x € Os}. Thus, there exists some r € |
with t < r < f(x). Then r < f(x) implies x ¢ O, and (F.3) implies O; C Oy, proving
X ¢ O;. Next, we show

1] 1

XYX] tqvmb[ fxX)<t = xe0O : (F.7)
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Let f(x) <t. Then tis not a lower bound of {se€ | : x € Os} and thereisr e {se I :
x € Og} with f(x) < r <t, implying x € O, C Oy, proving (F.7). Since

L1 1]
S:= [ata<t<b U Jtbl:a<t<b

forms a subbase for the topology on [a, b], for the continuity of f, by [Phil6b, Th. 2.7],
it su [ced to show that, if a < t < b, then each f~1[a, t[ is open and each f~1]t,b] is
open. We consider the case f~1]t,b] first: Let x € X be such that f(x) €]t,b]. Choose
some r €]t, F(X)[. Then U := X\ O, is an open neighborhood of x contained in ~1]t, b]
(showing f71]t, b] to be open): Indeed, since f(x) > r, (F.6) implies x € U, showing U
to be a neighborhood of x. Moreover, if y € X is such that f(y) < r, then (F.7) implies
y € Oy C Oy. Thus, if y € U, then f(y) > r > t. It remains to consider f~[a, t[: Let
x € X be such that f(x) € [a, t[ and choose r €]f(x),t[. Then x € O, by (F.7). Let
y € O,. Then f(y) < r <t, showing O, C f1[a, t[ and f1[a, t[ to be open. 1

Proposition F.6. Let (X,7) be a T, topological space (see [Phil6b, Def. 3.1(d)] for
the definition). If A,O C X are such that A is closed, O is open, and A C O, then,
for each a,b € R with a < b, there exists I C]a, b[ with I being dense in ]a, b[ and there
exists a normally ascending family of open sets (O¢)¢ satisfying

Vv ACO;CO0;CO. (F.8)

t
Proof. By Lem. F.1, it su [ced to consider the case a =0, b= 1. Let

(I . 1

V = m/2°: me{l2,...,2-1} .

k NI
We show by induction on k € N that, for each k € N, there exists a normally ascending
family of open sets (O¢)¢rg, satisfying (F.8) with I replaced by I: Let k = 1. Since
A C O, we have that A and B := X \ O are disjoint closed sets. As (X, 7T) is T, there
exist disjoint open sets U;, U, C X such that A C U; and B C U,. Since U; € X \ U,
and X \ U, is closed, we can let O% := U, to obtain

Ago%gﬁ%gxwzgxwzo

as desired. Now let k > 1 and, by induction, assume (O¢):ra to be a normally ascending
family of open sets, satisfying (F.8) with I replaced by Iy. Since

= -
Ik+l\|k= m/2k+1:m6{1’3’__.’2k+l_312k+1_1} 1

we have to construct O,,,,«+1 for m odd and in the above range. For m = 1, we apply
the above argument from k = 1 with A and O,/ instead of O, obtaining an open
Oy 9x+1 With

A C 01/2k+1 - 61/2k+1 - 01/2k = 02/2k+1.
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For m = 2k*1 — 1, we apply the above argument from k = 1 with 6(2k_1),2k instead of
A and O, obtaining an open Ogk+1_1y/ok+1 With

O(2k+1_2)/2k+1 = O(zk_l)/zk Q O(2k+1_1)/2k+1 Q O(2k+1_1)/2k+1 Q 0.

For 1 <m < 2%*1 — 1, we apply the above argument from k = 1 with 6(m_1)/2k instead
of A and Om.+1y/o« instead of O, obtaining an open Op,/x+1 With

O(m-1ys2k+1 € Omyarr1i C© Omyarrt © Omrgyoxee.

This choice of the new elements O, .x+1, clearly, implies (O¢)tmg,, to be a normally
ascending family of open sets, satisfying (F.8) with I replaced by ly+;. If we now let

L1
| .= Iy,
k [N

then I is dense in 10, 1[, (O)¢ris, clearly, still normally ascending, and it still satisfies
(F.8). 1

Theorem F.7 (Tietze-Urysohn). Let (X, 7) be a topological space. Then the following
statements are equivalent:

() (X, T) is T4 (see [Phil6b, Def. 3.1(d)] for the definition).

(i) If 0 # A,B C X are arbitrary closed sets with ANB =), and if a,b € R, a<b,
then there exists a continuous function ¥ : X — [a,b] such that f [A= a and

flg=Db.

(iii) If 0 # A C X is an arbitrary closed set, a,b € R, a<b,and f: A — [a,b] is
continuous, then T can be continuously extended to X, i.e. there exists a continuous
g: X — [a,b] such that gla= f.

Proof. The implications “(iii) = (ii)” and *“(ii) = (i)” are easy, whereas “(i) = (ii)”
and “(ii) = (iii)” need some work.
“(iii) = (ii)” Let ) # A,B C X be closed and disjoint, let a,b € R, a <hb. Define

1

f A,
fiAUB — [ab], f(x):= Z fg:iiB

Then, clearly, T is continuous (note that both A and B are open in AUB) and, by (iii),
it has a continuous extension g : X — [a,b], satisfying g [a= a and g [gE= b, proving

(ii).



F TIETZE-URYSOHN THEOREM 165

“(ii) = (i)” Let ® # A,B C X be closed and disjoint. By (ii), there is a continuous
function f : X — [0, 1] such that f [x= 0 and f [gl= 1. Then O4 := f71([0, 3[) and
Op = f‘l(]%, 1]) are open disjoint sets such that A C O and B C Og.

“(i) = (ii)”: The main work has already been done in the proofs of Prop. F.5 and Prop.
F.6, respectively. We apply Prop. F.6 with A and O := X \ B to obtain a normally
ascending family of open sets (Oy)¢ry satisfying (F.8) and such that I CJa, b[ is dense
in Ja, b[. If we now define T : )b» [a,b] by (F.4), then T is continuous by Prop. F.5.
By (F.8), if x € B, then X € O, showing f [g= b. Also by (F.8), if X € A, then
x € O foreach t € I, implying f(x) = inf{t € I : x € O;} = a, since | is dense in ]a, b.
In consequence, T [AE a, as desired.

“(ii) = (iii)”: By Lem. F.1, it sulced to consider a = -1, b =1. Let®) #Z A C X
be closed. Given a continuous f : A — [—1,1], we need to construct a continuous
g: X —[-1, 1] with g[aE= f. In a first step, inductively, we will construct a sequence
of continuous functions (gn)nng, On : X — [—1, 1], satisfying

Voo ]<1 2 on X (F.9
o =303 '
and []
R
nggﬂ — gk%_ 3 on A: (F.10)
k=0
For n = 0, we can simply set go := 0. Now let n > 0 and, by induction, assume go, . .., 0Jn
to be already constructed. Let
CC T 1C_ T 111
L R r 1
h: A— — - | = , h:=Ff— Ok,
3 3 3
k=0
and define
1 1I2I;II I 1 1I2|;|I I
A= XeA:h(x)§—§ 3 , A= xeA:h(x)zé 3

Since A is closed and h is continuous, A; and A, are closed subsets of X. As they are
also disjoint, (ii) yields the existence of a continuous

1 O T 1 CI.T1011
x ., L2z 1rzd
One1 - 33 '3 3
with C 1.1 C 1.1
_ 12 _ 12
gn+1|ﬂ— 3 3 ) gn+1|ZL—3 3 .
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While the validity of (F.9) for gn+1 is clear, we still need to check (F.10): Note

ol £|
Dpvy =M~ 5 [h — gnsal-
k=0 o
Thus, we have
C I 1 [C 1.1
v A () indgyp- 2 1 27 _ITLH{
xiam ot = 3 3 3 -3 ’
1|2I"|1|2I" 2
A+ < — — + — — = — ,
cmemy ) s 33 t3g 3

proving (F.10), completing the inductive construction. We now define

1

V sp: X —[-11], sn:= Ok-

n N1
k=1

Then, for each n € N, we have the estimate
(F9) 1 I‘__z_lzl_lk—1 1 ﬂl
Isn] < = - <= - =1, (F.11)
3 o1 3 3 Ko 3

showing each s, to be well-defined. The estimate also shows (sh(X))nmnto be Cauchy
for each x € X. Thus, there exists a limit g(x) := lim,_ o Sn(X) € [—1,1]. We claim
that g : X — [—1, 1] is the desired continuous extension of f. That g =f on A is an
immediate consequence of (F.10). Since

Y1900 — s <

the convergence s, — ¢ is uniform. Thus, as each s, is continuous, g is continuous by
Prop. F.3. L1

Corollary F.8. Let the topological space (X, 7) be locally compact and T,. If O,K C X
such that O is open, K is compact, and K C O, then
L] L1

3 0<F<1ATLI=1 A suppf CO .
f [CI(X)

Proof. According to Prop. 2.5(a), there exists an open set V. C X such that V is compact
and
Kcvcvco.
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Since (X, T) is T,, K is closed. As a compact T, space, (V, 7) is normal (in particular,
T4) by [Phil6b, Prop. 3.24]. Thus, we can apply the Tietze-Urysohn Th. F.7 to the
closed disjoint sets K and A :=V \ V. If K = (), then we set f := 0. Now assume
K # 0. If A# (), then Th. F.7 provides a continuous map f : V — [0, 1] with f[A= 0
and L= 1. If we extend T to all of X by setting T Ly := 0, then T is still continuous.
Also

suppf CV CO (F.12)

with V compact. In particular, suppf is itself compact and f satisfies all required

conditions. If A =(), thenV =V and V is both open and closed. In this case, we define
L1
1 forxeV,

f: X—][0,1], fX) := 0 forx £V

Then the sets that occur as preimages under f are precisely §,V, X \ V, X, which are
all open, showing T to be continuous. Note that (F.12) also holds, such that T, clearly,
once again, satisfies all required conditions. 1

G Partition of Unity

Theorem G.1. Let the topological space (X,7) be locally compact and T,. Moreover,
let Op,...,0n € X be open, N € N, and let K C X be compact. If (Oy,...,0y) forms
an open cover of K, then there exists a corresponding partition of unity, i.e. there exist
functions ¢4, ..., dn € C.(X) such that
L1

1
A 0<p;i <1 A su i C0O; G.1
- <¢ pp ¢ (G.1)
and
1
v di(x) = 1. (G.2)

i=1

Proof. For each x € K, there exists i(X) € {1,...,N} such that x € Ojc). Then, by
Prop. 2.5(a), there exists an open set V, C X such that V 4 is compact and

X € Vx C Vy« C Ojxy-

As K is compact, there exist Xi,...,Xm € K such that K C V,, U---UVy,, M € N.
Define
—1 1
1 _ 1] L1
\ L3gh = ke {l,....M}:V,, CO; , H;:= Vy € 0; L1
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Then each H; is compact and Cor. F.8 provides f; € C.(X), satisfying
0§f| <1A f.m%l A Suppf. C 0.
From the f;, we can now define

N 3 |
v bi:=Ffi (1-1)

j=1

(recall the convention that empty products are defined to be 1). Then, clearly, ¢; €
Cc(X) foreach i € {1,...,N}. Since supp ¢; C supp fi C O; and since, as a product of
[0, 1]-valued functions, ¢; is [0, 1]-valued, we see (G.1) to be satisfied. To verify (G.2),
we prove

| 1 I 1
v di=1- (1-1) (G.3)
i=1 i=1
via inductionon j: Forj =1, we have 1—(1—T;) = f; = ¢, asrequired. For1 < j <N,
we compute
1) R | | 1 1 ) SR
(I)i gyp. (I)j+1+1— (1—fi):fj+1 (1—fi)+1— (1—fi) =1- (1—fi),

i=1 i=1 i=1 i=1 i=1

proving (G.3). Finally, if x € K, then there exists k € {1,...,M} such X € Vy, C
V. € Oix), implying X € Hix,y. Thus, fix,)(X) =1 and (G.3) yields -, di(x) =1,
proving (G.2) and the theorem. 1
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