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1 Foundations: Mathematical Logic and Set Theory

1.1 Introductory Remarks

The task of mathematics is to establish the truth or falsehood of (formalizable) state-
ments using rigorous logic, and to provide methods for the solution of classes of (e.g.
applied) problems, ideally including rigorous logical proofs verifying the validity of the
methods (proofs that the method under consideration will, indeed, provide a correct
solution).

The topic of this class is calculus, which is short for infinitesimal calculus, usually un-
derstood (as it is here) to mean differential and integral calculus of real and complex
numbers (more generally, calculus may refer to any method or system of calculation
guided by the symbolic manipulation of expressions, we will briefly touch on another
example in Sec. 1.2 below). In that sense, calculus is the beginning part of the broader
field of (mathematical) analysis, the section of mathematics concerned with the notion
of a limit (for us, the most important examples will be limits of sequences (Def. 7.1
below) and limits of functions (Def. 8.17 below)).

Before we can properly define our first limit, however, it still needs some preparatory
work. In modern mathematics, the objects under investigation are almost always so-
called sets. So one aims at deriving (i.e. proving) true (and interesting and useful)
statements about sets from other statements about sets known or assumed to be true.
Such a derivation or proof means applying logical rules that guarantee the truth of the
derived (i.e. proved) statement.

However, unfortunately, a proper definition of the notion of set is not easy, and neither is
an appropriate treatment of logic and proof theory. Here, we will only be able to briefly
touch on the bare necessities from logic and set theory needed to proceed to the core
matter of this class. We begin with logic in Sec. 1.2, followed by set theory in Sec. 1.3,
combining both in Sec. 1.4. Interested students can find an introductory presentation
of axiomatic set theory in [Phi16, Sec. A] and they should consider taking a separate
class on set theory, logic, and proof theory at a later time.

1.2 Propositional Calculus

1.2.1 Statements

Mathematical logic is a large field in its own right and, as indicated above, a thorough in-
troduction is beyond the scope of this class – the interested reader may refer to [EFT07],
[Kun12], and references therein. Here, we will just introduce some basic concepts using
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common English (rather than formal symbolic languages – a concept explained in books
like [EFT07]).

As mentioned before, mathematics establishes the truth or falsehood of statements. By
a statement or proposition we mean any sentence (any sequence of symbols) that can
reasonably be assigned a truth value, i.e. a value of either true, abbreviated T, or false,
abbreviated F. The following example illustrates the difference between statements and
sentences that are not statements:

Example 1.1. (a) Sentences that are statements:

Every dog is an animal. (T)

Every animal is a dog. (F)

The number 4 is odd. (F)

2 + 3 = 5. (T)
√
2 < 0. (F)

x+ 1 > 0 holds for each natural number x. (T)

(b) Sentences that are not statements:

Let’s study calculus!

Who are you?

3 · 5 + 7.

x+ 1 > 0.

All natural numbers are green.

The fourth sentence in Ex. 1.1(b) is not a statement, as it can not be said to be either
true or false without any further knowledge on x. The fifth sentence in Ex. 1.1(b) is
not a statement as it lacks any meaning and can, hence, not be either true or false. It
would become a statement if given a definition of what it means for a natural number
to be green.

1.2.2 Logical Operators

The next step now is to combine statements into new statements using logical operators,
where the truth value of the combined statements depends on the truth values of the
original statements and on the type of logical operator facilitating the combination.

The simplest logical operator is negation, denoted ¬. It is actually a so-called unary
operator, i.e. it does not combine statements, but is merely applied to one statement.



1 FOUNDATIONS: MATHEMATICAL LOGIC AND SET THEORY 6

For example, if A stands for the statement “Every dog is an animal.”, then ¬A stands
for the statement “Not every dog is an animal.”; and if B stands for the statement “The
number 4 is odd.”, then ¬B stands for the statement “The number 4 is not odd.”, which
can also be expressed as “The number 4 is even.”

To completely understand the action of a logical operator, one usually writes what is
known as a truth table. For negation, the truth table is

A ¬A
T F
F T

(1.1)

that means if the input statement A is true, then the output statement ¬A is false; if
the input statement A is false, then the output statement ¬A is true.

We now proceed to discuss binary logical operators, i.e. logical operators combining
precisely two statements. The following four operators are essential for mathematical
reasoning:

Conjunction: A and B, usually denoted A ∧ B.

Disjunction: A or B, usually denoted A ∨ B.

Implication: A implies B, usually denoted A⇒ B.

Equivalence: A is equivalent to B, usually denoted A⇔ B.

Here is the corresponding truth table:

A B A ∧ B A ∨B A⇒ B A⇔ B
T T T T T T
T F F T F F
F T F T T F
F F F F T T

(1.2)

When first seen, some of the assignments of truth values in (1.2) might not be completely
intuitive, due to the fact that logical operators are often used somewhat differently in
common English. Let us consider each of the four logical operators of (1.2) in sequence:

For the use in subsequent examples, let A1, . . . , A6 denote the six statements from Ex.
1.1(a).

Conjunction: Most likely the easiest of the four, basically identical to common language
use: A∧B is true if, and only if, both A and B are true. For example, using Ex. 1.1(a),
A1 ∧ A4 is the statement “Every dog is an animal and 2 + 3 = 5.”, which is true since
both A1 and A4 are true. On the other hand, A1 ∧ A3 is the statement “Every dog is
an animal and the number 4 is odd.”, which is false, since A3 is false.
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Disjunction: The disjunction A∨B is true if, and only if, at least one of the statements
A,B is true. Here one already has to be a bit careful – A ∨ B defines the inclusive or,
whereas “or” in common English is often understood to mean the exclusive or (which is
false if both input statements are true). For example, using Ex. 1.1(a), A1 ∨ A4 is the
statement “Every dog is an animal or 2 + 3 = 5.”, which is true since both A1 and A4

are true. The statement A1 ∨A3, i.e. “Every dog is an animal or the number 4 is odd.”
is also true, since A1 is true. However, the statement A2 ∨ A5, i.e. “Every animal is a
dog or

√
2 < 0.” is false, as both A2 and A5 are false.

As you will have noted in the above examples, logical operators can be applied to
combine statements that have no obvious contents relation. While this might seem
strange, introducing contents-related restrictions is unnecessary as well as undesirable,
since it is often not clear which seemingly unrelated statements might suddenly appear
in a common context in the future. The same occurs when considering implications and
equivalences, where it might seem even more obscure at first.

Implication: Instead of A implies B, one also says if A then B, B is a consequence
of A, B is concluded or inferred from A, A is sufficient for B, or B is necessary for
A. The implication A ⇒ B is always true, except if A is true and B is false. At first
glance, it might be surprising that A⇒ B is defined to be true for A false and B true,
however, there are many examples of incorrect statements implying correct statements.
For instance, squaring the (false) equality of integers −1 = 1, implies the (true) equality
of integers 1 = 1. However, as with conjunction and disjunction, it is perfectly valid
to combine statements without any obvious context relation: For example, using Ex.
1.1(a), the statement A1 ⇒ A6, i.e. “Every dog is an animal implies x+ 1 > 0 holds for
each natural number x.” is true, since A6 is true, whereas the statement A4 ⇒ A2, i.e.
“2 + 3 = 5 implies every animal is a dog.” is false, as A4 is true and A2 is false.

Of course, the implication A ⇒ B is not really useful in situations, where the truth
values of both A and B are already known. Rather, in a typical application, one tries
to establish the truth of A to prove the truth of B (a strategy that will fail if A happens
to be false).

Example 1.2. Suppose we know Sasha to be a member of a group of students, taking
a class in Analysis. Then the statement A “Sasha has taken a class in Analysis before.”
implies the statement B “There is at least one student in the group, who has taken the
class before”. A priori, we might not know if Sasha has taken the Analysis class before,
but if we can establish that Sasha has, indeed, taken the class before, then we also know
B to be true. If we find Sasha to be taking the class for the first time, then we do not
know, whether B is true or false.

—
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Equivalence: A ⇔ B means A is true if, and only if, B is true. Once again, using
input statements from Ex. 1.1(a), we see that A1 ⇔ A4, i.e. “Every dog is an animal
is equivalent to 2 + 3 = 5.”, is true as well as A2 ⇔ A3, i.e. “Every animal is a dog is
equivalent to the number 4 is odd.”. On the other hand, A4 ⇔ A5, i.e. “2 + 3 = 5 is
equivalent to

√
2 < 0, is false.

Analogous to the situation of implications, A⇔ B is not really useful if the truth values
of both A and B are known a priori, but can be a powerful tool to prove B to be true
or false by establishing the truth value of A. It is obviously more powerful than the
implication as illustrated by the following example (compare with Ex. 1.2):

Example 1.3. Suppose we know Sasha has obtained the highest score among the stu-
dents registered for the Analysis class. Then the statement A “Sasha has taken the
Analysis class before.” is equivalent to the statement B “The student with the highest
score has taken the class before.” As in Ex. 1.2, if we can establish Sasha to have taken
the class before, then we also know B to be true. However, in contrast to Ex. 1.2, if we
find Sasha to have taken the class for the first time, then we know B to be false.

Remark 1.4. In computer science, the truth value T is often coded as 1 and the truth
value F is often coded as 0.

1.2.3 Rules

Note that the expressions in the first row of the truth table (1.2) (e.g. A ∧ B) are not
statements in the sense of Sec. 1.2.1, as they contain the statement variables (also known
as propositional variables) A or B. However, the expressions become statements if all
statement variables are substituted with actual statements. We will call expressions of
this form propositional formulas. Moreover, if a truth value is assigned to each statement
variable of a propositional formula, then this uniquely determines the truth value of the
formula. In other words, the truth value of the propositional formula can be calculated
from the respective truth values of its statement variables – a first justification for the
name propositional calculus.

Example 1.5. (a) Consider the propositional formula (A ∧ B) ∨ (¬B). Suppose A is
true and B is false. The truth value of the formula is obtained according to the
following truth table:

A B A ∧ B ¬B (A ∧ B) ∨ (¬B)
T F F T T

(1.3)

(b) The propositional formula A∨ (¬A), also known as the law of the excluded middle,
has the remarkable property that its truth value is T for every possible choice of
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truth values for A:
A ¬A A ∨ (¬A)
T F T
F T T

(1.4)

Formulas with this property are of particular importance.

Definition 1.6. A propositional formula is called a tautology or universally true if,
and only if, its truth value is T for all possible assignments of truth values to all the
statement variables it contains.

Notation 1.7. We write φ(A1, . . . , An) if, and only if, the propositional formula φ
contains at most the n statement variables A1, . . . , An.

Definition 1.8. The propositional formulas φ(A1, . . . , An) and ψ(A1, . . . , An) are called
equivalent if, and only if, φ(A1, . . . , An) ⇔ ψ(A1, . . . , An) is a tautology.

Lemma 1.9. The propositional formulas φ(A1, . . . , An) and ψ(A1, . . . , An) are equiva-
lent if, and only if, they have the same truth value for all possible assignments of truth
values to A1, . . . , An.

Proof. If φ(A1, . . . , An) and ψ(A1, . . . , An) are equivalent and Ai is assigned the truth
value ti, i = 1, . . . , n, then φ(A1, . . . , An) ⇔ ψ(A1, . . . , An) being a tautology implies it
has truth value T. From (1.2) we see that either φ(A1, . . . , An) and ψ(A1, . . . , An) both
have truth value T or they both have truth value F.

If, on the other hand, we know φ(A1, . . . , An) and ψ(A1, . . . , An) have the same truth
value for all possible assignments of truth values to A1, . . . , An, then, given such an
assignment, either φ(A1, . . . , An) and ψ(A1, . . . , An) both have truth value T or both
have truth value F, i.e. φ(A1, . . . , An) ⇔ ψ(A1, . . . , An) has truth value T in each case,
showing it is a tautology. �

For all logical purposes, two equivalent formulas are exactly the same – it does not
matter if one uses one or the other. The following theorem provides some important
equivalences of propositional formulas. As too many parentheses tend to make formulas
less readable, we first introduce some precedence conventions for logical operators:

Convention 1.10. ¬ takes precedence over ∧,∨, which take precedence over ⇒,⇔.
So, for example,

(A ∨ ¬B ⇒ ¬B ∧ ¬A) ⇔ ¬C ∧ (A ∨ ¬D)

is the same as
((
A ∨ (¬B)

)
⇒
(
(¬B) ∧ (¬A)

))

⇔
(

(¬C) ∧
(
A ∨ (¬D)

))

.
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Theorem 1.11. (a) (A ⇒ B) ⇔ ¬A ∨ B. This means one can actually define impli-
cation via negation and disjunction.

(b) (A ⇔ B) ⇔
(
(A ⇒ B) ∧ (B ⇒ A)

)
, i.e. A and B are equivalent if, and only if, A

is both necessary and sufficient for B. One also calls the implication B ⇒ A the
converse of the implication A ⇒ B. Thus, A and B are equivalent if, and only if,
both A⇒ B and its converse hold true.

(c) Commutativity of Conjunction: A ∧B ⇔ B ∧ A.

(d) Commutativity of Disjunction: A ∨ B ⇔ B ∨ A.

(e) Associativity of Conjunction: (A ∧ B) ∧ C ⇔ A ∧ (B ∧ C).

(f) Associativity of Disjunction: (A ∨ B) ∨ C ⇔ A ∨ (B ∨ C).

(g) Distributivity I: A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C).

(h) Distributivity II: A ∨ (B ∧ C) ⇔ (A ∨B) ∧ (A ∨ C).

(i) De Morgan’s Law I: ¬(A ∧ B) ⇔ ¬A ∨ ¬B.

(j) De Morgan’s Law II: ¬(A ∨B) ⇔ ¬A ∧ ¬B.

(k) Double Negative: ¬¬A⇔ A.

(l) Contraposition: (A⇒ B) ⇔ (¬B ⇒ ¬A).

Proof. Each equivalence is proved by providing a truth table and using Lem. 1.9.

(a):
A B ¬A A⇒ B ¬A ∨ B
T T F T T
T F F F F
F T T T T
F F T T T

(b) – (h): Exercise.

(i):
A B ¬A ¬B A ∧ B ¬(A ∧ B) ¬A ∨ ¬B
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T
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(j): Exercise.

(k):
A ¬A ¬¬A
T F T
F T F

(l):
A B ¬A ¬B A⇒ B ¬B ⇒ ¬A
T T F F T T
T F F T F F
F T T F T T
F F T T T T

Having checked all the rules completes the proof of the theorem. �

The importance of the rules provided by Th. 1.11 lies in their providing proof techniques,
i.e. methods for establishing the truth of statements from statements known or assumed
to be true. The rules of Th. 1.11 will be used frequently in proofs throughout this class.

In subsequent proofs, we will also frequently use so-called transitivity of implication as
well as transitivity of equivalence (we will encounter equivalence again in the context
of relations in Sec. 1.3 below). In preparation for the transitivity rules, we generalize
implication to propositional formulas:

Definition 1.12. In generalization of the implication operator defined in (1.2), we say
the propositional formula φ(A1, . . . , An) implies the propositional formula ψ(A1, . . . , An)
(denoted φ(A1, . . . , An) ⇒ ψ(A1, . . . , An)) if, and only if, each assignment of truth values
to the A1, . . . , An that makes φ(A1, . . . , An) true, makes ψ(A1, . . . , An) true as well.

Theorem 1.13. (a) Transitivity of Implication: (A⇒ B) ∧ (B ⇒ C) ⇒ (A⇒ C).

(b) Transitivity of Equivalence: (A⇔ B) ∧ (B ⇔ C) ⇒ (A⇔ C).

Proof. According to Def. 1.12, the rules can be verified by providing truth tables that
show that, for all possible assignments of truth values to the propositional formulas on
the left-hand side of the implications, either the left-hand side is false or both sides are
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true. (a):

A B C A⇒ B B ⇒ C (A⇒ B) ∧ (B ⇒ C) A⇒ C
T T T T T T T
T F T F T F T
F T T T T T T
F F T T T T T
T T F T F F F
T F F F T F F
F T F T F F T
F F F T T T T

(b):
A B C A⇔ B B ⇔ C (A⇔ B) ∧ (B ⇔ C) A⇔ C
T T T T T T T
T F T F F F T
F T T F T F F
F F T T F F F
T T F T F F F
T F F F T F F
F T F F F F T
F F F T T T T

Having checked both rules, the proof is complete. �

Definition and Remark 1.14. A proof of the statement B is a finite sequence of
statements A1, A2, . . . , An such that A1 is true; for 1 ≤ i < n, Ai implies Ai+1, and An
implies B. If there exists a proof for B, then Th. 1.13(a) guarantees that B is true1.

1.3 Set Theory

In the previous section, we have had a first glance at statements and corresponding truth
values. In the present section, we will move our focus to the objects such statements
are about. Reviewing Example 1.1(a), and recalling that this is a mathematics class
rather than one in zoology, the first two statements of Example 1.1(a) are less relevant
for us than statements 3–6. As in these examples, we will nearly always be interested in

1Actually, more generally, a proof of the statement B is given by a finite sequence of statements
A1, A2, . . . , An such that A1 is true; the logical disjunction A1 ∨ · · · ∨ Ai implies Ai+1 for 1 ≤ i < n;
and A1 ∨ · · · ∨An implies B. It is then still correct that the existence of a proof of B guarantees B to
be true.
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statements involving numbers or collections of numbers or collections of such collections
etc.

In modern mathematics, the term one usually uses instead of “collection” is “set”.
In 1895, Georg Cantor defined a set as “any collection into a whole M of definite
and separate objects m of our intuition or our thought”. The objects m are called
the elements of the set M . As explained in [Phi16, Sec. A], without restrictions and
refinements, Cantor’s set theory is not free of contradictions and, thus, not viable to be
used in the foundation of mathematics. Axiomatic set theory provides these necessary
restrictions and refinements and an introductory treatment can also be found in [Phi16,
Sec. A]. However, it is possible to follow and understand the rest of this class, without
having studied axiomatic set theory.

Notation 1.15. We write m ∈M for the statement “m is an element of the set M”.

Definition 1.16. The sets M and N are equal, denoted M = N , if, and only if, M and
N have precisely the same elements.

—

Definition 1.16 means we know everything about a set M if, and only if, we know all its
elements.

Definition 1.17. The set with no elements is called the empty set; it is denoted by the
symbol ∅.

Example 1.18. For finite sets, we can simply write down all its elements, for example,
A := {0}, B := {0, 17.5}, C := {5, 1, 5, 3}, D := {3, 5, 1}, E := {2,

√
2,−2}, where the

symbolism “:=” is to be read as “is defined to be equal to”.

Note C = D, since both sets contain precisely the same elements. In particular, the
order in which the elements are written down plays no role and a set does not change if
an element is written down more than once.

If a set has many elements, instead of writing down all its elements, one might use
abbreviations such as F := {−4,−2, . . . , 20, 22, 24}, where one has to make sure the
meaning of the dots is clear from the context.

Definition 1.19. The set A is called a subset of the set B (denoted A ⊆ B and also
referred to as the inclusion of A in B) if, and only if, every element of A is also an
element of B (one sometimes also calls B a superset of A and writes B ⊇ A). Please
note that A = B is allowed in the above definition of a subset. If A ⊆ B and A 6= B,
then A is called a strict subset of B, denoted A ( B.
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If B is a set and P (x) is a statement about an element x of B (i.e., for each x ∈ B,
P (x) is either true or false), then we can define a subset A of B by writing

A := {x ∈ B : P (x)}. (1.5)

This notation is supposed to mean that the set A consists precisely of those elements of
B such that P (x) is true (has the truth value T in the language of Sec. 1.2).

Example 1.20. (a) For each set A, one has A ⊆ A and ∅ ⊆ A.

(b) If A ⊆ B, then A = {x ∈ B : x ∈ A}.

(c) We have {3} ⊆ {6.7, 3, 0}. Letting A := {−10,−8, . . . , 8, 10}, we have {−2, 0, 2} =
{x ∈ A : x3 ∈ A}, ∅ = {x ∈ A : x+ 21 ∈ A}.

Remark 1.21. As a consequence of Def. 1.16, the sets A and B are equal if, and only
if, one has both inclusions, namely A ⊆ B and B ⊆ A. Thus, when proving the equality
of sets, one often divides the proof into two parts, first proving one inclusion, then the
other.

Definition 1.22. (a) The intersection of the sets A and B, denoted A∩B, consists of
all elements that are in A and in B. The sets A,B are said to be disjoint if, and
only if, A ∩ B = ∅.

(b) The union of the sets A and B, denoted A ∪B, consists of all elements that are in
A or in B (as in the logical disjunction in (1.2), the or is meant nonexclusively). If
A and B are disjoint, one sometimes writes A ∪̇B and speaks of the disjoint union
of A and B.

(c) The difference of the sets A and B, denoted A\B (read “A minus B” or “A without
B”), consists of all elements of A that are not elements of B, i.e. A \ B := {x ∈
A : x /∈ B}. If B is a subset of a given set A (sometimes called the universe in
this context), then A \ B is also called the complement of B with respect to A.
In that case, one also writes Bc := A \ B (note that this notation suppresses the
dependence on A).

Example 1.23. (a) Examples of Intersections:

{1, 2, 3} ∩ {3, 4, 5} = {3}, (1.6a)

{
√
2} ∩ {1, 2, . . . , 10} = ∅, (1.6b)

{−1, 2,−3, 4, 5} ∩ {−10,−9, . . . ,−1} ∩ {−1, 7,−3} = {−1,−3}. (1.6c)
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(b) Examples of Unions:

{1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}, (1.7a)

{1, 2, 3}∪̇{4, 5} = {1, 2, 3, 4, 5}, (1.7b)

{−1, 2,−3, 4, 5} ∪ {−99,−98, . . . ,−1} ∪ {−1, 7,−3}
= {−99,−98, . . . ,−2,−1, 2, 4, 5, 7}. (1.7c)

(c) Examples of Differences:

{1, 2, 3} \ {3, 4, 5} = {1, 2}, (1.8a)

{1, 2, 3} \ {3, 2, 1,
√
5} = ∅, (1.8b)

{−10,−9, . . . , 9, 10} \ {0} = {−10,−9, . . . ,−1} ∪ {1, 2, . . . , 9, 10}. (1.8c)

With respect to the universe {1, 2, 3, 4, 5}, it is

{1, 2, 3}c = {4, 5}; (1.8d)

with respect to the universe {0, 1, . . . , 20}, it is

{1, 2, 3}c = {0} ∪ {4, 5, . . . , 20}. (1.8e)

As mentioned earlier, it will often be unavoidable to consider sets of sets. Here are first
examples:

{
∅, {0}, {0, 1}

}
,
{
{0, 1}, {1, 2}

}
.

Definition 1.24. Given a set A, the set of all subsets of A is called the power set of A,
denoted P(A) (for reasons explained later (cf. Prop. 2.17), the power set is sometimes
also denoted as 2A).

Example 1.25. Examples of Power Sets:

P(∅) = {∅}, (1.9a)

P({0}) =
{
∅, {0}

}
, (1.9b)

P
(
P({0})

)
= P

({
∅, {0}

})
=
{
∅, {∅}, {{0}},P({0})

}
. (1.9c)

—

So far, we have restricted our set-theoretic examples to finite sets. However, not sur-
prisingly, many sets of interest to us will be infinite (we will have to postpone a mathe-
matically precise definition of finite and infinite to Sec. 3.2). We will now introduce the
most simple infinite set.
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Definition 1.26. The set N := {1, 2, 3, . . . } is called the set of natural numbers. More-
over, we define N0 := {0} ∪ N.

Remark 1.27. Mathematicians tend to desire as few fundamental objects as possible.
One of the consequences is the idea to actually define numbers as special sets: 0 := ∅,
1 := {0}, 2 := {0, 1}; in general, define the natural number n := {0, 1, . . . , n − 1} =
(n− 1) ∪ {n− 1}.

—

The following theorem compiles important set-theoretic rules:

Theorem 1.28. Let A,B,C, U be sets.

(a) Commutativity of Intersections: A ∩ B = B ∩ A.

(b) Commutativity of Unions: A ∪B = B ∪ A.

(c) Associativity of Intersections: (A ∩ B) ∩ C = A ∩ (B ∩ C).

(d) Associativity of Unions: (A ∪ B) ∪ C = A ∪ (B ∪ C).

(e) Distributivity I: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(f) Distributivity II: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

(g) De Morgan’s Law I: U \ (A ∩ B) = (U \ A) ∪ (U \B).

(h) De Morgan’s Law II: U \ (A ∪B) = (U \ A) ∩ (U \B).

(i) Double Complement: If A ⊆ U , then U \ (U \ A) = A.

Proof. In each case, the proof results from the corresponding rule of Th. 1.11:

(a):

x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B
Th. 1.11(c)⇔ x ∈ B ∧ x ∈ A⇔ x ∈ B ∩ A.

(g): Under the general assumption of x ∈ U , we have the following equivalences:

x ∈ U \ (A ∩ B) ⇔ ¬(x ∈ A ∩ B) ⇔ ¬
(
x ∈ A ∧ x ∈ B

) Th. 1.11(i)⇔ ¬(x ∈ A) ∨ ¬(x ∈ B)

⇔ x ∈ U \ A ∨ x ∈ U \B ⇔ x ∈ (U \ A) ∪ (U \B).

The proofs of the remaining rules are left as an exercise. �
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Remark 1.29. The correspondence between Th. 1.11 and Th. 1.28 is no coincidence.
One can actually prove that, starting with an equivalence of propositional formulas
φ(A1, . . . , An) ⇔ ψ(A1, . . . , An), where both formulas contain only the operators ∧,∨,¬,
one obtains a set-theoretic rule (stating an equality of sets) by reinterpreting all state-
ment variables A1, . . . , An as variables for sets, all subsets of a universe U , and replacing
∧ by ∩, ∨ by ∪, and ¬ by U\ (if there are no multiple negations, then we do not need
the hypothesis that A1, . . . , An are subsets of U). The procedure also works in the op-
posite direction – one can start with a set-theoretic formula for an equality of sets and
translate it into two equivalent propositional formulas.

1.4 Predicate Calculus

Now that we have introduced sets in the previous section, we have to return to the
subject of mathematical logic once more. As it turns out, propositional calculus, which
we discussed in Sec. 1.2, does not quite suffice to develop the theory of calculus (nor
most other mathematical theories). The reason is that we need to consider statements
such as

x+ 1 > 0 holds for each natural number x. (T) (1.10a)

All real numbers are positive. (F) (1.10b)

There exists a natural number bigger than 10. (T) (1.10c)

There exists a real number x such that x2 = −1. (F) (1.10d)

For all natural numbers n, there exists a natural number bigger than n. (T) (1.10e)

That means we are interested in statements involving universal quantification via the
quantifier “for all” (one also often uses “for each” or “for every” instead), existential
quantification via the quantifier “there exists”, or both. The quantifier of universal
quantification is denoted by ∀ and the quantifier of existential quantification is denoted
by ∃. Using these symbols as well as N and R to denote the sets of natural and real
numbers, respectively, we can restate (1.10) as

∀
x∈N

x+ 1 > 0. (T) (1.11a)

∀
x∈R

x > 0. (F) (1.11b)

∃
n∈N

n > 10. (T) (1.11c)

∃
x∈R

x2 = −1. (F) (1.11d)

∀
n∈N

∃
m∈N

m > n. (T) (1.11e)
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Definition 1.30. A universal statement has the form

∀
x∈A

P (x), (1.12a)

whereas an existential statement has the form

∃
x∈A

P (x). (1.12b)

In (1.12), A denotes a set and P (x) is a sentence involving the variable x, a so-called
predicate of x, that becomes a statement (i.e. becomes either true or false) if x is substi-
tuted with any concrete element of the set A (in particular, P (x) is allowed to contain
further quantifiers, but it must not contain any other quantifier involving x – one says
x must be a free variable in P (x), not bound by any quantifier in P (x)).

The universal statement (1.12a) has the truth value T if, and only if, P (x) has the truth
value T for all elements x ∈ A; the existential statement (1.12b) has the truth value T
if, and only if, P (x) has the truth value T for at least one element x ∈ A.

Remark 1.31. Some people prefer to write
∧

x∈A
instead of ∀

x∈A
and

∨

x∈A
instead of ∃

x∈A
.

Even though this notation has the advantage of emphasizing that the universal statement
can be interpreted as a big logical conjunction and the existential statement can be
interpreted as a big logical disjunction, it is significantly less common. So we will stick
to ∀ and ∃ in this class.

Remark 1.32. According to Def. 1.30, the existential statement (1.12b) is true if, and
only if, P (x) is true for at least one x ∈ A. So if there is precisely one such x, then
(1.12b) is true; and if there are several different x ∈ A such that P (x) is true, then
(1.12b) is still true. Uniqueness statements are often of particular importance, and one
sometimes writes

∃!
x∈A

P (x) (1.13)

for the statement “there exists a unique x ∈ A such that P (x) is true”. This notation
can be defined as an abbreviation for

∃
x∈A

(

P (x) ∧ ∀
y∈A

(
P (y) ⇒ x = y

)
)

. (1.14)
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Example 1.33. Here are some examples of uniqueness statements:

∃!
n∈N

n > 10. (F) (1.15a)

∃!
n∈N

12 > n > 10. (T) (1.15b)

∃!
n∈N

11 > n > 10. (F) (1.15c)

∃!
x∈R

x2 = −1. (F) (1.15d)

∃!
x∈R

x2 = 1. (F) (1.15e)

∃!
x∈R

x2 = 0. (T) (1.15f)

Remark 1.34. As for propositional calculus, we also have some important rules for
predicate calculus:

(a) Consider the negation of a universal statement, ¬ ∀
x∈A

P (x), which is true if, and

only if, P (x) does not hold for each x ∈ A, i.e. if, and only if, there exists at least
one x ∈ A such that P (x) is false (such that ¬P (x) is true). We have just proved
the rule

¬ ∀
x∈A

P (x) ⇔ ∃
x∈A

¬P (x). (1.16a)

Similarly, consider the negation of an existential statement. We claim the corre-
sponding rule is

¬ ∃
x∈A

P (x) ⇔ ∀
x∈A

¬P (x). (1.16b)

Indeed, we can prove (1.16b) from (1.16a):

¬ ∃
x∈A

P (x)
Th. 1.11(k)⇔ ¬ ∃

x∈A
¬¬P (x) (1.16a)⇔ ¬¬ ∀

x∈A
¬P (x) Th. 1.11(k)⇔ ∀

x∈A
¬P (x).

(1.17)
One can interpret (1.16) as a generalization of the De Morgan’s laws Th. 1.11(i),(j).

One can actually generalize (1.16) even a bit more: If a statement starts with several
quantifiers, then one negates the statement by replacing each ∀ with ∃ and vice versa
plus negating the predicate after the quantifiers (see the example in (1.20e) below).

(b) If A,B are sets and P (x, y) denotes a predicate of both x and y, then ∀
x∈A

∀
y∈B

P (x, y)

and ∀
y∈B

∀
x∈A

P (x, y) both hold true if, and only if, P (x, y) holds true for each x ∈ A

and each y ∈ B, i.e. the order of two consecutive universal quantifiers does not
matter:

∀
x∈A

∀
y∈B

P (x, y) ⇔ ∀
y∈B

∀
x∈A

P (x, y) (1.18a)
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In the same way, we obtain the following rule:

∃
x∈A

∃
y∈B

P (x, y) ⇔ ∃
y∈B

∃
x∈A

P (x, y). (1.18b)

If A = B, one also uses abbreviations of the form

∀
x,y∈A

P (x, y) for ∀
x∈A

∀
y∈A

P (x, y), (1.19a)

∃
x,y∈A

P (x, y) for ∃
x∈A

∃
y∈A

P (x, y). (1.19b)

Generalizing rules (1.18), we can always commute identical quantifiers. Caveat:
Quantifiers that are not identical must not be commuted (see Ex. 1.35(d) below).

Example 1.35. (a) Negation of universal and existential statements:

Negation of (1.11a) : ∃
x∈N

¬(x+1>0)
︷ ︸︸ ︷

x+ 1 ≤ 0 . (F) (1.20a)

Negation of (1.11b) : ∃
x∈R

¬(x>0)
︷ ︸︸ ︷

x ≤ 0 . (T) (1.20b)

Negation of (1.11c) : ∀
n∈N

¬(n>10)
︷ ︸︸ ︷

n ≤ 10 . (F) (1.20c)

Negation of (1.11d) : ∀
x∈R

¬(x2=−1)
︷ ︸︸ ︷

x2 6= −1 . (T) (1.20d)

Negation of (1.11e) : ∃
n∈N

∀
m∈N

¬(m>n)
︷ ︸︸ ︷

m ≤ n . (F) (1.20e)

(b) As a more complicated example, consider the negation of the uniqueness statement
(1.13), i.e. of (1.14):

¬ ∃!
x∈A

P (x) ⇔ ¬ ∃
x∈A

(

P (x) ∧ ∀
y∈A

(
P (y) ⇒ x = y

)
)

(1.16b), Th. 1.11(a)⇔ ∀
x∈A

¬
(

P (x) ∧ ∀
y∈A

(
¬P (y) ∨ x = y

)
)

Th. 1.11(i)⇔ ∀
x∈A

(

¬P (x) ∨ ¬ ∀
y∈A

(
¬P (y) ∨ x = y

)
)

(1.16a)⇔ ∀
x∈A

(

¬P (x) ∨ ∃
y∈A

¬
(
¬P (y) ∨ x = y

)
)

Th. 1.11(j),(k)⇔ ∀
x∈A

(

¬P (x) ∨ ∃
y∈A

(
P (y) ∧ x 6= y

)
)

Th. 1.11(a)⇔ ∀
x∈A

(

P (x) ⇒ ∃
y∈A

(
P (y) ∧ x 6= y

)
)

. (1.21)
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So how to decode the expression, we have obtained at the end? It states that if
P (x) holds for some x ∈ A, then there must be at least a second, different, element
y ∈ A such that P (y) is true. This is, indeed, precisely the negation of ∃!

x∈A
P (x).

(c) Identical quantifiers commute:

∀
x∈R

∀
n∈N

x2n ≥ 0 ⇔ ∀
n∈N

∀
x∈R

x2n ≥ 0, (1.22a)

∀
x∈R

∃
y∈R

∃
n∈N

ny > x2 ⇔ ∀
x∈R

∃
n∈N

∃
y∈R

ny > x2. (1.22b)

(d) The following example shows that different quantifiers do, in general, not commute
(i.e. do not yield equivalent statements when commuted): While the statement

∀
x∈R

∃
y∈R

y > x (1.23a)

is true (for each real number x, there is a bigger real number y, e.g. y := x+ 1 will
do the job), the statement

∃
y∈R

∀
x∈R

y > x (1.23b)

is false (for example, since y > y is false). In particular, (1.23a) and (1.23b) are not
equivalent.

(e) Even though (1.13) provides useful notation, it is better not to think of ∃! as a
quantifier. It is really just an abbreviation for (1.14), and it behaves very differently
from ∃ and ∀: The following examples show that, in general, ∃! commutes neither
with ∃, nor with itself:

∃
n∈N

∃!
m∈N

m < n 6⇔ ∃!
m∈N

∃
n∈N

m < n

(the statement on the left is true, as one can choose n = 2, but the statement on
the right is false, as ∃

n∈N
m < n holds for every m ∈ N). Similarly,

∃!
n∈N

∃!
m∈N

m < n 6⇔ ∃!
m∈N

∃!
n∈N

m < n

(the statement on the left is still true and the statement on the right is still false
(there is no m ∈ N such that ∃!

n∈N
m < n)).

Remark 1.36. One can make the following observations regarding the strategy for
proving universal and existential statements:

(a) To prove that ∀
x∈A

P (x) is true, one must check the truth of P (x) for every element

x ∈ A – examples are not enough!
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(b) To prove that ∀
x∈A

P (x) is false, it suffices to find one x ∈ A such that P (x) is

false – such an x is then called a counterexample and one counterexample is always
enough to prove ∀

x∈A
P (x) is false!

(c) To prove that ∃
x∈A

P (x) is true, it suffices to find one x ∈ A such that P (x) is true

– such an x is then called an example and one example is always enough to prove
∃
x∈A

P (x) is true!

—

The subfield of mathematical logic dealing with quantified statements is called predicate
calculus. In general, one does not restrict the quantified variables to range only over
elements of sets (as we have done above). Again, we refer to [EFT07] for a deeper
treatment of the subject.

As an application of quantified statements, let us generalize the notion of union and
intersection:

Definition 1.37. Let I 6= ∅ be a nonempty set, usually called an index set in the present
context. For each i ∈ I, let Ai denote a set (some or all of the Ai can be identical).

(a) The intersection
⋂

i∈I
Ai :=

{

x : ∀
i∈I

x ∈ Ai

}

(1.24a)

consists of all elements x that belong to every Ai.

(b) The union
⋃

i∈I
Ai :=

{

x : ∃
i∈I

x ∈ Ai

}

(1.24b)

consists of all elements x that belong to at least one Ai. The union is called disjoint
if, and only if, for each i, j ∈ I, i 6= j implies Ai ∩ Aj = ∅.

Proposition 1.38. Let I 6= ∅ be an index set, let M denote a set, and, for each i ∈ I,
let Ai denote a set. The following set-theoretic rules hold:

(a)

(
⋂

i∈I
Ai

)

∩M =
⋂

i∈I
(Ai ∩M).

(b)

(
⋃

i∈I
Ai

)

∪M =
⋃

i∈I
(Ai ∪M).
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(c)

(
⋂

i∈I
Ai

)

∪M =
⋂

i∈I
(Ai ∪M).

(d)

(
⋃

i∈I
Ai

)

∩M =
⋃

i∈I
(Ai ∩M).

(e) M \ ⋂
i∈I
Ai =

⋃

i∈I
(M \ Ai).

(f) M \ ⋃
i∈I
Ai =

⋂

i∈I
(M \ Ai).

Proof. We prove (c) and (e) and leave the remaining proofs as an exercise.

(c):

x ∈
(
⋂

i∈I
Ai

)

∪M ⇔ x ∈M ∨ ∀
i∈I

x ∈ Ai
(∗)⇔ ∀

i∈I

(
x ∈ Ai ∨ x ∈M

)

⇔ x ∈
⋂

i∈I
(Ai ∪M).

To justify the equivalence at (∗), we make use of Th. 1.11(b) and verify ⇒ and ⇐. For
⇒ note that the truth of x ∈M implies x ∈ Ai∨x ∈M is true for each i ∈ I. If x ∈ Ai
is true for each i ∈ I, then x ∈ Ai ∨x ∈M is still true for each i ∈ I. To verify ⇐, note
that the existence of i ∈ I such that x ∈ M implies the truth of x ∈ M ∨ ∀

i∈I
x ∈ Ai.

If x ∈ M is false for each i ∈ I, then x ∈ Ai must be true for each i ∈ I, showing
x ∈M ∨ ∀

i∈I
x ∈ Ai is true also in this case.

(e):

x ∈M \
⋂

i∈I
Ai ⇔ x ∈M ∧ ¬ ∀

i∈I
x ∈ Ai ⇔ x ∈M ∧ ∃

i∈I
x /∈ Ai

⇔ ∃
i∈I

x ∈M \ Ai ⇔ x ∈
⋃

i∈I
(M \ Ai),

completing the proof. �
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Example 1.39. We have the following identities of sets:

⋂

x∈R
N = N, (1.25a)

⋂

n∈N
{1, 2, . . . , n} = {1}, (1.25b)

⋃

x∈R
N = N, (1.25c)

⋃

n∈N
{1, 2, . . . , n} = N, (1.25d)

N \
⋃

n∈N
{2n} = {1, 3, 5, . . . } =

⋂

n∈N

(
N \ {2n}

)
. (1.25e)

Comparing with the notation of Def. 1.37, in (1.25a), for example, we have I = R and
Ai = N for each i ∈ I (where, in (1.25a), we have written x instead of i). Similarly, in
(1.25b), we have I = N and An = {1, 2, . . . , n} for each n ∈ I.

2 Functions and Relations

2.1 Functions

Definition 2.1. Let A,B be sets. Given x ∈ A, y ∈ B, the set

(x, y) :=
{

{x}, {x, y}
}

(2.1)

is called the ordered pair (often shortened to just pair) consisting of x and y. The set of
all such pairs is called the Cartesian product A×B, i.e.

A× B := {(x, y) : x ∈ A ∧ y ∈ B}. (2.2)

Example 2.2. Let A be a set.

A× ∅ = ∅ × A = ∅, (2.3a)

{1, 2} × {1, 2, 3} = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} (2.3b)

6= {1, 2, 3} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}. (2.3c)

Also note that, for x 6= y,

(x, y) =
{
{x}, {x, y}

}
6=
{
{y}, {x, y}

}
= (y, x). (2.4)
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Definition 2.3. Given sets A,B, a function or map f is an assignment rule that assigns
to each x ∈ A a unique y ∈ B. One then also writes f(x) for the element y. The set A
is called the domain of f , denoted D(f), and B is called the range of f , denoted R(f).
The information about a map f can be concisely summarized by the notation

f : A −→ B, x 7→ f(x), (2.5)

where x 7→ f(x) is called the assignment rule for f , f(x) is called the image of x, and
x is called a preimage of f(x) (the image must be unique, but there might be several
preimages). The set

graph(f) :=
{
(x, y) ∈ A×B : y = f(x)

}
(2.6)

is called the graph of f (not to be confused with pictures visualizing the function f ,
which are also called graph of f). If one wants to be completely precise, then one
identifies the function f with the ordered triple (A,B, graph(f)).

The set of all functions with domain A and range B is denoted by F(A,B) or BA, i.e.

F(A,B) := BA :=
{
(f : A −→ B) : A = D(f) ∧ B = R(f)

}
. (2.7)

Caveat: Some authors reserve the word map for continuous functions, but we use func-
tion and map synonymously.

Definition 2.4. Let A,B be sets and f : A −→ B a function.

(a) If T is a subset of A, then

f(T ) := {f(x) ∈ B : x ∈ T} (2.8)

is called the image of T under f .

(b) If U is a subset of B, then

f−1(U) := {x ∈ A : f(x) ∈ U} (2.9)

is called the preimage or inverse image of U under f .

(c) f is called injective or one-to-one if, and only if, every y ∈ B has at most one
preimage, i.e. if, and only if, the preimage of {y} has at most one element:

f injective ⇔ ∀
y∈B

(

f−1{y} = ∅ ∨ ∃!
x∈A

f(x) = y

)

⇔ ∀
x1,x2∈A

(
x1 6= x2 ⇒ f(x1) 6= f(x2)

)
. (2.10)
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(d) f is called surjective or onto if, and only if, every element of the range of f has a
preimage:

f surjective ⇔ ∀
y∈B

∃
x∈A

y = f(x) ⇔ ∀
y∈B

f−1{y} 6= ∅. (2.11)

(e) f is called bijective if, and only if, f is injective and surjective.

Example 2.5. Examples of Functions:

f : {1, 2, 3, 4, 5} −→ {1, 2, 3, 4, 5}, f(x) := −x+ 6, (2.12a)

g : N −→ N, g(n) := 2n, (2.12b)

h : N −→ {2, 4, 6, . . . }, h(n) := 2n, (2.12c)

h̃ : N −→ {2, 4, 6, . . . }, h̃(n) :=

{

n for n even,

n+ 1 for n odd,
(2.12d)

G : N −→ R, G(n) := n/(n+ 1), (2.12e)

F : P(N) −→ P
(
P(N)

)
, F (A) := P(A). (2.12f)

Instead of f(x) := −x + 6 in (2.12a), one can also write x 7→ −x + 6 and analogously
in the other cases. Also note that, in the strict sense, functions g and h are different,
since their ranges are different (however, using the following Def. 2.4(a), they have the
same image in the sense that g(N) = h(N)). Furthermore,

f({1, 2}) = {5, 4} = f−1({1, 2}), h̃−1({2, 4, 6}) = {1, 2, 3, 4, 5, 6}, (2.13)

f is bijective; g is injective, but not surjective; h is bijective; h̃ is surjective, but not
injective. Can you figure out if G and F are injective and/or surjective?

Example 2.6. (a) For each nonempty set A, the map Id : A −→ A, Id(x) := x, is
called the identity on A. If one needs to emphasize that Id operates on A, then one
also writes IdA instead of Id. The identity is clearly bijective.

(b) Let A,B be nonempty sets. A map f : A −→ B is called constant if, and only if,
there exists c ∈ B such that f(x) = c for each x ∈ A. In that case, one also writes
f ≡ c, which can be read as “f is identically equal to c”. If f ≡ c, ∅ 6= T ⊆ A, and
U ⊆ B, then

f(T ) = {c}, f−1(U) =

{

A for c ∈ U,

∅ for c /∈ U.
(2.14)

f is injective if, and only if, A = {x}; f is surjective if, and only if, B = {c}.
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(c) Given A ⊆ X, the map
ι : A −→ X, ι(x) := x, (2.15)

is called inclusion (also embedding or imbedding). An inclusion is always injective;
it is surjective if, and only if A = X, i.e. if, and only if, it is the identity on A.

(d) Given A ⊆ X and a map f : X −→ B, the map g : A −→ B, g(x) = f(x), is called
the restriction of f to A; f is called the extension of g to X. In this situation, one
also uses the notation f ↾A for g (some authors prefer the notation f |A or f |A).

There are several important rules regarding functions and set-theoretic operations. How-
ever, we will not make use of them in this class, and the interested student can find
them in [Phi16, Th. 2.7].

Definition 2.7. The composition of maps f and g with f : A −→ B, g : C −→ D, and
f(A) ⊆ C is defined to be the map

g ◦ f : A −→ D, (g ◦ f)(x) := g
(
f(x)

)
. (2.16)

The expression g ◦ f is read as “g after f” or “g composed with f”.

Example 2.8. Consider the maps

f : N −→ R, n 7→ n2, (2.17a)

g : N −→ R, n 7→ 2n. (2.17b)

We obtain f(N) = {1, 4, 9, . . . } ⊆ D(g), g(N) = {2, 4, 6, . . . } ⊆ D(f), and the composi-
tions

(g ◦ f) : N −→ R, (g ◦ f)(n) = g(n2) = 2n2, (2.18a)

(f ◦ g) : N −→ R, (f ◦ g)(n) = f(2n) = 4n2, (2.18b)

showing that composing functions is, in general, not commutative, even if the involved
functions have the same domain and the same range.

Proposition 2.9. Consider maps f : A −→ B, g : C −→ D, h : E −→ F , satisfying
f(A) ⊆ C and g(C) ⊆ E.

(a) Associativity of Compositions:

h ◦ (g ◦ f) = (h ◦ g) ◦ f. (2.19)

(b) One has the following law for forming preimages:

∀
W∈P(D)

(g ◦ f)−1(W ) = f−1(g−1(W )). (2.20)
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Proof. (a): Both h ◦ (g ◦ f) and (h ◦ g) ◦ f map A into F . So it just remains to prove
(
h ◦ (g ◦ f)

)
(x) =

(
(h ◦ g) ◦ f

)
(x) for each x ∈ A. One computes, for each x ∈ A,

(
h ◦ (g ◦ f)

)
(x) = h

(
(g ◦ f)(x)

)
= h

(
g(f(x))

)
= (h ◦ g)(f(x))

=
(
(h ◦ g) ◦ f

)
(x), (2.21)

establishing the case.

(b): Exercise. �

Definition 2.10. A function g : B −→ A is called a right inverse (resp. left inverse)
of a function f : A −→ B if, and only if, f ◦ g = IdB (resp. g ◦ f = IdA). Moreover,
g is called an inverse of f if, and only if, it is both a right and a left inverse. If g is
an inverse of f , then one also writes f−1 instead of g. The map f is called (right, left)
invertible if, and only if, there exists a (right, left) inverse for f .

Example 2.11. (a) Consider the map

f : N −→ N, f(n) := 2n. (2.22a)

The maps

g1 : N −→ N, g1(n) :=

{

n/2 if n even,

1 if n odd,
(2.22b)

g2 : N −→ N, g2(n) :=

{

n/2 if n even,

2 if n odd,
(2.22c)

both constitute left inverses of f . It follows from Th. 2.12(c) below that f does not
have a right inverse.

(b) Consider the map

f : N −→ N, f(n) :=

{

n/2 for n even,

(n+ 1)/2 for n odd.
(2.23a)

The maps

g1 : N −→ N, g1(n) := 2n, (2.23b)

g2 : N −→ N, g2(n) := 2n− 1, (2.23c)

both constitute right inverses of f . It follows from Th. 2.12(c) below that f does
not have a left inverse.
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(c) The map

f : N −→ N, f(n) :=

{

n− 1 for n even,

n+ 1 for n odd,
(2.24a)

is its own inverse, i.e. f−1 = f . For the map

g : N −→ N, g(n) :=







2 for n = 1,

3 for n = 2,

1 for n = 3,

n for n /∈ {1, 2, 3},

(2.24b)

the inverse is

g−1 : N −→ N, g−1(n) :=







3 for n = 1,

1 for n = 2,

2 for n = 3,

n for n /∈ {1, 2, 3}.

(2.24c)

While Examples 2.11(a),(b) show that left and right inverses are usually not unique,
they are unique provided f is bijective (see Th. 2.12(c)).

Theorem 2.12. Let A,B be nonempty sets.

(a) f : A −→ B is right invertible if, and only if, f is surjective.

(b) f : A −→ B is left invertible if, and only if, f is injective.

(c) f : A −→ B is invertible if, and only if, f is bijective. In this case, the right inverse
and the left inverse are unique and both identical to the inverse.

Proof. (a): If f is surjective, then, for each y ∈ B, there exists xy ∈ f−1{y} such that
f(xy) = y. Define

g : B −→ A, g(y) := xy (2.25)

(note to the interested reader: the definition of g is, in general, not as unproblematic
as it might seem – g is a so-called choice function, and its definition makes use of the
axiom of choice, see [Phi16, Sec. A.4]). Then, for each y ∈ B, f(g(y)) = y, showing g
is a right inverse of f . Conversely, if g : B −→ A is a right inverse of f , then, for each
y ∈ B, it is y = f(g(y)), showing that g(y) ∈ A is a preimage of y, i.e. f is surjective.
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(b): Fix a ∈ A. If f is injective, then, for each y ∈ B with f−1{y} 6= ∅, let xy denote
the unique element in A satisfying f(xy) = y. Define

g : B −→ A, g(y) :=

{

xy for f−1{y} 6= ∅,
a otherwise.

(2.26)

Then, for each x ∈ A, g(f(x)) = x, showing g is a left inverse of f . Conversely, if
g : B −→ A is a left inverse of f and x1, x2 ∈ A with f(x1) = f(x2) = y, then
x1 = (g ◦ f)(x1) = g(f(x1)) = g(f(x2)) = (g ◦ f)(x2) = x2, showing y has precisely one
preimage and f is injective.

(c): Assume g to be a left inverse of f and h to be a right inverse of f . Then, for each
y ∈ B,

g(y) =
(
g ◦ (f ◦ h)

)
(y) =

(
(g ◦ f) ◦ h

)
(y) = h(y), (2.27)

showing g = h. In particular, if f has an inverse f−1, then g = h = f−1. If f is
invertible, then f is bijective by (a) and (b). If f is bijective, then, by (a) and (b), f
has a left inverse g and a right inverse h. By (2.27), g = h, i.e. f is invertible. �

Theorem 2.13. Consider maps f : A −→ B, g : B −→ C. If f and g are both injective
(resp. both surjective, both bijective), then so is g ◦ f . Moreover, in the bijective case,
one has

(g ◦ f)−1 = f−1 ◦ g−1. (2.28)

Proof. Exercise. �

Definition 2.14. (a) Given an index set I and a set A, a map f : I −→ A is sometimes
called a family (of elements in A), and is denoted in the form f = (ai)i∈I with
ai := f(i). When using this representation, one often does not even specify f and
A, especially if the ai are themselves sets.

(b) A sequence in a set A is a family of elements in A, where the index set is the set of
natural numbers N. In this case, one writes (an)n∈N or (a1, a2, . . . ). More generally,
a family is called a sequence, given a bijective map between the index set I and a
subset of N.

(c) Given a family of sets (Ai)i∈I , we define the Cartesian product of the Ai to be the
set of functions

∏

i∈I
Ai :=

{(

f : I −→
⋃

j∈I
Aj

)

: ∀
i∈I

f(i) ∈ Ai

}

. (2.29)

If I has precisely n elements with n ∈ N, then the elements of the Cartesian product
∏

i∈I Ai are called (ordered) n-tuples, (ordered) triples for n = 3.



2 FUNCTIONS AND RELATIONS 31

Example 2.15. (a) Using the notion of family, we can now say that the intersection
⋂

i∈I Ai and union
⋃

i∈I Ai as defined in Def. 1.37 are the intersection and union of
the family of sets (Ai)i∈I , respectively. As a concrete example, let us revisit (1.25b),
where we have

(An)n∈N, An := {1, 2, . . . , n},
⋂

n∈N
An = {1}. (2.30)

(b) Examples of Sequences:

Sequence in {0, 1} : (1, 0, 1, 0, 1, 0, . . . ), (2.31a)

Sequence in N : (n2)n∈N = (1, 4, 9, 16, 25, . . . ), (2.31b)

Sequence in R :
(
(−1)n

√
n
)

n∈N =
(

−1,
√
2,−

√
3, . . .

)

, (2.31c)

Sequence in R : (1/n)n∈N =

(

1,
1

2
,
1

3
, . . .

)

, (2.31d)

Finite Sequence in P(N) :
(
{3, 2, 1}, {2, 1}, {1}, ∅

)
. (2.31e)

(c) The Cartesian product
∏

i∈I A, where all sets Ai = A, is the same as AI , the set
of all functions from I into A. So, for example,

∏

n∈N R = RN is the set of all
sequences in R. If I = {1, 2, . . . , n} with n ∈ N, then

∏

i∈I
A = A{1,2...,n} =:

n∏

i=1

A =: An (2.32)

is the set of all n-tuples with entries from A.

—

In the following, we explain the common notation 2A for the power set P(A) of a set
A. It is related to a natural identification between subsets and their corresponding
characteristic function.

Definition 2.16. Let A be a set and let B ⊆ A be a subset of A. Then

χB : A −→ {0, 1}, χB(x) :=

{

1 if x ∈ B,

0 if x /∈ B,
(2.33)

is called the characteristic function of the set B (with respect to the universe A). One
also finds the notations 1B and 1B instead of χB (note that all the notations supress
the dependence of the characteristic function on the universe A).
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Proposition 2.17. Let A be a set. Then the map

χ : P(A) −→ {0, 1}A, χ(B) := χB, (2.34)

is bijective (recall that P(A) denotes the power set of A and {0, 1}A denotes the set of
all functions from A into {0, 1}).

Proof. χ is injective: Let B,C ∈ P(A) with B 6= C. By possibly switching the names
of B and C, we may assume there exists x ∈ B such that x /∈ C. Then χB(x) = 1,
whereas χC(x) = 0, showing χ(B) 6= χ(C), proving χ is injective.

χ is surjective: Let f : A −→ {0, 1} be an arbitrary function and define B := {x ∈ A :
f(x) = 1}. Then χ(B) = χB = f , proving χ is surjective. �

Proposition 2.17 allows one to identify the sets P(A) and {0, 1}A via the bijective map
χ. This fact together with the common practise of set theory to identify the number 2
with the set {0, 1} (cf. Rem. 1.27 above) explains the notation 2A for P(A).

2.2 Relations

Definition 2.18. Given sets A and B, a relation is a subset R of A× B (if one wants
to be completely precise, a relation is an ordered triple (A,B,R), where R ⊆ A × B).
If A = B, then we call R a relation on A. One says that a ∈ A and b ∈ B are related
according to the relation R if, and only if, (a, b) ∈ R. In this context, one usually writes
aR b instead of (a, b) ∈ R.

Example 2.19. (a) The relations we are probably most familiar with are = and ≤.
The relation R of equality, usually denoted =, makes sense on every nonempty set
A:

R := ∆(A) := {(x, x) ∈ A× A : x ∈ A}. (2.35)

The set ∆(A) is called the diagonal of the Cartesian product, i.e., as a subset of
A× A, the relation of equality is identical to the diagonal:

x = y ⇔ xR y ⇔ (x, y) ∈ R = ∆(A). (2.36)

Similarly, the relation ≤ on R is identical to the set

R≤ := {(x, y) ∈ R2 : x ≤ y}. (2.37)

(b) Every function f : A −→ B is a relation, namely the relation

Rf = {(x, y) ∈ A×B : y = f(x)} = graph(f). (2.38)
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Conversely, if B 6= ∅, then every relation R ⊆ A × B uniquely corresponds to the
function

fR : A −→ P(B), fR(x) = {y ∈ B : xR y}. (2.39)

Definition 2.20. Let R be a relation on the set A.

(a) R is called reflexive if, and only if,

∀
x∈A

xRx, (2.40)

i.e. if, and only if, every element is related to itself.

(b) R is called symmetric if, and only if,

∀
x,y∈A

(
xR y ⇒ y Rx

)
, (2.41)

i.e. if, and only if, each x is related to y if, and only if, y is related to x.

(c) R is called antisymmetric if, and only if,

∀
x,y∈A

(
(xR y ∧ y Rx) ⇒ x = y

)
, (2.42)

i.e. if, and only if, the only possibility for x to be related to y at the same time that
y is related to x is in the case x = y.

(d) R is called transitive if, and only if,

∀
x,y,z∈A

(
(xR y ∧ y R z) ⇒ xR z

)
, (2.43)

i.e. if, and only if, the relatedness of x and y together with the relatedness of y and
z implies the relatedness of x and z.

Example 2.21. The relations = and ≤ on R (or N) are reflexive, antisymmetric, and
transitive; = is also symmetric, whereas ≤ is not; < is antisymmetric (since x < y∧y < x
is always false) and transitive, but neither reflexive nor symmetric. The relation

R :=
{
(x, y) ∈ N2 : (x, y are both even) ∨ (x, y are both odd)

}
(2.44)

on N is not antisymmetric, but reflexive, symmetric, and transitive. The relation

S := {(x, y) ∈ N2 : y = x2} (2.45)

is not transitive (for example, 2S 4 and 4S 16, but not 2S 16), not reflexive, not sym-
metric; it is only antisymmetric.
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Definition 2.22. A relation R on a set A is called an equivalence relation if, and only
if, R is reflexive, symmetric, and transitive. If R is an equivalence relations, then one
often writes x ∼ y instead of xR y.

Example 2.23. (a) The equality relation = is an equivalence relation on each A 6= ∅.

(b) The relation R defined in (2.44) is an equivalence relation on N.

(c) Given a disjoint union A = ˙⋃
i∈IAi with every Ai 6= ∅ (which is sometimes called a

decomposition of A), an equivalence relation on A is defined by

x ∼ y ⇔ ∃
i∈I

(
x ∈ Ai ∧ y ∈ Ai

)
. (2.46)

Conversely, given an equivalence relation ∼ on a nonempty set A, we can construct
a decomposition A = ˙⋃

i∈IAi such that (2.46) holds: For each x ∈ A, define

[x] := {y ∈ A : x ∼ y}, (2.47)

called the equivalence class of x; each y ∈ [x] is called a representative of [x]. One
verifies that the properties of ∼ guarantee

(
[x] = [y] ⇔ x ∼ y

)
∧

(
[x] ∩ [y] = ∅ ⇔ ¬(x ∼ y)

)
. (2.48)

The set of all equivalence classes I := A/ ∼:= {[x] : x ∈ A} is called the quotient set

of A by ∼, and A = ˙⋃
i∈IAi with Ai := i for each i ∈ I is the desired decomposition

of A.

Definition 2.24. A relation R on a set A is called a partial order if, and only if, R is
reflexive, antisymmetric, and transitive. If R is a partial order, then one usually writes
x ≤ y instead of xR y. A partial order ≤ is called a total or linear order if, and only if,
for each x, y ∈ A, one has x ≤ y or y ≤ x.

Notation 2.25. Given a (partial or total) order ≤ on A 6= ∅, we write x < y if, and
only if, x ≤ y and x 6= y, calling < the strict order corresponding to ≤ (note that the
strict order is never a partial order).

Definition 2.26. Let ≤ be a partial order on A 6= ∅, ∅ 6= B ⊆ A.

(a) x ∈ A is called lower (resp. upper) bound for B if, and only if, x ≤ b (resp. b ≤ x)
for each b ∈ B. Moreover, B is called bounded from below (resp. from above) if, and
only if, there exists a lower (resp. upper) bound for B; B is called bounded if, and
only if, it is bounded from above and from below.
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(b) x ∈ B is called minimum or just min (resp. maximum or max) of B if, and only if,
x is a lower (resp. upper) bound for B. One writes x = minB if x is minimum and
x = maxB if x is maximum.

(c) A maximum of the set of lower bounds of B (i.e. a largest lower bound) is called
infimum of B, denoted inf B; a minimum of the set of upper bounds of B (i.e. a
smallest upper bound) is called supremum of B, denoted supB.

Example 2.27. (a) For each A ⊆ R, the usual relation ≤ defines a total order on A.
For A = R, we see that N has 0 and 1 as lower bound with 1 = minN = inf N. On
the other hand, N is unbounded from above. The set M := {1, 2, 3} is bounded
with minM = 1, maxM = 3. The positive real numbers R+ := {x ∈ R : x > 0}
have inf R+ = 0, but they do not have a minimum (if x > 0, then 0 < x/2 < x).

(b) Consider A := N× N. Then

(m1,m2) ≤ (n1, n2) ⇔ m1 ≤ n1 ∧ m2 ≤ n2, (2.49)

defines a partial order on A that is not a total order (for example, neither (1, 2) ≤
(2, 1) nor (2, 1) ≤ (1, 2)). For the set

B :=
{
(1, 1), (2, 1), (1, 2)

}
, (2.50)

we have inf B = minB = (1, 1), B does not have a max, but supB = (2, 2) (if
(m,n) ∈ A is an upper bound for B, then (2, 1) ≤ (m,n) implies 2 ≤ m and
(1, 2) ≤ (m,n) implies 2 ≤ n, i.e. (2, 2) ≤ (m,n); since (2, 2) is clearly an upper
bound for B, we have proved supB = (2, 2)).

A different order on A is the so-called lexicographic order defined by

(m1,m2) ≤ (n1, n2) ⇔ m1 < n1 ∨ (m1 = n1 ∧ m2 ≤ n2). (2.51)

In contrast to the order from (2.49), the lexicographic order does define a total
order on A.

Lemma 2.28. Let ≤ be a partial order on A 6= ∅, ∅ 6= B ⊆ A. Then the relation ≥,
defined by

x ≥ y ⇔ y ≤ x, (2.52)

is also a partial order on A. Moreover, using obvious notation, we have, for each x ∈ A,
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x ≤-lower bound for B ⇔ x ≥-upper bound for B, (2.53a)

x ≤-upper bound for B ⇔ x ≥-lower bound for B, (2.53b)

x = min≤B ⇔ x = max≥B, (2.53c)

x = max≤B ⇔ x = min≥B, (2.53d)

x = inf≤B ⇔ x = sup≥B, (2.53e)

x = sup≤B ⇔ x = inf≥B. (2.53f)

Proof. Reflexivity, antisymmetry, and transitivity of ≤ clearly imply the same properties
for ≥, respectively. Moreover

x ≤-lower bound for B ⇔ ∀
b∈B

x ≤ b ⇔ ∀
b∈B

b ≥ x ⇔ x ≥-upper bound for B,

proving (2.53a). Analogously, we obtain (2.53b). Next, (2.53c) and (2.53d) are implied
by (2.53a) and (2.53b), respectively. Finally, (2.53e) is proved by

x = inf≤B ⇔ x = max≤{y ∈ A : y ≤-lower bound for B}
⇔ x = min≥{y ∈ A : y ≥-upper bound for B} ⇔ x = sup≥B,

and (2.53f) follows analogously. �

Proposition 2.29. Let ≤ be a partial order on A 6= ∅, ∅ 6= B ⊆ A. The elements
maxB, minB, supB, inf B are all unique, provided they exist.

Proof. Exercise. �

Definition 2.30. Let A,B be nonempty sets with partial orders, both denoted by ≤
(even though they might be different). A function f : A −→ B, is called (strictly)
isotone, order-preserving, or increasing if, and only if,

∀
x,y∈A

(
x < y ⇒ f(x) ≤ f(y) (resp. f(x) < f(y))

)
; (2.54a)

f is called (strictly) antitone, order-reversing, or decreasing if, and only if,

∀
x,y∈A

(
x < y ⇒ f(x) ≥ f(y) (resp. f(x) > f(y))

)
. (2.54b)

Functions that are (strictly) isotone or antitone are called (strictly) monotone.

Proposition 2.31. Let A,B be nonempty sets with partial orders, both denoted by ≤.
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(a) A (strictly) isotone function f : A −→ B becomes a (strictly) antitone function
and vice versa if precisely one of the relations ≤ is replaced by ≥.

(b) If the order ≤ on A is total and f : A −→ B is strictly isotone or strictly antitone,
then f is one-to-one.

(c) If the order ≤ on A is total and f : A −→ B is invertible and strictly isotone (resp.
antitone), then f−1 is also strictly isotone (resp. antitone).

Proof. (a) is immediate from (2.54).

(b): Due to (a), it suffices to consider the case that f is strictly isotone. If f is strictly
isotone and x 6= y, then x < y or y < x since the order on A is total. Thus, f(x) < f(y)
or f(y) < f(x), i.e. f(x) 6= f(y) in every case, showing f is one-to-one.

(c): Again, due to (a), it suffices to consider the isotone case. If u, v ∈ B such that u < v,
then u = f(f−1(u)), v = f(f−1(v)), and the isotonicity of f imply f−1(u) < f−1(v) (we
are using that the order on A is total – otherwise, f−1(u) and f−1(v) need not be
comparable). �

Example 2.32. (a) f : N −→ N, f(n) := 2n, is strictly increasing, every constant map
on N is both increasing and decreasing, but not strictly increasing or decreasing.
All maps occurring in (2.24) are neither increasing nor decreasing.

(b) The map f : R −→ R, f(x) := −2x, is invertible and strictly decreasing, and so is
f−1 : R −→ R, f−1(x) := −x/2.

(c) The following counterexamples show that the assertions of Prop. 2.31(b),(c) are no
longer correct if one does not assume the order on A is total. Let A be the set from
(2.50) (where it had been called B) with the (nontotal) order from (2.49). The map

f : A −→ N,







f(1, 1) := 1,

f(1, 2) := 2,

f(2, 1) := 2,

(2.55)

is strictly isotone, but not one-to-one. The map

f : A −→ {1, 2, 3},







f(1, 1) := 1,

f(1, 2) := 2,

f(2, 1) := 3,

(2.56)

is strictly isotone and invertible, however f−1 is not isotone (since 2 < 3, but
f−1(2) = (1, 2) and f−1(3) = (2, 1) are not comparable, i.e. f−1(2) ≤ f−1(3) is not
true).
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3 Natural Numbers, Induction, and the Size of Sets

3.1 Induction and Recursion

One of the most useful proof techniques is the method of induction – it is used in
situations, where one needs to verify the truth of statements φ(n) for each n ∈ N, i.e.
the truth of the statement

∀
n∈N

φ(n). (3.1)

Induction is based on the fact that N satisfies the so-called Peano axioms:

P1: N contains a special element called one, denoted 1.

P2: There exists an injective map S : N −→ N \ {1}, called the successor function (for
each n ∈ N, S(n) is called the successor of n).

P3: If a subset A of N has the property that 1 ∈ A and S(n) ∈ A for each n ∈ A, then
A is equal to N. Written as a formula, the third axiom is:

∀
A∈P(N)

(
1 ∈ A ∧ S(A) ⊆ A ⇒ A = N

)
.

Remark 3.1. In Def. 1.26, we had introduced the natural numbers N := {1, 2, 3, . . . }.
The successor function is S(n) = n + 1. In axiomatic set theory, one starts with the
Peano axioms and shows that the axioms of set theory allow the construction of a
set N which satisfies the Peano axioms. One then defines 2 := S(1), 3 := S(2), . . . ,
n+ 1 := S(n). The interested reader can find more details in [Phi16, Sec. D.1].

Theorem 3.2 (Principle of Induction). Suppose, for each n ∈ N, φ(n) is a statement
(i.e. a predicate of n in the language of Def. 1.30). If (a) and (b) both hold, where

(a) φ(1) is true,

(b) ∀
n∈N

(
φ(n) ⇒ φ(n+ 1)

)
,

then (3.1) is true, i.e. φ(n) is true for every n ∈ N.

Proof. Let A := {n ∈ N : φ(n)}. We have to show A = N. Since 1 ∈ A by (a), and

n ∈ A ⇒ φ(n)
(b)⇒ φ(n+ 1) ⇒ S(n) = n+ 1 ∈ A, (3.2)

i.e. S(A) ⊆ A, the Peano axiom P3 implies A = N. �
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Remark 3.3. To prove some φ(n) for each n ∈ N by induction according to Th. 3.2
consists of the following two steps:

(a) Prove φ(1), the so-called base case.

(b) Perform the inductive step, i.e. prove that φ(n) (the induction hypothesis) implies
φ(n+ 1).

Example 3.4. We use induction to prove the statement

∀
n∈N

(

1 + 2 + · · ·+ n =
n(n+ 1)

2

)

︸ ︷︷ ︸

φ(n)

: (3.3)

Base Case (n = 1): 1 = 1·2
2
, i.e. φ(1) is true.

Induction Hypothesis: Assume φ(n), i.e. 1 + 2 + · · ·+ n = n(n+1)
2

holds.

Induction Step: One computes

1 + 2 + · · ·+ n+ (n+ 1)

(
φ(n)
)

=
n(n+ 1)

2
+ n+ 1 =

n(n+ 1) + 2n+ 2

2

=
n2 + 3n+ 2

2
=

(n+ 1)(n+ 2)

2
, (3.4)

i.e. φ(n+ 1) holds and the induction is complete.

Corollary 3.5. Theorem 3.2 remains true if (b) is replaced by

∀
n∈N

((

∀
1≤m≤n

φ(m)

)

⇒ φ(n+ 1)

)

. (3.5)

Proof. If, for each n ∈ N, we use ψ(n) to denote ∀
1≤m≤n

φ(m), then (3.5) is equivalent to

∀
n∈N

(
ψ(n) ⇒ ψ(n+ 1)

)
, i.e. to Th. 3.2(b) with φ replaced by ψ. Thus, Th. 3.2 implies

ψ(n) holds true for each n ∈ N, i.e. φ(n) holds true for each n ∈ N. �

Corollary 3.6. Let I be an index set. Suppose, for each i ∈ I, φ(i) is a statement. If
there is a bijective map f : N −→ I and (a) and (b) both hold, where

(a) φ
(
f(1)

)
is true,

(b) ∀
n∈N

(

φ
(
f(n)

)
⇒ φ

(
f(n+ 1)

))

,
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then φ(i) is true for every i ∈ I.

Finite Induction: The above assertion remains true if f : {1, . . . ,m} −→ I is bijective
for some m ∈ N and N in (b) is replaced by {1, . . . ,m− 1}.

Proof. If, for each n ∈ N, we use ψ(n) to denote φ
(
f(n)

)
, then Th. 3.2 shows ψ(n) is

true for every n ∈ N. Given i ∈ I, we have n := f−1(i) ∈ N with f(n) = i, showing that
φ(i) = φ

(
f(n)

)
= ψ(n) is true.

For the finite induction, let ψ(n) denote
(
n ≤ m ∧ φ

(
f(n)

))
∨ n > m. Then, for 1 ≤

n < m, we have ψ(n) ⇒ ψ(n+1) due to (b). For n ≥ m, we also have ψ(n) ⇒ ψ(n+1)
due to n ≥ m ⇒ n + 1 > m. Thus, Th. 3.2 shows ψ(n) is true for every n ∈ N. Given
i ∈ I, it is n := f−1(i) ∈ {1, . . . ,m} with f(n) = i. Since n ≤ m ∧ ψ(n) ⇒ φ

(
f(n)

)
, we

obtain that φ(i) is true. �

Apart from providing a widely employable proof technique, the most important ap-
plication of Th. 3.2 is the possibility to define sequences inductively, using so-called
recursion:

Theorem 3.7 (Recursion Theorem). Let A be a nonempty set and x ∈ A. Given a
sequence of functions (fn)n∈N, where fn : An −→ A, there exists a unique sequence
(xn)n∈N in A satisfying the following two conditions:

(i) x1 = x.

(ii) ∀
n∈N

xn+1 = fn(x1, . . . , xn).

The same holds if N is replaced by an index set I as in Cor. 3.6.

Proof. To prove uniqueness, let (xn)n∈N and (yn)n∈N be sequences in A, both satisfying
(i) and (ii), i.e.

x1 = y1 = x and (3.6a)

∀
n∈N

(
xn+1 = fn(x1, . . . , xn) ∧ yn+1 = fn(y1, . . . , yn)

)
. (3.6b)

We prove by induction (in the form of Cor. 3.5) that (xn)n∈N = (yn)n∈N, i.e.

∀
n∈N

xn = yn
︸ ︷︷ ︸

φ(n)

: (3.7)

Base Case (n = 1): φ(1) is true according to (3.6a).
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Induction Hypothesis: Assume φ(m) for each m ∈ {1, . . . , n}, i.e. xm = ym holds for
each m ∈ {1, . . . , n}.
Induction Step: One computes

xn+1
(3.6b)
= fn(x1, . . . , xn)

(
φ(1),...,φ(n)

)

= fn(y1, . . . , yn)
(3.6b)
= yn+1, (3.8)

i.e. φ(n+ 1) holds and the induction is complete.

To prove existence, we have to show that there is a function F : N −→ A such that the
following two conditions hold:

F (1) = x, (3.9a)

∀
n∈N

F (n+ 1) = fn
(
F (1), . . . , F (n)

)
. (3.9b)

To this end, let

F :=






B ⊆ N× A : (1, x) ∈ B ∧ ∀

n∈N,
(1,a1),...,(n,an)∈B

(
n+ 1, fn(a1, . . . , an)

)
∈ B






(3.10)

and
G :=

⋂

B∈F
B. (3.11)

Note that G is well-defined, as N × A ∈ F . Also, clearly, G ∈ F . We would like to
define F such that G = graph(F ). For this to be possible, we will show, by induction,

∀
n∈N

∃!
xn∈A

(n, xn) ∈ G
︸ ︷︷ ︸

φ(n)

. (3.12)

Base Case (n = 1): From the definition of G, we know (1, x) ∈ G. If (1, a) ∈ G with
a 6= x, then H := G \ {(1, a)} ∈ F , implying G ⊆ H in contradiction to (1, a) /∈ H.
This shows a = x and proves φ(1).

Induction Hypothesis: Assume φ(m) for each m ∈ {1, . . . , n}.
Induction Step: From the induction hypothesis, we know

∃!
(x1,...,xn)∈An

(1, x1), . . . , (n, xn) ∈ G.

Thus, if we let xn+1 := fn(x1, . . . , xn), then (n+ 1, xn+1) ∈ G by the definition of G. If
(n+ 1, a) ∈ G with a 6= xn+1, then H := G \ {(n+ 1, a)} ∈ F (using the uniqueness of
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the (1, x1), . . . , (n, xn) ∈ G), implying G ⊆ H in contradiction to (n + 1, a) /∈ H. This
shows a = xn+1, proves φ(n+ 1), and completes the induction.

Due to (3.12), we can now define F : N −→ A, F (n) := xn, and the definition of G then
guarantees the validity of (3.9). �

Example 3.8. In many applications of Th. 3.7, one has functions gn : A −→ A and
uses

∀
n∈N

(
fn : An −→ A, fn(a1, . . . , an) := gn(an)

)
. (3.13)

Here are some important concrete examples:

(a) The factorial function F : N0 −→ N, n 7→ n!, is defined recursively by

0! := 1, 1! := 1, ∀
n∈N

(n+ 1)! := (n+ 1) · n!, (3.14a)

i.e. we have A = N and gn(x) := (n+ 1) · x. So we obtain

(n!)n∈N0
= (1, 1, 2, 6, 24, 120, . . . ). (3.14b)

(b) For each a ∈ R and each d ∈ R, we define the following arithmetic progression (also
called arithmetic sequence) recursively by

a1 := a, ∀
n∈N

an+1 := an + d, (3.15a)

i.e. we have A = R and gn = g with g(x) := x + d. For example, for a = 2 and
d = −0.5, we obtain

(an)n∈N = (2, 1.5, 1, 0.5, 0, −0.5, −1, −1.5, . . . ). (3.15b)

(c) For each a ∈ R and each q ∈ R \ {0}, we define the following geometric progression
(also called geometric sequence) recursively by

x1 := a, ∀
n∈N

xn+1 := xn · q, (3.16a)

i.e. we have A = R and gn = g with g(x) := x · q. For example, for a = 3 and
q = −2, we obtain

(xn)n∈N = (3, −6, 12, −24, 48, . . . ). (3.16b)

For the time being, we will continue to always specify A and the gn or fn in subsequent
recursive definitions, but in the literature, most of the time, the gn or fn are not provided
explicitly.
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Example 3.9. (a) The Fibonacci sequence consists of the Fibonacci numbers, defined
recursively by

F0 := 0, F1 := 1, ∀
n∈N

Fn+1 := Fn + Fn−1, (3.17a)

i.e. we have A = N0 and

fn : An −→ A, fn(a1, . . . , an) :=

{

1 for n = 1,

an + an−1 for n ≥ 2.
(3.17b)

So we obtain

(Fn)n∈N0
= (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ). (3.17c)

(b) For A := N, x := 1, and

fn : An −→ A, fn(a1, . . . , an) := a1 + · · ·+ an, (3.18a)

one obtains

x1 = 1, x2 = f1(1) = 1, x3 = f2(1, 1) = 2, x4 = f3(1, 1, 2) = 4,

x5 = f4(1, 1, 2, 4) = 8, x6 = f5(1, 1, 2, 4, 8) = 16, . . .
(3.18b)

Definition 3.10. (a) Summation Symbol: On A = R (or, more generally, on every set
where an addition + : A × A −→ A is defined), define recursively, for each given
(possibly finite) sequence (a1, a2, . . . ) in A:

1∑

i=1

ai := a1,
n+1∑

i=1

ai := an+1 +
n∑

i=1

ai for n ≥ 1, (3.19a)

i.e.
fn : An −→ A, fn(x1, . . . , xn) := xn + an+1. (3.19b)

In (3.19a), one can also use other symbols for i, except a and n; for a finite sequence,
n needs to be less than the maximal index of the finite sequence.

More generally, if I is an index set and φ : {1, . . . , n} −→ I a bijective map, then
define

∑

i∈I
ai :=

n∑

i=1

aφ(i). (3.19c)

The commutativity of addition implies that the definition in (3.19c) is actually
independent of the chosen bijective map φ. Also define

∑

i∈∅
ai := 0 (3.19d)

(for a general A, 0 is meant to be an element such that a+ 0 = 0 + a = a for each
a ∈ A and we can even define this if 0 /∈ A).
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(b) Product Symbol: On A = R (or, more generally, on every set where a multiplication
· : A × A −→ A is defined), define recursively, for each given (possibly finite)
sequence (a1, a2, . . . ) in A:

1∏

i=1

ai := a1,

n+1∏

i=1

ai := an+1 ·
n∏

i=1

ai for n ≥ 1, (3.20a)

i.e.
fn : An −→ A, fn(x1, . . . , xn) := xn · an+1. (3.20b)

In (3.20a), one can also use other symbols for i, except a and n; for a finite sequence,
n needs to be less than the maximal index of the finite sequence.

More generally, if I is an index set and φ : {1, . . . , n} −→ I a bijective map, then
define

∏

i∈I
ai :=

n∏

i=1

aφ(i). (3.20c)

The commutativity of multiplication implies that the definition in (3.20c) is actually
independent of the chosen bijective map φ. Also define

∏

i∈∅
ai := 1 (3.20d)

(for a general A, 1 is meant to be an element such that a · 1 = 1 · a = a for each
a ∈ A and we can even define this if 1 /∈ A).

Example 3.11. (a) Given a, d ∈ R, let (an)n∈N be the arithmetic sequence as defined
in (3.15a). It is an exercise to prove by induction that

∀
n∈N

an = a+ (n− 1)d, (3.21a)

∀
n∈N

Sn :=
n∑

i=1

ai =
n

2
(a1 + an) =

n

2

(
2 a+ (n− 1) d

)
, (3.21b)

where the Sn are called arithmetic sums.

(b) Given a ∈ R and q ∈ R \ {0}, let (xn)n∈N be the geometric sequence as defined in
(3.16a). We will prove by induction that

∀
n∈N

xn = a qn−1, (3.22a)

∀
n∈N

Sn :=
n∑

i=1

xi =
n∑

i=1

(a qi−1) = a

n−1∑

i=0

qi =

{

n a for q = 1,
a (1−qn)

1−q for q 6= 1,
(3.22b)
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where the Sn are called geometric sums.

For the induction proof of (3.22a), φ(n) is xn = a qn−1. The base case, φ(1), is the
statement x1 = a q0 = a, which is true. For the induction step, we assume φ(n)
and compute

xn+1 = xn · q
(
φ(n)
)

= a qn−1 · q = a qn, (3.23)

showing φ(n) ⇒ φ(n+ 1) and completing the proof.

For q = 1, the sum Sn is actually arithmetic with d = 0, i.e. Sn = na can be
obtained from (3.21b). For the induction proof of (3.22b) with q 6= 1, φ(n) is

Sn = a(1−qn)
1−q . The base case, φ(1), is the statement S1 =

a(1−q)
1−q = a, which is true.

For the induction step, we assume φ(n) and compute

Sn+1 = Sn + xn+1

(
φ(n)
)

=
a(1− qn)

1− q
+ aqn =

a(1− qn) + aqn(1− q)

1− q
=
a(1− qn+1)

1− q
,

(3.24)
showing φ(n) ⇒ φ(n+ 1) and completing the proof.

3.2 Cardinality: The Size of Sets

Cardinality measures the size of sets. For a finite set A, it is precisely the number of
elements in A. For an infinite set, it classifies the set’s degree or level of infinity (it turns
out that not all infinite sets have the same size).

Definition 3.12. (a) The sets A,B are defined to have the same cardinality or the
same size if, and only if, there exists a bijective map ϕ : A −→ B. One can show
that this defines an equivalence relation on every set of sets (see [Phi16, Th. A.54]).

(b) The cardinality of a set A is n ∈ N (denoted #A = n) if, and only if, there exists
a bijective map ϕ : A −→ {1, . . . , n}. The cardinality of ∅ is defined as 0, i.e.
#∅ := 0. A set A is called finite if, and only if, there exists n ∈ N0 such that
#A = n; A is called infinite if, and only if, A is not finite, denoted #A = ∞ (in the
strict sense, this is an abuse of notation, since ∞ is not a cardinality – for example
#N = ∞ and #P(N) = ∞, but N and P(N) do not have the same cardinality, since
the power set P(A) is always strictly bigger than A (see Th. 3.20 below) – #A = ∞
is merely an abbreviation for the statement “A is infinite”). The interested student
finds additional material regarding the uniqueness of finite cardinality in [Phi16,
Th. A.62] and [Phi16, Cor. A.63], and regarding characterizations of infinite sets in
[Phi16, Th. A.55].



3 NATURAL NUMBERS, INDUCTION, AND THE SIZE OF SETS 46

(c) The set A is called countable if, and only if, A is finite or A has the same cardinality
as N. Otherwise, A is called uncountable.

Theorem 3.13. Let A 6= ∅ be a finite set.

(a) If B ⊆ A with A 6= B, then B is finite with #B < #A.

(b) If a ∈ A, then #
(
A \ {a}

)
= #A− 1.

Proof. For #A = n ∈ N, we use induction to prove (a) and (b) simultaneously, i.e. we
show

∀
n∈N

(

#A = n ⇒ ∀
B∈P(A)\{A}

∀
a∈A

#B ∈ {0, . . . , n− 1} ∧#
(
A \ {a}

)
= n− 1

)

︸ ︷︷ ︸

φ(n)

.

Base Case (n = 1): In this case, A has precisely one element, i.e. B = A \ {a} = ∅, and
#∅ = 0 = n− 1 proves φ(1).

Induction Step: For the induction hypothesis, we assume φ(n) to be true, i.e. we assume
(a) and (b) hold for each A with #A = n. We have to prove φ(n+ 1), i.e., we consider
A with #A = n+1. From #A = n+1, we conclude the existence of a bijective map ϕ :
A −→ {1, . . . , n+ 1}. We have to construct a bijective map ψ : A \ {a} −→ {1, . . . , n}.
To this end, set k := ϕ(a) and define the auxiliary function

f : {1, . . . , n+ 1} −→ {1, . . . , n+ 1}, f(x) :=







n+ 1 for x = k,

k for x = n+ 1,

x for x /∈ {k, n+ 1}.

Then f ◦ ϕ : A −→ {1, . . . , n+ 1} is bijective by Th. 2.13, and

(f ◦ ϕ)(a) = f(ϕ(a)) = f(k) = n+ 1.

Thus, the restriction ψ := (f ◦ ϕ) ↾A\{a} is the desired bijective map ψ : A \ {a} −→
{1, . . . , n}, proving #

(
A \ {a}

)
= n. It remains to consider the strict subset B of A.

Since B is a strict subset of A, there exists a ∈ A \ B. Thus, B ⊆ A \ {a} and, as
we have already shown #

(
A \ {a}

)
= n, the induction hypothesis applies and yields B

is finite with #B ≤ #
(
A \ {a}

)
= n, i.e. #B ∈ {0, . . . , n}, proving φ(n + 1), thereby

completing the induction. �

Theorem 3.14. For #A = #B = n ∈ N and f : A −→ B, the following statements
are equivalent:
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(i) f is injective.

(ii) f is surjective.

(iii) f is bijective.

Proof. It suffices to prove the equivalence of (i) and (ii).

If f is injective, then f : A −→ f(A) is bijective. Since #A = n, there exists a bijective
map ϕ : A −→ {1, . . . , n}. Then (ϕ ◦ f−1) : f(A) −→ {1, . . . , n} is also bijective,
showing #f(A) = n, i.e., according to Th. 3.13(a), f(A) can not be a strict subset of
B, i.e. f(A) = B, proving f is surjective.

If f is surjective, then f has a right inverse g : B −→ A by Th. 2.12(a), i.e. f ◦ g = IdB.
But this also means f is a left inverse for g, such that g must be injective by Th. 2.12(b).
According to what we have already proved above, g injective implies g surjective, i.e.
g must be bijective. From Th. 2.12(c), we then know the left inverse of g is unique,
implying f = g−1. In particular, f is injective. �

Lemma 3.15. For each finite set A (i.e. #A = n ∈ N0) and each B ⊆ A, one has
#(A \B) = #A−#B.

Proof. For B = ∅, the assertion is true since #(A \B) = #A = #A− 0 = #A−#B.

For B 6= ∅, the proof is conducted over the size of B, i.e. as a finite induction (cf. Cor.
3.6) over the set {1, . . . , n}, showing

∀
m∈{1,...,n}

(
#B = m ⇒ #(A \B) = #A−#B

)

︸ ︷︷ ︸

φ(m)

.

Base Case (m = 1): φ(1) is precisely the statement provided by Th. 3.13(b).

Induction Step: For the induction hypothesis, we assume φ(m) with 1 ≤ m < n. To
prove φ(m + 1), consider B ⊆ A with #B = m + 1. Fix an element b ∈ B and set
B1 := B \ {b}. Then #B1 = m by Th. 3.13(b), A \B = (A \B1) \ {b}, and we compute

#(A \B) = #
(
(A \B1) \ {b}

) Th. 3.13(b)
= #(A \B1)− 1

(
φ(m)

)

= #A−#B1 − 1

= #A−#B,

proving φ(m+ 1) and completing the induction. �

Theorem 3.16. If A,B are finite sets, then #(A ∪B) = #A+#B −#(A ∩ B).
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Proof. The assertion is clearly true if A or B is empty. If A and B are nonempty, then
there exist m,n ∈ N such that #A = m and #B = n, i.e. there are bijective maps
f : A −→ {1, . . . ,m} and g : B −→ {1, . . . , n}.
We first consider the case A∩B = ∅. We need to construct a bijective map h : A∪B −→
{1, . . . ,m+ n}. To this end, we define

h : A ∪ B −→ {1, . . . ,m+ n}, h(x) :=

{

f(x) for x ∈ A,

g(x) +m for x ∈ B.

The bijectivity of f and g clearly implies the bijectivity of h, proving #(A ∪ B) =
m+ n = #A+#B.

Finally, we consider the case of arbitrary A,B. Since A∪B = A ∪̇(B \A) and B \A =
B \ (A ∩B), we can compute

#(A ∪B) = #
(
A ∪̇(B \ A)

)
= #A+#(B \ A)

= #A+#
(
B \ (A ∩ B)

) Lem. 3.15
= #A+#B −#(A ∩ B),

thereby establishing the case. �

Theorem 3.17. If (A1, . . . , An), n ∈ N, is a finite sequence of finite sets, then

#
n∏

i=1

Ai = #
(
A1 × · · · × An

)
=

n∏

i=1

#Ai. (3.25)

Proof. If at least one Ai is empty, then (3.25) is true, since both sides are 0.

The case where all Ai are nonempty is proved by induction over n, i.e. we know ki :=
#Ai ∈ N for each i ∈ {1, . . . , n} and show by induction

∀
n∈N

#
n∏

i=1

Ai =
n∏

i=1

ki

︸ ︷︷ ︸

φ(n)

.

Base Case (n = 1):
∏1

i=1Ai = #A1 = k1 =
∏1

i=1 ki, i.e. φ(1) holds.

Induction Step: From the induction hypothesis φ(n), we obtain a bijective map ϕ :
A −→ {1, . . . , N}, where A :=

∏n
i=1Ai and N :=

∏n
i=1 ki. To prove φ(n + 1), we need

to construct a bijective map h : A× An+1 −→ {1, . . . , N · kn+1}. Since #An+1 = kn+1,
there exists a bijective map f : An+1 −→ {1, . . . , kn+1}. We define

h : A× An+1 −→ {1, . . . , N · kn+1},
h(a1, . . . , an, an+1) :=

(
f(an+1)− 1

)
·N + ϕ(a1, . . . , an).
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Since ϕ and f are bijective, and since every m ∈ {1, . . . , N · kn+1} has a unique rep-
resentation in the form m = a · N + r with a ∈ {0, . . . , kn+1 − 1} and r ∈ {1, . . . , N}
(exercise), h is also bijective. This proves φ(n+ 1) and completes the induction. �

Theorem 3.18. For each finite set A (i.e. #A = n ∈ N0), one has #P(A) = 2n.

Proof. The proof is conducted by induction by showing

∀
n∈N0

(
#A = n ⇒ #P(A) = 2n

)

︸ ︷︷ ︸

φ(n)

.

Base Case (n = 0): For n = 0, we have A = ∅, i.e. P(A) = {∅}. Thus, #P(A) = 1 = 20,
proving φ(0).

Induction Step: Assume φ(n) and consider A with #A = n + 1. Then A contains
at least one element a. For B := A \ {a}, we then know #B = n from Th. 3.13(b).
Moreover, setting M :=

{
C ∪ {a} : C ∈ P(B)

}
, we have the disjoint decomposition

P(A) = P(B) ∪̇M. As the map ϕ : P(B) −→ M, ϕ(C) := C∪{a}, is clearly bijective,
P(B) and M have the same cardinality. Thus,

#P(A)
Th. 3.16
= #P(B) + #M = #P(B) + #P(B)

(
φ(n)
)

= 2 · 2n = 2n+1,

thereby proving φ(n+ 1) and completing the induction. �

Remark 3.19. In the proof of the following Th. 3.20, we will encounter a new proof
technique that we did not use before, the so-called proof by contradiction, also called
indirect proof. It is based on the observation, called the principle of contradiction, that
A ∧ ¬A is always false:

A ¬A A ∧ ¬A
T F F
F T F

(3.26)

Thus, one possibility of proving a statement B to be true is to show ¬B ⇒ A ∧ ¬A for
some arbitrary statement A. Since the right-hand side of the implication is false, the
left-hand side must also be false, proving B is true.

Theorem 3.20. Let A be a set. There can never exist a surjective map from A onto
P(A) (in this sense, the size of P(A) is always strictly bigger than the size of A; in
particular, A and P(A) can never have the same size).

Proof. If A = ∅, then there is nothing to prove. For nonempty A, as mentioned above,
the idea is to conduct a proof by contradiction. To this end, assume there does exist a
surjective map f : A −→ P(A) and define

B := {x ∈ A : x /∈ f(x)}. (3.27)
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Now B is a subset of A, i.e. B ∈ P(A) and the assumption that f is surjective implies
the existence of a ∈ A such that f(a) = B. If a ∈ B, then a /∈ f(a) = B, i.e. a ∈ B
implies a ∈ B ∧ ¬(a ∈ B), so that the principle of contradiction tells us a /∈ B must be
true. However, a /∈ B implies a ∈ f(a) = B, i.e., this time, the principle of contradiction
tells us a ∈ B must be true. In conclusion, we have shown our original assumption that
there exists a surjective map f : A −→ P(A) implies a ∈ B ∧ ¬(a ∈ B), i.e., according
to the principle of contradiction, no surjective map from A into P(A) can exist. �

We conclude the section with a number of important results regarding the natural
numbers and countability.

Theorem 3.21. (a) Every nonempty finite subset of a totally ordered set has a mini-
mum and a maximum.

(b) Every nonempty subset of N has a minimum.

Proof. (a): Let A be a set and let ≤ denote a total order on A. Moreover, let ∅ 6= B ⊆ A.
We show by induction

∀
n∈N

(
#B = n ⇒ B has a min

)

︸ ︷︷ ︸

φ(n)

.

Base Case (n = 1): For n = 1, B contains a unique element b, i.e. b = minB, proving
φ(1).

Induction Step: Suppose φ(n) holds and consider B with #B = n + 1. Let b be one
element from B. Then C := B \ {b} has cardinality n and, according to the induction
hypothesis, there exists c ∈ C satisfying c = minC. If c ≤ b, then c ≤ x for each x ∈ B,
proving c = minB. If b ≤ c, then b ≤ x for each x ∈ B, proving b = minB. In each
case, B has a min, proving φ(n+ 1) and completing the induction.

(b): Let ∅ 6= A ⊆ N. We have to show A has a min. If A is finite, then A has a min by (a).
If A is infinite, let n be an element from A. Then the finite set B := {k ∈ A : k ≤ n}
must have a min m by (a). Since m ≤ x for each x ∈ B and m ≤ n < x for each
x ∈ A \B, we have m = minA. �

Proposition 3.22. Every subset A of N is countable.

Proof. Since ∅ is countable, we may assume A 6= ∅. From Th. 3.21(b), we know that
every nonempty subset of N has a min. We recursively define a sequence in A by

a1 := minA, an+1 :=

{

minAn if An := A \ {ai : 1 ≤ i ≤ n} 6= ∅,
an if An = ∅.
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This sequence is the same as the function f : N −→ A, f(n) = an. An easy induction
shows that, for each n ∈ N, an 6= an+1 implies the restriction f ↾{1,...,n+1} is injective.
Thus, if there exists n ∈ N such that an = an+1, then f ↾{1,...,k}: {1, . . . , k} −→ A is
bijective, where k := min{n ∈ N : an = an+1}, showing A is finite, i.e. countable. If
there does not exist n ∈ N with an = an+1, then f is injective. Another easy induction
shows that, for each n ∈ N, f({1, . . . , n}) ⊇ {k ∈ A : k ≤ n}, showing f is also
surjective, proving A is countable. �

Proposition 3.23. For each set A 6= ∅, the following three statements are equivalent:

(i) A is countable.

(ii) There exists an injective map f : A −→ N.

(iii) There exists a surjective map g : N −→ A.

Proof. Directly from the definition of countable in Def. 3.12(c), one obtains (i)⇒(ii) and
(i)⇒(iii). To prove (ii)⇒(i), let f : A −→ N be injective. Then f : A −→ f(A) is
bijective, and, since f(A) ⊆ N, f(A) is countable by Prop. 3.22, proving A is countable
as well. To prove (iii)⇒(i), let g : N −→ A be surjective. According to Th. 2.12(a), g
has a right inverse f : A −→ N, i.e. g ◦ f = IdA. But this means g is a left inverse for f ,
showing f is injective according to Th. 2.12(b). Then A is countable by an application
of (ii). �

Theorem 3.24. If (A1, . . . , An), n ∈ N, is a finite family of countable sets, then
∏n

i=1Ai
is countable.

Proof. We first consider the special case n = 2 with A1 = A2 = N and show the map

ϕ : N× N −→ N, ϕ(m,n) := 2m · 3n,

is injective: If ϕ(m,n) = ϕ(p, q), then 2m · 3n = 2p · 3q. Moreover m ≤ p or p ≤ m.
If m ≤ p, then 3n = 2p−m · 3q. Since 3n is odd, 2p−m · 3q must also be odd, implying
p − m = 0, i.e. m = p. Moreover, we now have 3n = 3q, implying n = q, showing
(m,n) = (p, q), i.e. ϕ is injective.

We now come back to the general case stated in the theorem. If at least one of the Ai
is empty, then

∏n
i=1Ai is empty. So it remains to consider the case, where all Ai are

nonempty. The proof is conducted by induction by showing

∀
n∈N

n∏

i=1

Ai is countable

︸ ︷︷ ︸

φ(n)

.
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Base Case (n = 1): φ(1) is merely the hypothesis that A1 is countable.

Induction Step: Assuming φ(n), Prop. 3.23(ii) provides injective maps f1 :
∏n

i=1Ai −→
N and f2 : An+1 −→ N. To prove φ(n+1), we provide an injective map h :

∏n+1
i=1 Ai −→

N: Define

h :
n+1∏

i=1

Ai −→ N, h(a1, . . . , an, an+1) := ϕ
(
f1(a1, . . . , an), f2(an+1)

)
.

The injectivity of f1, f2, and ϕ clearly implies the injectivity of h, thereby proving
φ(n+ 1) and completing the induction. �

Theorem 3.25. If (Ai)i∈I is a countable family of countable sets (i.e. ∅ 6= I is countable
and each Ai, i ∈ I, is countable), then the union A :=

⋃

i∈I Ai is also countable.

Proof. It suffices to consider the case that all Ai are nonempty. Moreover, according to
Prop. 3.23(iii), it suffices to construct a surjective map ϕ : N −→ A. Also according
to Prop. 3.23(iii), the countability of I and the Ai provides us with surjective maps
f : N −→ I and gi : N −→ Ai. Define

F : N× N −→ A, F (m,n) := gf(m)(n).

Then F is surjective: Given x ∈ A, there exists i ∈ I such that x ∈ Ai. Since f is
surjective, there is m ∈ N satisfying f(m) = i. Moreover, since gi is surjective, there
exists n ∈ N with gi(n) = x. Then F (m,n) = gi(n) = x, verifying that F is surjective.
As N×N is countable by Th. 3.24, there exists a surjective map h : N −→ N×N. Thus,
F ◦ h is the desired surjective map from N onto A. Note: The axiom of choice (AC,
see [Phi16, Sec. A.4]) is used when choosing each gi from the set of all surjective maps
from N onto Ai. It has actually been shown that it is impossible to prove the theorem
without using AC (cf. [Phi16, Rem. 3.18]). �

4 Real Numbers

4.1 The Real Numbers as a Complete Totally Ordered Field

The set of real numbers, denoted R, is a set with special properties, namely a so-called
complete totally ordered field. We already know what totally ordered means, but we still
need to explain what a field is, what an ordered field is, and what it means for a total
order to be complete. We begin with the last part.
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Definition 4.1. A total order ≤ on a nonempty set A is called complete if, and only if,
every nonempty subset B of A that is bounded from above has a supremum, i.e.

∀
B∈P(A)\{∅}

((

∃
x∈A

∀
b∈B

b ≤ x

)

⇒ ∃
s∈A

s = supB

)

. (4.1)

Lemma 4.2. A total order ≤ on a nonempty set A is complete if, and only if, every
nonempty subset B of A that is bounded from below has an infimum.

Proof. According to Lem. 2.28, it suffices to prove one implication. We show that (4.1)
implies that every nonempty B bounded from below has an infimum: Define

C := {x ∈ A : x is lower bound for B}. (4.2)

Then every b ∈ B is an upper bound for C and (4.1) implies there exists s = supC ∈ A.
To verify s = inf B, it remains to show s ∈ C, i.e. that s is a lower bound for B.
However, every b ∈ B is an upper bound for C and s = supC is the min of all upper
bounds for C, i.e. s ≤ b for each b ∈ B, showing s ∈ C. �

Definition 4.3. Let A be a nonempty set with a map

◦ : A× A −→ A, (x, y) 7→ x ◦ y (4.3)

(called a composition on A, the examples we have in mind are addition and multiplication
on R). Then A is called a group with respect to ◦ if, and only if, the following three
conditions are satisfied:

(i) Associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z holds for all x, y, z ∈ A.

(ii) There exists a neutral element e ∈ A, i.e. an element e ∈ A such that

∀
x∈A

x ◦ e = x.

(iii) For each x ∈ A, there exists an inverse element x ∈ A, i.e. an element x ∈ A such
that

x ◦ x = e.

A is called a commutative or abelian group if, and only if, it is a group and satisfies the
additional condition:

(iv) Commutativity: x ◦ y = y ◦ x holds for all x, y ∈ A.
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Definition 4.4. Let A be a nonempty set with two maps

+ : A× A −→ A, (x, y) 7→ x+ y,

· : A× A −→ A, (x, y) 7→ x · y (4.4)

(+ is called addition and · is called multiplication; often one writes xy instead of x · y).
Then A is called a field if, and only if, the following three conditions are satisfied:

(i) A is a commutative group with respect to +. The neutral element with respect
to + is denoted 0.

(ii) A\{0} is a commutative group with respect to ·. The neutral element with respect
to · is denoted 1.

(iii) Distributivity:
∀

x,y,z∈A
x · (y + z) = x · y + x · z. (4.5)

If A is a field and ≤ is a total order on A, then A is called a totally ordered field if, and
only if, the following condition is satisfied:

(iv) Compatibility with Addition and Multiplication:

∀
x,y,z∈A

(
x ≤ y ⇒ x+ z ≤ y + z

)
, (4.6a)

∀
x,y∈A

(
0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ xy

)
. (4.6b)

Finally, A is called a complete totally ordered field if, and only if, A is a totally ordered
field that is complete in the sense of Def. 4.1.

Theorem 4.5. There exists a complete totally ordered field R (it is called the set of
real numbers). Moreover, R is unique up to isomorphism, i.e. if A is a complete totally
ordered field, then there exists an isomorphism φ : A −→ R, i.e. a bijective map φ :
A −→ R, satisfying

∀
x,y∈A

φ(x+ y) = φ(x) + φ(y), (4.7a)

∀
x,y∈A

φ(xy) = φ(x)φ(y), (4.7b)

∀
x,y∈A

(
x < y ⇒ φ(x) < φ(y)

)
. (4.7c)

It also turns out that the isomorphism is unique.
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Proof. To really prove the existence of the real numbers by providing a construction
is tedious and not easy. One possible construction is provided in [Phi16, Sec. D] (the
existence proof is completed in [Phi16, Th. D.45], the results regarding the isomorphism
can be found in [Phi16, Th. D.49]). �

Theorem 4.6. The following statements and rules are valid in the set of real numbers
R (and, more generally, in every field):

(a) Inverse elements are unique. For each x ∈ R, the unique inverse with respect to
addition is denoted by −x. Also define y−x := y+(−x). For each x ∈ R\{0}, the
unique inverse with respect to multiplication is denoted by x−1. For x 6= 0, define
the fractions y

x
:= y/x := yx−1 with numerator y and denominator x.

(b) −(−x) = x and (x−1)−1 = x for x 6= 0.

(c) (−x) + (−y) = −(x+ y) and x−1y−1 = (xy)−1 for x, y 6= 0.

(d) x+ a = y + a ⇒ x = y and, for a 6= 0, xa = ya ⇒ x = y.

(e) x · 0 = 0.

(f) x(−y) = −(xy).

(g) (−x)(−y) = xy.

(h) x(y − z) = xy − xz.

(i) xy = 0 ⇒ x = 0 ∨ y = 0.

(j) Rules for Fractions:

a

c
+
b

d
=
ad+ bc

cd
,

a

c
· b
d
=
ab

cd
,

a/c

b/d
=
ad

bc
,

where all denominators are assumed 6= 0.

Proof. (a): Let a, b be additive inverses to x. Then a = a + 0 = a + x + b = 0 + b = b.
The multiplicative case is proved completely analogously.

(b): −x + x = 0 already shows that x is the inverse to −x, i.e. −(−x) = x. The
multiplicative case is proved completely analogously.

(c): x + y + (−x) + (−y) = x − x + y − y = 0, showing (−x) + (−y) is the inverse to
(x+ y). The multiplicative case is proved completely analogously.
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(d): If x + a = y + a, then x = x + a − a = y + a − a = y. Again, the multiplicative
case is proved completely analogously.

(e): One computes

x · 0 + x · 1 (4.5)
= x · (0 + 1) = x · 1 = 0 + x · 1,

i.e. x · 0 = 0 follows from (d).

(f): xy + x(−y) = x(y − y) = x · 0 = 0, where we used (4.5) and (e). This shows x(−y)
is the additive inverse to xy.

(g): xy = −(−(xy)) = −(x(−y)) = −((−y)x) = (−y)(−x), where (f) was used twice.

(h): x(y − z) = x(y + (−z)) = xy + x(−z) = xy − xz.

(i): If xy = 0 and x 6= 0, then y = 1 · y = x−1xy = x−1 · 0 = 0.

(j): One computes

a

c
+
b

d
= ac−1 + bd−1 = add−1c−1 + bcc−1d−1 = (ad+ bc)(cd)−1 =

ad+ bc

cd

and
a

c
· b
d
= ac−1bd−1 = ab(cd)−1 =

ab

cd

and
a/c

b/d
= ac−1(bd−1)−1 = ac−1b−1d = ad(bc)−1 =

ad

bc
,

completing the proof. �

Theorem 4.7. The following statements and rules are valid in the set of real numbers
R (and, more generally, in every totally ordered field):

(a) x ≤ y ⇒ −x ≥ −y.

(b) x ≤ y ∧ z ≥ 0 ⇒ xz ≤ yz holds as well as x ≤ y ∧ z ≤ 0 ⇒ xz ≥ yz.

(c) x 6= 0 ⇒ x2 := x · x > 0. In particular 1 > 0.

(d) x > 0 ⇒ 1/x > 0, whereas x < 0 ⇒ 1/x < 0.

(e) If 0 < x < y, then x/y < 1, y/x > 1, and 1/x > 1/y.

(f) x ≤ y ∧ u < v ⇒ x+ u < y + v.

(g) 0 ≤ x ≤ y ∧ 0 ≤ u < v ⇒ 0 ≤ xu < yv.
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(h) x < y ∧ 0 < λ < 1 ⇒ x < λx+ (1− λ)y < y. In particular x < x+y
2
< y.

Proof. (a): Using (4.6a): x ≤ y ⇒ 0 ≤ y − x ⇒ −y ≤ −x.
(b): One argues, for z ≥ 0,

x ≤ y ⇒ 0 ≤ y − x
(4.6b)⇒ 0 ≤ (y − x)z = yz − xz ⇒ xz ≤ yz,

and, for z ≤ 0,

x ≤ y ⇒ 0 ≤ y − x
(4.6b)⇒ 0 ≤ (y − x)(−z) = xz − yz ⇒ xz ≥ yz.

(c): From (4.6b), one obtains x2 ≥ 0. From Th. 4.6(i), one then gets x2 > 0.

(d): If x > 0, then x−1 < 0 implies the false statement 1 = xx−1 < 0, i.e. x−1 > 0. The
case x < 0 is treated analogously.

(e): Using (d), we obtain from 0 < x < y that x/y = xy−1 < yy−1 = 1 and 1 = xx−1 <
yx−1 = y/x.

(f): x ≤ y ⇒ x + u ≤ y + u and u < v ⇒ y + u < y + v; both combined yield
x+ u < y + v.

(g): 0 ≤ x ≤ y ∧ 0 ≤ u < v ⇒ 0 ≤ xu ≤ yu ∧ 0 ≤ yu < yv ⇒ 0 ≤ xu < yv.

(h): Since 0 < λ and 1− λ > 0, x < y implies

λx < λy ∧ (1− λ)x < (1− λ)y.

Using (4.6a), we obtain

x = λx+ (1− λ)x < λx+ (1− λ)y < λy + (1− λ)y = y,

completing the proof of the theorem. �

Theorem 4.8. Let ∅ 6= A,B ⊆ R, λ ∈ R, and define

A+B := {a+ b : a ∈ A ∧ b ∈ B}, (4.8a)

λA := {λa : a ∈ A}. (4.8b)

If A and B are bounded, then

sup(A+ B) = supA+ supB, (4.9a)

inf(A+ B) = inf A+ inf B, (4.9b)

sup(λA) =

{

λ · supA for λ ≥ 0,

λ · inf A for λ < 0,
(4.9c)

inf(λA) =

{

λ · inf A for λ ≥ 0,

λ · supA for λ < 0.
(4.9d)
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Proof. Exercise. �

4.2 Important Subsets

Remark 4.9. We would like to recover the natural numbers N as a subset of R. Indeed,
if we start with 1 as the neutral element of multiplication and define 2 := 1+1, 3 := 2+1,
. . . , then N := {1, 2, . . . } is a subset of R, satisfying the Peano axioms P1, P2, P3 of Sec.
3.1. However, if one does actually construct R according to the axioms of axiomatic
set theory, then one starts by constructing N first (basically as we did in Rem. 1.27
and Def. 1.26), constructing R from N in several steps (cf. [Phi16, Sec. D]). Depending
on the construction used, the original set of natural numbers will typically not be the
same set as the natural numbers as a subset of R. However, both sets will satisfy the
Peano axioms and you will have a canonical bijection between the two sets. Which
one you consider the “genuine” set of natural numbers depends on your personal taste
and philosophy and is completely irrelevant. Any two models of N will always produce
equivalent results, since they must both satisfy the three Peano axioms.

—

We now introduce a zoo of important subsets of R together with corresponding notation:

N := {1, 2, 3, . . . } (natural numbers), (4.10a)

N0 := N ∪ {0}, (4.10b)

Z− := {−n : n ∈ N} (negative integers), (4.10c)

Z := Z− ∪ N0 (integers), (4.10d)

Q+ := {m/n : m,n ∈ N} (positive rational numbers), (4.10e)

Q+
0 := Q+ ∪ {0} (nonnegative rational numbers), (4.10f)

Q− := {−q : q ∈ Q+} (negative rational numbers), (4.10g)

Q−
0 := Q− ∪ {0} (nonpositive rational numbers), (4.10h)

Q := Q+
0 ∪Q− (rational numbers), (4.10i)

R+ := {x ∈ R : x > 0} (positive real numbers), (4.10j)

R+
0 := {x ∈ R : x ≥ 0} (nonnegative real numbers), (4.10k)

R− := {x ∈ R : x < 0} (negative real numbers), (4.10l)

R−
0 := {x ∈ R : x ≤ 0} (nonpositive real numbers). (4.10m)
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For a, b ∈ R with a ≤ b, one also defines the following intervals:

[a, b] := {x ∈ R : a ≤ x ≤ b} (bounded closed interval), (4.11a)

]a, b[ := {x ∈ R : a < x < b} (bounded open interval), (4.11b)

]a, b] := {x ∈ R : a < x ≤ b} (bounded half-open interval), (4.11c)

[a, b[ := {x ∈ R : a ≤ x < b} (bounded half-open interval), (4.11d)

]−∞, b] := {x ∈ R : x ≤ b} (unbounded closed interval), (4.11e)

]−∞, b[ := {x ∈ R : x < b} (unbounded open interval), (4.11f)

[a,∞[ := {x ∈ R : a ≤ x} (unbounded closed interval), (4.11g)

]a,∞[ := {x ∈ R : a < x} (unbounded open interval). (4.11h)

For a = b, one says that the intervals defined by (4.11a) – (4.11d) are degenerate or
trivial, where [a, a] = {a}, ]a, a[=]a, a] = [a, a[= ∅ – it is sometimes convenient to have
included the degenerate cases in the definition. It is sometimes also useful to abandon
the restriction a ≤ b, to let c := min{a, b}, d := max{a, b}, and to define

[a, b] := [c, d], ]a, b[:=]c, d[, ]a, b] := [c, d] \ {a}, [a, b[:= [c, d] \ {b}. (4.11i)

Theorem 4.10 (Archimedean Property). Let ǫ, x be real numbers. If ǫ > 0 and x > 0,
then there exists n ∈ N such that n ǫ > x.

Proof. We conduct the proof by contradiction: Suppose x is an upper bound for the set
A := {n ǫ : n ∈ N}. Since the order ≤ on R is complete, according to (4.1), there exists
s ∈ R such that s = supA. In particular, s− ǫ is not an upper bound for A, i.e. there
exists n ∈ N satisfying n ǫ > s− ǫ. But then (n+1) ǫ > s in contradiction to s = supA.
This shows x is not an upper bound for A, thereby establishing the case. �

5 Complex Numbers

5.1 Definition and Basic Arithmetic

According to Th. 4.7(c), x2 ≥ 0 holds for every real number x ∈ R, i.e. the equation
x2 + 1 = 0 has no solution in R. This deficiency of the real numbers motivates the
effort to try to extend the field of real numbers to a larger field C, the so-called complex
numbers. The two requirements that C is to be a field containing R and that there is to
be some complex number i ∈ C satisfying i2 = −1 already dictates the following laws
of addition and multiplication for complex numbers z = x + iy and w = u + iv with
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x, y, u, v ∈ R:

z + w = x+ iy + u+ iv = x+ u+ i(y + v), (5.1a)

zw = (x+ iy)(u+ iv) = xu− yv + i(xv + yu). (5.1b)

Moreover, if x + iy = u + iv, then (x − u)2 = −(v − y)2, i.e. x − u = 0 = v − y,
implying x = u and y = v. This suggests to try defining complex numbers as pairs of
real numbers. Indeed, this works:

Definition 5.1. We define the set of complex numbers C := R × R, where, keeping in
mind (5.1), addition on C is defined by

+ : C× C −→ C,
(
(x, y), (u, v)

)
7→ (x, y) + (u, v) := (x+ u, y + v), (5.2)

and multiplication on C is defined by

· : C× C −→ C,
(
(x, y), (u, v)

)
7→ (x, y) · (u, v) := (xu− yv, xv + yu). (5.3)

Theorem 5.2. (a) The set of complex numbers C with addition and multiplication as
defined in Def. 5.1 forms a field, where (0, 0) and (1, 0) are the neutral elements
with respect to addition and multiplication, respectively,

−z := (−x,−y) (5.4a)

is the additive inverse to z = (x, y), whereas

z−1 :=
1

z
:=

(
x

x2 + y2
,

−y
x2 + y2

)

(5.4b)

is the multiplicative inverse to z = (x, y) 6= (0, 0).

(b) Defining subtraction and division in the usual way, for each z, w ∈ C, by w − z :=
w + (−z), and w/z := wz−1 for z 6= (0, 0), respectively, all the rules stated in Th.
4.6 are valid in C.

(c) The map
ι : R −→ C, ι(x) := (x, 0), (5.5)

is a monomorphism, i.e. it is injective and satisfies

∀
x,y∈R

ι(x+ y) = ι(x) + ι(y), (5.6a)

∀
x,y∈R

ι(xy) = ι(x) · ι(y). (5.6b)

It is customary to identify R with ι(R), as it usually does not cause any confusion.
One then just writes x instead of (x, 0).
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Proof. All computations required for (a) and (c) are straightforward and are left as
an exercise; (b) is a consequence of (a), since Th. 4.6 and its proof are valid in every
field. �

Notation 5.3. The number i := (0, 1) is called the imaginary unit (note that, indeed,
i2 = i · i = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1+1 · 0) = (−1, 0) = −1). Using i, one obtains
the commonly used representation of a complex number z = (x, y) ∈ C:

z = (x, y) = x · (1, 0) + y · (0, 1) = x+ iy, (5.7)

where one calls Re z := x the real part of z and Im z := y the imaginary part of z.
Moreover, z is called purely imaginary if, and only if, Re z = 0 (as a consequence of this
convention, one has the (harmless) pathology that 0 is both real and purely imaginary).

Remark 5.4. There does not exist a total order ≤ on C that makes C into a totally
ordered field (i.e. no total order on C can be compatible with addition and multiplication
in the sense of (4.6)): Indeed, if there were such a total order ≤ on C, then all the rules
of Th. 4.7 had to be valid with respect to that total order ≤. In particular, 0 < 12 = 1
and 0 < i2 = −1 had to be valid by Th. 4.7(c), and, then, 0 < 1 + (−1) = 0 had to
be valid by Th. 4.7(f). However, 0 < 0 is false, showing that there is no total order on
C that satisfies (4.6). Caveat: Of course, there do exist total orders on C, just none
compatible with addition and multiplication – for example, the lexicographic order on
R× R (defined as it was in (2.51) for N× N) constitutes a total order on C.

Definition and Remark 5.5. Conjugation: For each complex number z = x+ iy, we
define its complex conjugate or just conjugate to be the complex number z̄ := x − iy.
We then have the following rules that hold for each z = x+ iy, w = u+ iv ∈ C:

(a) z + w = x+u−iy−iv = z̄+w̄ and zw = xu−yv−(xv+yu)i = (x−iy)(u−iv) = z̄w̄.

(b) z + z̄ = 2x = 2Re z and z − z̄ = 2yi = 2i Im z.

(c) z = z̄ ⇔ x+ iy = x− iy ⇔ y = 0 ⇔ z ∈ R.

(d) zz̄ = (x+ iy)(x− iy) = x2 + y2 ∈ R+
0 .

Notation 5.6. Exponentiation with Integer Exponents: Define recursively for each
z ∈ C and each n ∈ N0:

z0 := 1, ∀
n∈N0

zn+1 := z · zn, and for z 6= 0: z−n := (z−1)n. (5.8)

Theorem 5.7. Exponentiation Rules: Let z, w ∈ C. For z, w 6= 0, the following rules
hold for every m,n ∈ Z; otherwise they hold for each m,n ∈ N0:
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(a) zm+n = zm · zn.

(b) znwn = (zw)n.

(c) (zm)n = zmn.

Proof. (a): First, we fix n ∈ N0 and prove the statement for each m ∈ N0 by induction:
The base case (m = 0) is zn = zn, which is true. For the induction step, we compute

zm+1+n (5.8)
= z · zm+n ind. hyp.

= z · zm · zn (5.8)
= zm+1zn,

completing the induction step. Now assume z 6= 0. Consider m ≥ 0 and n < 0. If
m+ n ≥ 0, then, using what we have already shown,

zmzn
(5.8)
= zm(z−1)−n = zm+nz−n(z−1)−n = zm+n.

Similarly, if m+ n < 0, then

zmzn
(5.8)
= zm(z−1)−n = zm(z−1)m(z−1)−n−m

(5.8)
= zm+n.

The case m < 0, n ≥ 0 is treated completely analogously. It just remains to consider
m < 0 and n < 0. In this case,

zm+n = z−(−m−n) (5.8)
= (z−1)−m−n = (z−1)−m · (z−1)−n

(5.8)
= zm · zn.

(b): For n ∈ N0, the statement is proved by induction: The base case (n = 0) is
z0w0 = 1 = (zw)0, which is true. For the induction step, we compute

zn+1wn+1 (5.8)
= z · zn · w · wn ind. hyp.

= zw · (zw)n (5.8)
= (zw)n+1,

completing the induction step. For n < 0 and z, w 6= 0:

znwn
(5.8)
= (z−1)−n(w−1)−n = (z−1w−1)−n

Th. 4.6(c)
=

(
(zw)−1

)−n (5.8)
= (zw)n.

(c): First, we prove the statement for each n ∈ N0 by induction: The base case (n = 0)
is (zm)0 = 1 = z0, which is true. For the induction step, we compute

(zm)n+1 (5.8)
= zm · (zm)n ind. hyp.

= zm · zmn (a)
= zmn+m = zm (n+1),

completing the induction step. From (5.8) and (a), we also have (zm)−1 = z−m for z 6= 0.
Thus, for n < 0 and z 6= 0:

(zm)n
(5.8)
=
(
(zm)−1

)−n
= (z−m)−n = z(−m)(−n) = zmn,

thereby completing the proof. �
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5.2 Sign and Absolute Value (Modulus)

We face a certain conundrum regarding the handling of square roots. The problem
is that we will need the notion of a continuous function to prove the existence of a
unique square root

√
x for every nonnegative real number x and, in consequence, we

will have to wait until Section 7.2.5 below to carry out this proof. On the other hand, it
is extremely desirable to present the theory of convergence simultaneously for real and
for complex numbers, which requires the notion of the absolute value or modulus of a
complex number, to be defined in Def. 5.9(b) below as the square root of a nonnegative
real number.

Faced with this difficulty, we will introduce the notion of square root now, assuming the
existence, until we can add the proof in Section 7.2.5. Some students might be worried
that this might lead to a circular argument, where our later proof of the existence of
square roots would somehow make use of our previous assumption of that existence. Of
course, we will be careful not to make such a circular (and, thereby, logically invalid)
argument. The point is that for real numbers the notion of absolute value does in no
way depend on the notion of a square root (see Lem. 5.10 below).

Definition and Remark 5.8. We define a nonnegative real number y ∈ R+
0 to be the

square root of the nonnegative real number x ∈ R+
0 if, and only if, y2 = x. If y is the

square root of x, then one uses the notation
√
x := y. We will see in Rem. and Def.

7.61 that every x ∈ R+
0 has a unique square root and that the function f : R+

0 −→ R+
0 ,

f(x) :=
√
x, is strictly increasing (in particular, injective).

Definition 5.9. (a) The sign function is defined by

sgn : R −→ R, sgn(x) :=







1 for x > 0,

0 for x = 0,

−1 for x < 0.

(5.9)

It is emphasized that the sign function is only defined for real numbers (cf. Rem.
5.4)!

(b) The absolute value or modulus function is defined by

abs : C −→ R+
0 , z = x+ iy 7→ |z| :=

√
zz̄ =

√

x2 + y2, (5.10)

where the term absolute value is often preferred for real numbers z ∈ R and the
term modulus is often preferred if one also considers complex numbers z /∈ R.

Lemma 5.10. For each x ∈ R, one has

|x| = x · sgn(x) =
{

x for x ≥ 0,

−x for x < 0.
(5.11)
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Proof. One has

|x| =
√
x2 =

{

x for x ≥ 0,

−x for x < 0,
(5.12)

as claimed. �

Theorem 5.11. The following rules hold for each z, w ∈ C:

(a) z 6= 0 ⇒ |z| > 0.

(b) ||z|| = |z|.

(c) |z| = |z̄|.

(d) max{|Re z|, | Im z|} ≤ |z| ≤ |Re z|+ | Im z|.

(e) |zw| = |z||w|.

(f) For w 6= 0, one has | z
w
| = |z|

|w| .

(g) Triangle Inequality:
|z + w| ≤ |z|+ |w|. (5.13)

(h) Inverse Triangle Inequality:
∣
∣|z| − |w|

∣
∣ ≤ |z − w|. (5.14)

Proof. We carry out the proofs for z, w ∈ C. However, for z, w ∈ R, everything can
easily be shown directly from (5.11), without making use of square roots.

Let z = x+ iy with x, y ∈ R.

(a): If z 6= 0, then x 6= 0 or y 6= 0, i.e. x2 > 0 or y2 > 0 by Th. 4.7(c), implying
x2 + y2 > 0 by Th. 4.7(f), i.e. |z| =

√

x2 + y2 > 0.

(b): Since a := |z| ∈ R+
0 , we have |a| =

√
a2 = a = |z|.

(c): Since z̄ = x− iy, we have |z̄| =
√

x2 + (−y)2 =
√

x2 + y2 = |z|.
(d): It is x = Re z, y = Im z. Let a := max{|x|, |y|}. As remarked in Def. and Rem.
5.8, the square root function is increasing and, thus, taking square roots in the chain of
inequalities a2 ≤ x2 + y2 ≤ (|x|+ |y|)2 implies a ≤ |z| ≤ |x|+ |y| as claimed.

(e): As remarked in Def. and Rem. 5.8, the square root function is injective, and, thus,
(e) follows from

|zw|2 = zw zw
Def. and Rem. 5.5(a)

= zwz̄w̄ = zz̄ ww̄ = |z|2 |w|2.
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(f): Let w = u + iv with u, v ∈ R. We first consider the special case z = 1. Applying
the formula (5.4b) for the inverse to w, one obtains

|w−1|2 = u2

(u2 + v2)2
+

v2

(u2 + v2)2
=

1

u2 + v2
=
(
|w|−1

)2
,

i.e. |w−1| = |w|−1. Now (f) follows from (e): | z
w
| = |zw−1| = |z||w−1| = |z||w|−1 = |z|

|w| .

(g) follows from

|z + w|2 = (z + w)(z̄ + w̄) = zz̄ + wz̄ + zw̄ + ww̄
Def. and Rem. 5.5(b)

= |z|2 + 2Re(zw̄) + |w|2
(d)

≤ |z|2 + 2|zw̄|+ |w|2 =
(
|z|+ |w|

)2
,

once again using that the square root function is increasing.

(h): Using (g), we obtain

|z| = |z − w + w| ≤ |z − w|+ |w| ⇒ |z| − |w| ≤ |z − w|,
|w| = |w − z + z| ≤ |z − w|+ |z| ⇒ −(|z| − |w|) ≤ |z − w|,

implying
∣
∣|z| − |w|

∣
∣ ≤ |z − w| by (5.11) (notice |z| − |w| ∈ R). �

Remark 5.12. Each complex number (x, y) = x + iy can be visualized as a point in
the so-called complex plane, where the horizontal x-axis represents real numbers and
the veritcal y-axis represents purely imaginary numbers. Then the addition of complex
numbers is precisely the vector addition of 2-dimensional vectors in the complex plane,
and conjugation is represented by reflection through the x-axis. Moreover, the modulus
|z| of a complex number is precisely its distance from the origin (0, 0), and |z − w|
is the distance between the points z = (x, y) and w = (u, v) in the plane. Complex
multiplication can also be interpreted geometrically in the plane: If φ denotes the angle
that the vector representing z = (x, y) forms with the x-axis, and, likewise, ψ denotes
the angle that the vector representing w = (u, v) forms with the x-axis, then zw is
the vector of length |zw| that forms the angle φ + ψ with the x-axis (we will better
understand this geometrical interpretation of complex multiplication later (see Def. and
Rem. 8.29), when writing complex numbers in the polar form z = x+ iy = |z| exp(iφ),
making use of the exponential function exp).

5.3 Sums and Products

Here we compile some important rules involving sums and products of complex numbers
(the exceptions are the estimates in Th. 5.13(d),(e) below, which actually require real
numbers):
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Theorem 5.13. (a) For each n ∈ N and each λ, µ, zj , wj ∈ C, j ∈ {1, . . . , n}:
n∑

j=1

(λ zj + µwj) = λ
n∑

j=1

zj + µ
n∑

j=1

wj.

(b) For each n ∈ N0 and each z ∈ C:

(1− z)(1 + z + z2 + · · ·+ zn) = (1− z)
n∑

j=0

zj = 1− zn+1.

(c) For each n ∈ N0 and each z, w ∈ C:

wn+1 − zn+1 = (w − z)
n∑

j=0

zj wn−j = (w − z)(wn + zwn−1 + · · ·+ zn−1w + zn).

(d) For each n ∈ N and each xj, yj ∈ R, j ∈ {1, . . . , n}:
(

∀
j∈{1,...,n}

xj ≤ yj

)

⇒
n∑

j=1

xj ≤
n∑

j=1

yj,

where equality can only hold if xj = yj for each j ∈ {1, . . . , n}.

(e) For each n ∈ N and each xj, yj ∈ R, j ∈ {1, . . . , n}:
(

∀
j∈{1,...,n}

0 < xj ≤ yj

)

⇒
n∏

j=1

xj ≤
n∏

j=1

yj,

where equality can only hold if xj = yj for each j ∈ {1, . . . , n}.

(f) Triangle Inequality: For each n ∈ N and each zj ∈ C, j ∈ {1, . . . , n}:
∣
∣
∣
∣
∣

n∑

j=1

zj

∣
∣
∣
∣
∣
≤

n∑

j=1

|zj|.

Proof. In each case, the proof can be conducted by an easy induction. We carry out
(c) and leave the other cases as exercises. For (c), the base case (n = 0) is provided by
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the true statement w0+1 − z0+1 = w − z = (w − z)z0w0−0. For the induction step, one
computes

(w − z)
n+1∑

j=0

zj wn+1−j = (w − z)

(

zn+1w0 +
n∑

j=0

zj wn+1−j

)

= (w − z)zn+1 + (w − z)w
n∑

j=0

zj wn−j

ind. hyp.
= (w − z) zn+1 + w(wn+1 − zn+1) = wn+2 − zn+2,

completing the induction. �

5.4 Binomial Coefficients and Binomial Theorem

The goal in this section is to expand (z+w)n into a sum. This sum involves the so-called
binomial coefficients

(
n
k

)
, which are also useful in other contexts. To obtain an idea for

what to expect, let us compute the cases n = 0, 1, 2, 3: (z + w)0 = 1, (z + w)1 = z + w,
(z + w)2 = z2 + 2zw + w2, (z + w)3 = z3 + 3z2w + 3zw2 + w3. One finds that the
coefficients form what is known as Pascal’s triangle, which we write for n = 0, . . . , 5:

n = 0 :
n = 1 :
n = 2 :
n = 3 :
n = 4 :
n = 5 :

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

(5.15)

The entries of the nth row of Pascal’s triangle are denoted by
(
n
0

)
, . . . ,

(
n
n

)
. One also

observes that one obtains each entry of the (n+1)st row, except the first and last entry,
by adding the corresponding entries in row n to the left and to the right of the considered
entry in row n + 1. The first and last entry of each row are always set to 1. This can
be summarized as

∀
n∈N0

((
n

0

)

=

(
n

n

)

= 1,

(
n+ 1

k

)

=

(
n

k − 1

)

+

(
n

k

)

for k ∈ {1, . . . , n}
)

. (5.16)

The following Def. 5.14 provides a different and more general definition of binomial
coefficients. We will then prove in Prop. 5.15 that the binomial coefficients as defined
in Def. 5.14 do, indeed, satisfy (5.16).
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Definition 5.14. For each α ∈ C and each k ∈ N0, we define the binomial coefficient

(
α

0

)

:= 1,

(
α

k

)

:=
k∏

j=1

α + 1− j

j
=
α(α− 1) · · · (α− k + 1)

1 · 2 · · · k for k ∈ N. (5.17)

Proposition 5.15. (a) For each α ∈ C and each k ∈ N:
(
α

0

)

= 1,

(
α + 1

k

)

=

(
α

k − 1

)

+

(
α

k

)

. (5.18)

(b) For each n ∈ N0: (
n

n

)

= 1. (5.19)

The above statements include (5.16) as a special case.

Proof. (a): The first identity is part of the definition in (5.17). For the second identity,
we first observe, for each k ∈ N,

(
α

k

)

=
k∏

j=1

α + 1− j

j
=
α + 1− k

k

k−1∏

j=1

α + 1− j

j
=

(
α

k − 1

)
α + 1− k

k
, (5.20)

which implies
(

α

k − 1

)

+

(
α

k

)

=

(
α

k − 1

)(

1 +
α + 1− k

k

)

=

(
α

k − 1

)
α + 1

k

=
α + 1

k

k−1∏

j=1

α + 1− j

j
=

k∏

j=1

α + 2− j

j
=

(
α + 1

k

)

. (5.21)

(b):
(
0
0

)
= 1 according to (5.17). For n ∈ N, (5.19) is proved by induction. The base

case (n = 1) is provided by the true statement
(
1
1

)
= 1+1−1

1
= 1. For the induction step,

one computes

(
n+ 1

n+ 1

)

=
n+1∏

j=1

n+ 1 + 1− j

j
=
n+ 1

n+ 1

n∏

j=1

n+ 1− j

j
=

(
n

n

)
ind. hyp.
= 1, (5.22)

which completes the induction. �

Theorem 5.16 (Binomial Theorem). For each z, w ∈ C and each n ∈ N0, the following
formula holds:

(z + w)n =
n∑

k=0

(
n

k

)

zn−kwk = zn +

(
n

1

)

zn−1w + · · ·+
(

n

n− 1

)

zwn−1 + wn. (5.23)
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Proof. The proof is conducted via induction on n. The base case (n = 0) is provided by
the correct statement (z+w)0 = 1 =

(
0
0

)
z0−0w0. For the induction step, we first observe

(z + w)n+1 = (z + w) (z + w)n = z (z + w)n + w (z + w)n. (5.24)

Using the induction hypothesis, we now further manipulate the two terms on the right-
hand side of (5.24):

z (z + w)n
ind. hyp.
= z

n∑

k=0

(
n

k

)

zn−kwk =
n∑

k=0

(
n

k

)

zn+1−kwk

( n
n+1)=0
=

n+1∑

k=0

(
n

k

)

zn+1−kwk, (5.25)

w (z + w)n
ind. hyp.
= w

n∑

k=0

(
n

k

)

zn−kwk =
n∑

k=0

(
n

k

)

zn−kwk+1

=
n+1∑

k=1

(
n

k − 1

)

zn+1−kwk. (5.26)

Plugging (5.25) and (5.26) into (5.24) yields

(z + w)n+1 =

(
n

0

)

zn+1w0 +
n+1∑

k=1

((
n

k

)

+

(
n

k − 1

))

zn+1−kwk

Prop. 5.15
=

(
n+ 1

0

)

zn+1w0 +
n+1∑

k=1

(
n+ 1

k

)

zn+1−kwk

=
n+1∑

k=0

(
n+ 1

k

)

zn+1−kwk, (5.27)

completing the induction. �

The binomial theorem can now be used to infer a few more rules that hold for the
binomial coefficients:

Corollary 5.17. One has the following identities:

∀
n∈N0

n∑

k=0

(
n

k

)

=

(
n

0

)

+

(
n

1

)

+ · · ·+
(
n

n

)

= 2n, (5.28a)

∀
n∈N

n∑

k=0

(
n

k

)

(−1)k =

(
n

0

)

−
(
n

1

)

+

(
n

2

)

−+ · · ·+ (−1)n
(
n

n

)

= 0. (5.28b)
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Proof. (5.28a) is just (5.23) with z = w = 1; (5.28b) is just (5.23) with z = 1 and
w = −1. �

The formulas provided by the following proposition are also sometimes useful.

Proposition 5.18. (a) For each α ∈ C and each k ∈ N0:

k∑

j=0

(
α + j

j

)

=

(
α

0

)

+

(
α + 1

1

)

+ · · ·+
(
α + k

k

)

=

(
α + k + 1

k

)

. (5.29)

(b) For each n, k ∈ N0 with k ≤ n:
(
n

k

)

=
n!

k!(n− k)!
. (5.30)

Moreover, for n ≥ 1, one has
(
n
k

)
= #Pk({1, . . . , n}), where

Pk(A) :=
{
B ∈ P(A) : #B = k

}
(5.31)

denotes the set of all subsets of a set A that have precisely k elements.

(c) For each n, k ∈ N0:

k∑

j=0

(
n+ j

n

)

=

(
n

n

)

+

(
n+ 1

n

)

+ · · ·+
(
n+ k

n

)

=

(
n+ k + 1

n+ 1

)

. (5.32)

Proof. The induction proofs of (a) and (b) are left as exercises. For (c), one computes

k∑

j=0

(
n+ j

n

)
(5.30)
=

k∑

j=0

(n+ j)!

n!(n+ j − n)!

(5.30)
=

k∑

j=0

(
n+ j

j

)

(5.29)
=

(
n+ k + 1

k

)
(5.30)
=

(n+ k + 1)!

k!(n+ 1)!
=

(
n+ k + 1

n+ 1

)

,

thereby establishing the case. �

6 Polynomials

6.1 Arithmetic of K-Valued Functions

Notation 6.1. We will write K in situations, where we allow K to be R or C.
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Notation 6.2. If A is any nonempty set, then one can add and multiply arbitrary
functions f, g : A −→ K, and one can define several further operations to create new
functions from f and g:

(f + g) : A −→ K, (f + g)(x) := f(x) + g(x), (6.1a)

(λf) : A −→ K, (λf)(x) := λf(x) for each λ ∈ K, (6.1b)

(fg) : A −→ K, (fg)(x) := f(x)g(x), (6.1c)

(f/g) : A −→ K, (f/g)(x) := f(x)/g(x) (assuming g(x) 6= 0), (6.1d)

Re f : A −→ R, (Re f)(x) := Re(f(x)), (6.1e)

Im f : A −→ R, (Im f)(x) := Im(f(x)). (6.1f)

For K = R, we further define

max(f, g) : A −→ R, max(f, g)(x) := max
{
f(x), g(x)

}
, (6.1g)

min(f, g) : A −→ R, min(f, g)(x) := min
{
f(x), g(x)

}
, (6.1h)

f+ : A −→ R, f+ := max(f, 0), (6.1i)

f− : A −→ R, f− := max(−f, 0). (6.1j)

Finally, once again also allowing K = C,

|f | : A −→ R, |f |(x) := |f(x)|. (6.1k)

One calls f+ and f− the positive part and the negative part of f , respectively. For
R-valued functions f , we have

|f | = f+ + f−. (6.1l)

6.2 Polynomials

Definition 6.3. Let n ∈ N0. Each function from K into K, x 7→ xn, is called a
monomial. A function P from K into K is called a polynomial if, and only if, it is a
linear combination of monomials, i.e. if, and only if P has the form

P : K −→ K, P (x) =
n∑

j=0

ajx
j = a0 + a1x+ · · ·+ anx

n, aj ∈ K. (6.2)

The aj are called the coefficients of P . The largest number d ≤ n such that ad 6= 0 is
called the degree of P , denoted deg(P ). If all coefficients are 0, then P is called the zero
polynomial; the degree of the zero polynomial is defined as −1 (in Th. 6.6(b) below, we
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will see that each polynomial of degree n ∈ N0 is uniquely determined by its coefficients
a0, . . . , an and vice versa).

Polynomials of degree ≤ 0 are constant. Polynomials of degree ≤ 1 have the form
P (x) = a+ bx and are called affine functions (often they are also called linear functions,
even though this is not really correct for a 6= 0, since every function P that is linear (in
the sense of linear algebra) must satisfy P (0) = 0). Polynomials of degree ≤ 2 have the
form P (x) = a+ bx+ cx2 and are called quadratic functions.

Each ξ ∈ K such that P (ξ) = 0 is called a zero or a root of P .

A rational function is a quotient P/Q of two polynomials P and Q.

Remark 6.4. Let λ ∈ K and let P,Q be polynomials. Then λP , P+Q, and PQ defined
according to Not. 6.2 are polynomials as well. More precisely, if λ = 0 or P ≡ 0, then
λP = 0; if P ≡ 0, then P +Q = Q; if Q ≡ 0, then P +Q = P ; if P ≡ 0 or Q ≡ 0, then
PQ = 0. If λ 6= 0 and

P (x) =
n∑

j=0

ajx
j, Q(x) =

m∑

j=0

bjx
j,

with deg(P ) = n ≥ 0, deg(Q) = m ≥ 0, n ≥ m ≥ 0,

(6.3)

then, defining bj := 0 for each j ∈ {m+ 1, . . . , n} in case n > m,

(λP )(x) =
n∑

j=0

(λ aj) x
j, deg(λP ) = n, (6.4a)

(P +Q)(x) =
n∑

j=0

(aj + bj) x
j, deg(P +Q) ≤ n = max{m,n}, (6.4b)

(PQ)(x) =
m+n∑

j=0

cj x
j, deg(PQ) = m+ n, (6.4c)

where, setting ak := 0 for each k ∈ {n + 1, . . . ,m + n} and bk := 0 for each k ∈
{m+ 1, . . . ,m+ n},

∀
j∈{0,...,n+m}

cj =

j
∑

k=0

akbj−k. (6.4d)

Formula (6.4c) can be proved by induction on m = deg(Q) ∈ N0 as follows: For m = 0,
we compute

(PQ)(x) = b0

n∑

j=0

aj x
j =

n+0∑

j=0

b0aj x
j,
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i.e. cj = b0aj =
∑j

k=0 akbj−k, which establishes the base case, remembering bj−k = 0 for
j > k. For the induction step, we compute, for deg(Q) = m+ 1,

(PQ)(x) =
n∑

j=0

aj x
j

m+1∑

α=0

bα x
α =

n∑

j=0

aj x
j

(

bm+1x
m+1 +

m∑

α=0

bα x
α

)

ind. hyp.
=

n∑

j=0

ajbm+1 x
m+1+j +

m+n∑

j=0

(
j
∑

k=0

akbj−k

)

xj

=
m+n+1∑

j=m+1

aj−m−1bm+1 x
j +

m+n∑

j=0

(
j
∑

k=0

akbj−k

)

xj

=
m+n+1∑

j=0

(
j
∑

k=0

akbj−k

)

xj,

which completes the induction step. There is a notational issue in the second and third
line in of the above computation, since, in both lines, the bm+1 in the first sum is the
actual bm+1 from Q, but bm+1 = 0 in the second sum in both lines, which is due to the
induction hypothesis being applied form < m+1. This is actually used when combining
both sums in the last step, computing, for m+1 ≤ j ≤ m+n: aj−m−1bm+1 x

j+aj−m−1 ·
0 ·xj = aj−m−1bm+1 x

j. For j = m+n+1, one has
∑m+n+1

k=0 akbm+n+1−k = anbm+1, since
bm+n+1−k = 0 for n > k and ak = 0 for k > n.

Finally, deg(PQ) = m+ n follows from cm+n = ambn 6= 0.

Theorem 6.5. (a) For each polynomial P given in the form of (6.3) and each ξ ∈ K,
we have the identity

P (x) =
n∑

j=0

bj (x− ξ)j, (6.5)

where

∀
j∈{0,...,n}

bj =
n∑

k=j

ak

(
k

j

)

ξk−j, in particular b0 = P (ξ), bn = an. (6.6)

(b) If P is a polynomial with n := deg(P ) ≥ 1, then, for each ξ ∈ K, there exists a
polynomial Q with deg(Q) = n− 1 such that

P (x) = P (ξ) + (x− ξ)Q(x). (6.7)

In particular, if ξ is a zero of P , then P (x) = (x− ξ)Q(x).
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Proof. (a): For ξ = 0, there is nothing to prove. For ξ 6= 0, defining the auxiliary
variable η := x− ξ, we obtain x = ξ + η and

P (x) =
n∑

k=0

ak(ξ + η)k
(5.23)
=

n∑

k=0

k∑

j=0

ak

(
k

j

)

ξk−jηj =
n∑

k=0

n∑

j=0

ak

(
k

j

)

ξk−jηj

=
n∑

j=0

n∑

k=0

ak

(
k

j

)

ξk−jηj =
n∑

j=0

n∑

k=j

ak

(
k

j

)

ξk−jηj, (6.8)

which is (6.5).

(b): According to (a), we have

P (x) = P (ξ)+(x− ξ)Q(x), with Q(x) =
n∑

j=1

bj (x− ξ)j−1 =
n−1∑

j=0

bj+1 (x− ξ)j , (6.9)

proving (b). �

Theorem 6.6. (a) If P is a polynomial with n := deg(P ) ≥ 0, then P has at most n
zeros.

(b) Let P,Q be polynomials as in (6.3) with n = m, deg(P ) ≤ n, and deg(Q) ≤ n. If
P (xj) = Q(xj) at n + 1 distinct points x0, x1, . . . , xn ∈ K, then aj = bj for each
j ∈ {0, . . . , n}.
Consequence 1: If P,Q with degree ≤ n agree at n+1 distinct points, then P = Q.

Consequence 2: If we know P = Q, then they agree everywhere, in particular at
max{deg(P ), deg(Q)} + 1 distinct points, which implies they have the same coeffi-
cients.

Proof. (a): For n = 0, P is constant, but not the zero polynomial, i.e. P ≡ a0 6= 0 with
no zeros as claimed. For n ∈ N, the proof is conducted by induction. The base case
(n = 1) is provided by the observation that deg(P ) = 1 implies P is the affine function
with P (x) = a0 + a1x, a1 6= 0, i.e. P has precisely one zero at ξ = −a0/a1. For the
induction step, assume deg(P ) = n + 1. If P has no zeros, then the assertion of (a)
holds true. Otherwise, P has at least one zero ξ ∈ K, and, according to Th. 6.5(b),
there exists a polynomial Q such that deg(Q) = n and

P (x) = (x− ξ)Q(x). (6.10)

From the induction hypothesis, we gather that Q has at most n zeros, i.e. (6.10) implies
P has at most n+ 1 zeros, which completes the induction.
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(b): If P (xj) = Q(xj) at n + 1 distinct points xj, then each of these points is a zero of
P −Q. Thus P −Q is a polynomial of degree ≤ n with at least n + 1 zeros. Then (a)
implies deg(P − Q) = −1, i.e. P − Q is the zero polynomial, i.e. aj − bj = 0 for each
j ∈ {0, . . . , n}. �

Remark 6.7. Let P be a polynomial with n := deg(P ) ≥ 0. According to Th. 6.6(a), P
has at most n zeros. Using Th. 6.5(b) for an induction shows there exists k ∈ {0, . . . , n}
and a polynomial Q of degree n− k such that

P (x) = Q(x)
k∏

j=1

(x− ξj) = (x− ξ1)(x− ξ2) · · · (x− ξk)Q(x), (6.11a)

where Q does not have any zeros in K and {ξ1, . . . , ξk} = {ξ ∈ K : P (ξ) = 0} is the set
of zeros of P . It can of course happen that P does not have any zeros and P = Q (no
ξj exist). It can also occur that some of the ξj in (6.11a) are identical. Thus, we can
rewrite (6.11a) as

P (x) = Q(x)
l∏

j=1

(x− λj)
mj = (x− λ1)

m1(x− λ2)
m2 · · · (x− λl)

mlQ(x), (6.11b)

where λ1, . . . , λl, l ∈ {0, . . . , k}, are the distinct zeros of P , and mj ∈ N with
∑l

j=1mj =
k. Then mj is called the multiplicity of the zero λj of P .

7 Limits and Convergence in the Real and Complex

Numbers

7.1 Sequences

Recall from Def. 2.14(b) that a sequence in K is a function f : N −→ K, in this context
usually denoted as f = (zn)n∈N or (z1, z2, . . . ) with zn := f(n). Sometimes the sequence
also has the form (zn)n∈I , where I 6= ∅ is a countable index set (e.g. I = N0) different
from N (in the context of convergence (see the following Def. 7.1), I must be N or it
must have the same cardinality as N, i.e. finite I are not permissible).

Definition 7.1. The sequence (zn)n∈N in K is said to be convergent with limit z ∈ K if,
and only if, for each ǫ > 0, there exists an index N ∈ N such that |zn − z| < ǫ for every
index n > N . The notation for (zn)n∈N converging to z is limn→∞ zn = z or zn → z for
n→ ∞. Thus, by definition,

lim
n→∞

zn = z ⇔ ∀
ǫ∈R+

∃
N∈N

∀
n>N

|zn − z| < ǫ. (7.1)
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The sequence (zn)n∈N in K is called divergent if, and only if, it is not convergent.

Example 7.2. (a) For every constant sequence (zn)n∈N = (a)n∈N with a ∈ K, one has
limn→∞ zn = limn→∞ a = a: Since, for each n ∈ N, |zn − a| = |a − a| = 0, one can
choose N = 1 for each ǫ > 0.

(b) limn→∞
1

n+a
= 0 for each a ∈ C: Here zn := 1/(n+ a) (if n = −a, then set zn := w

with w ∈ C arbitrary). Given ǫ > 0, choose an arbitrary N ∈ N with N ≥ ǫ−1+ |a|.
Then, for each n ≥ N , we compute |n + a| = |n − (−a)| ≥ |n − |a|| = n − |a| >
N − |a| ≥ ǫ−1, and, thus, |zn| = |n+ a|−1 < ǫ as desired.

(c) ((−1)n)n∈N is not convergent: We have zn = 1 for each even n and zn = −1 for each
odd n. Thus, for each z 6= 1 and each even n, |zn−z| = |1−z| > |1−z|/2 =: ǫ > 0,
i.e. z is not a limit of (zn)n∈N. However, z = 1 is also not a limit of the sequence,
since, for each odd n, |zn − 1| = | − 1 − 1| = 2 > 1 =: ǫ > 0, proving that the
sequence has no limit.

Theorem 7.3. (a) Let (zn)n∈N be a sequence in C. Then (zn)n∈N is convergent in C

if, and only if, both (Re zn)n∈N and (Im zn)n∈N are convergent in R. Moreover, in
that case,

lim
n→∞

zn = z ⇔ lim
n→∞

Re zn = Re z ∧ lim
n→∞

Im zn = Im z. (7.2)

(b) Let (xn)n∈N be a sequence in R and z ∈ C. Then

lim
n→∞

xn = z ⇒ z ∈ R. (7.3)

Proof. (a): Suppose (zn)n∈N converges to z ∈ C. Then, given ǫ > 0, there exists N ∈ N

such that, for each n > N , |zn − z| < ǫ. In consequence, for each n > N ,

|Re zn − Re z| = |Re(zn − z)|
Th. 5.11(d)

≤ |zn − z| < ǫ, (7.4)

proving limn→∞Re zn = Re z. The proof of limn→∞ Im zn = Im z is completely anal-
ogous. Conversely, suppose there are x, y ∈ R such that limn→∞ Re zn = x and
limn→∞ Im zn = y. Here we encounter, for the first time, what is sometimes called an ǫ/2
argument: Given ǫ > 0, there exists N ∈ N such that, for each n > N , |Re zn−x| < ǫ/2
and | Im zn − y| < ǫ/2, implying, for each n > N ,

|zn − (x+ iy)| = |Re zn + i Im zn − (x+ iy)|
≤ |Re zn − x|+ |i|| Im zn − y| < ǫ/2 + ǫ/2 = ǫ, (7.5)

proving limn→∞ zn = x+ iy.

(b) is a direct consequence of (a). �
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Example 7.4. (a) According to Th. 7.3(a), we have

lim
n→∞

(√
2 +

i

n− 17

)
Ex. 7.2(a),(b)

=
√
2 + 0i =

√
2.

(b) According to Th. 7.3(a) and Ex. 7.2(c), the sequence ( 1
n
+ (−1)n i)n∈N is divergent.

Another important example relies on the following inequality:

Proposition 7.5 (Bernoulli’s Inequality). For each n ∈ N0 and each x ∈ [−1,∞[, we
have

(1 + x)n ≥ 1 + nx, (7.6)

with strict inequality whenever n > 1 and x 6= 0.

Proof. For n = 0, (7.6) reads 1 ≥ 1, for n = 1, (7.6) reads 1 + x ≥ 1 + x, for n = 2,
(7.6) reads (1 + x)2 = 1+ 2x+ x2 ≥ 1 + 2x, all three statements being trivially true, in
the case n = 2 with strict inequality for x 6= 0. We now proceed by induction for n ≥ 2.
For the induction step, one estimates

(1 + x)n+1 = (1 + x)n (1 + x)
ind. hyp., x ≥ −1

≥ (1 + nx) (1 + x) = 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x, (7.7)

with strict inequality for x 6= 0. �

Example 7.6. We have, for each q ∈ C,

|q| < 1 ⇒ lim
n→∞

qn = 0 : (7.8)

For q = 0, there is nothing to prove. For 0 < |q| < 1, it is |q|−1 > 1, i.e. h := |q|−1−1 > 0.
Thus, for each ǫ > 0 and N ≥ 1/(ǫh), we obtain

n > N ⇒ |q|−n = (1 + h)n
(7.6)

≥ 1 + nh > nh > 1/ǫ ⇒ |qn| = |q|n < ǫ. (7.9)

Definition 7.7. (a) Given z ∈ K and ǫ ∈ R+, we call the set Bǫ(z) := {w ∈ K :
|w− z| < ǫ} the ǫ-neighborhood of z or, in anticipation of Calculus II, the (open) ǫ-
ball with center z (in fact, for K = C, Bǫ(z) represents an open disk in the complex
plane with center z and radius ǫ, whereas, for K = R, Bǫ(z) =]z − ǫ, z + ǫ[ is the
open interval with center z and length 2ǫ). More generally, a set U ⊆ K is called
a neighborhood of z if, and only if, there exists ǫ > 0 with Bǫ(z) ⊆ U (so, for
example, for ǫ > 0, Bǫ(z) is always a neighborhood of z, whereas R and [z − ǫ,∞[
are neighborhoods of z for K = R, but not for K = C ([z − ǫ,∞[ not even being
defined for z /∈ R); the sets {z}, {w ∈ K : Rew ≥ Re z}, {w ∈ K : Rew ≥ Re z+ǫ}
are never neighborhoods of z).
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(b) If φ(n) is a statement for each n ∈ N, then φ(n) is said to be true for almost all
n ∈ N if, and only if, there exists a finite subset A ⊆ N such that φ(n) is true for
each n ∈ N \A, i.e. if, and only if, φ(n) is always true, with the possible exception
of finitely many cases.

Remark 7.8. In the language of Def. 7.7, the sequence (zn)n∈N converges to z if, and
only if, every neighborhood of z contains almost all zn.

Definition 7.9. The sequence (zn)n∈N in K is called bounded if, and only if, the set
{|zn| : n ∈ N} is bounded in the sense of Def. 2.26(a).

Proposition 7.10. Let (zn)n∈N be a sequence in K.

(a) Limits are unique, that means if z, w ∈ K such that limn→∞ zn = z and limn→∞ zn =
w, then z = w.

(b) If (zn)n∈N is convergent, then it is bounded.

Proof. (a): Exercise.

(b): If limn→∞ zn = z, then A := {|zn| : |zn − z| ≥ 1} ∪ {|z1|} is nonempty and finite.
According to Th. 3.21(a), A has an upper bound M . Then max{M, |z|+1} is an upper
bound for {|zn| : n ∈ N}, and 0 is always a lower bound, showing that the sequence is
bounded. �

Proposition 7.11. Let (zn)n∈N be a sequence in C with limn→∞ zn = 0.

(a) If (bn)n∈N is a sequences in C such that there exists C ∈ R+ with |bn| ≤ C|zn| for
almost all n, then limn→∞ bn = 0.

(b) If (cn)n∈N is a bounded sequence in C, then limn→∞(cnzn) = 0.

Proof. (a): Given ǫ > 0, there exists N ∈ N such that |zn| < ǫ/C and |bn| ≤ C|zn| for
each n > N . Then, for each n > N , |bn| ≤ C|zn| < ǫ, proving limn→∞ bn = 0.

(b): If (cn)n∈N is bounded, then there exists C ∈ R+ such that |cn| ≤ C for each n ∈ N.
Thus, |cnzn| ≤ C|zn| for each n ∈ N, implying limn→∞(cnzn) = 0 via (a). �

Example 7.12. The sequences ((−1)n)n∈N and (b)n∈N with b ∈ C are bounded. Since,
for each a ∈ C, limn→∞

1
n+a

= 0 by Example 7.2(b), we obtain

lim
n→∞

(−1)n

n+ a
= lim

n→∞
b

n+ a
= 0 (7.10)

from Prop. 7.11(b).
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Theorem 7.13. (a) Let (zn)n∈N and (wn)n∈N be sequences in C. Moreover, let z, w ∈ C

with limn→∞ zn = z and limn→∞wn = w. We have the following identities:

lim
n→∞

(λzn) = λz for each λ ∈ C, (7.11a)

lim
n→∞

(zn + wn) = z + w, (7.11b)

lim
n→∞

(znwn) = zw, (7.11c)

lim
n→∞

zn/wn = z/w given all wn 6= 0 and w 6= 0, (7.11d)

lim
n→∞

|zn| = |z|, (7.11e)

lim
n→∞

z̄n = z̄, (7.11f)

lim
n→∞

zpn = zp for each p ∈ N. (7.11g)

(b) Let (xn)n∈N and (yn)n∈N be sequences in R. Moreover, let x, y ∈ R with limn→∞ xn =
x and limn→∞ yn = y. Then

lim
n→∞

max{xn, yn} = max{x, y}, (7.12a)

lim
n→∞

min{xn, yn} = min{x, y}. (7.12b)

(c) If, in the situation of (b) (i.e. for real sequences), xn ≤ yn holds for almost all
n ∈ N, then x ≤ y. In particular, if almost all xn ≥ 0, then x ≥ 0.

Proof. We start with the identities of (a).

(7.11a): For λ = 0, there is nothing to prove. For λ 6= 0 and ǫ > 0, there exists N ∈ N

such that, for each n > N , |zn − z| < ǫ/|λ|, implying

∀
n>N

|λ zn − λ z| = |λ| |zn − z| < ǫ. (7.13a)

(7.11b): Given ǫ > 0, there exists N ∈ N such that, for each n > N , |zn − z| < ǫ/2 and
|wn − w| < ǫ/2, implying

∀
n>N

|zn + wn − (z + w)| ≤ |zn − z|+ |wn − w| < ǫ/2 + ǫ/2 = ǫ. (7.13b)

(7.11c): Let M1 := max{|z|, 1}. According to Prop. 7.10(b), there exists M2 ∈ R+ such
that M2 is an upper bound for {|wn| : n ∈ N}. Moreover, given ǫ > 0, there exists
N ∈ N such that, for each n > N , |zn− z| < ǫ/(2M2) and |wn−w| < ǫ/(2M1), implying

∀
n>N






|znwn − zw| =
∣
∣(zn − z)wn + z(wn − w)

∣
∣

≤ |wn| · |zn − z|+ |z| · |wn − w| < M2 ǫ

2M2

+
M1 ǫ

2M1

= ǫ.




 (7.13c)
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(7.11d): We first consider the case, where all zn = 1. Given ǫ > 0, there exists N ∈ N

such that, for each n > N , |wn − w| < ǫ |w|2/2 and |wn − w| < |w|/2 (since w 6= 0 for
this case), implying |w| ≤ |w − wn|+ |wn| < |w|/2 + |wn| and |wn| > |w|/2. Thus,

∀
n>N

∣
∣
∣
∣

1

wn
− 1

w

∣
∣
∣
∣
=

∣
∣
∣
∣

wn − w

wnw

∣
∣
∣
∣
≤ 2 |wn − w|

|w|2 <
2

|w|2
ǫ |w|2
2

= ǫ. (7.13d)

The general case now follows from (7.11c).

(7.11e): This is a consequence of the inverse triangle inequality (5.14): Given ǫ > 0,
there exists N ∈ N such that, for each n > N , |zn − z| < ǫ, implying

∀
n>N

∣
∣|zn| − |z|

∣
∣ ≤ |zn − z| < ǫ. (7.13e)

(7.11f): Write zn = xn+ iyn and z = x+ iy with xn, yn, x, y ∈ R, n ∈ N. Then we know
limn→∞ xn = x and limn→∞ yn = y from (7.2), and

lim
n→∞

z̄n = lim
n→∞

(xn − iyn)
(7.11a),(7.11b)

= x− iy = z̄, (7.13f)

which establishes the case.

(7.11g) follows by induction from (7.11c) (cf. (7.16b) below).

The proofs for the two identities of (b) are left as exercises.

(c): Proceeding by contraposition, assume x > y and set s := (x+y)/2. Then y < s < x
and yn < s < xn holds for almost all n, i.e. xn ≤ yn does not hold for almost all n. �

Example 7.14. (a) limn→∞
n+a
n+b

= 1 for each a, b ∈ C: Here zn := (n + a)/(n + b) (if
n = −b, then set zn := w with w ∈ C arbitrary). Using (7.11b) and (7.11d), one
obtains

lim
n→∞

n+ a

n+ b
= lim

n→∞
1 + a/n

1 + b/n
=

lim
n→∞

1 + lim
n→∞

a
n

lim
n→∞

1 + lim
n→∞

b
n

=
1 + 0

1 + 0
= 1. (7.14)

(b) Using (7.11b), (7.11d), and (7.11g), one obtains

lim
n→∞

2n5 − 3in3 + 2i

3n5 + 17n
= lim

n→∞
2− 3i/n2 + 2i/n5

3 + 17/n4
=

2 + 0 + 0

3 + 0
=

2

3
. (7.15)

Corollary 7.15. For k ∈ N, let (z
(1)
n )n∈N, . . . , (z

(k)
n )n∈N be sequences in C. Moreover,

let z(1), . . . , z(k) ∈ C with limn→∞ z
(j)
n = z(j) for each j ∈ {1, . . . , k}. Then

lim
n→∞

k∑

j=1

z(j)n =
k∑

j=1

z(j), (7.16a)

lim
n→∞

k∏

j=1

z(j)n =
k∏

j=1

z(j). (7.16b)
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Proof. (7.16) follows by simple inductions from (7.11b) and (7.11c), respectively. �

Theorem 7.16 (Sandwich Theorem). Let (xn)n∈N, (yn)n∈N, and (an)n∈N be sequences
in R. If xn ≤ an ≤ yn holds for almost all n ∈ N, then

lim
n→∞

xn = lim
n→∞

yn = x ∈ R ⇒ lim
n→∞

an = x. (7.17)

Proof. Given ǫ > 0, there exists N ∈ N such that, for each n > N , xn ≤ an ≤ yn,
|xn − x| < ǫ, and |yn − x| < ǫ, implying

∀
n>N

x− ǫ < xn ≤ an ≤ yn < x+ ǫ, (7.18)

which establishes the case. �

Example 7.17. Since, 0 < 1
n!

≤ 1
n
holds for each n ∈ N, the Sandwich Th. 7.16 implies

lim
n→∞

1

n!
= 0. (7.19)

Definition 7.18. Let (xn)n∈N be a sequence in R. The sequence is said to diverge to
∞ (resp. to −∞), denoted limn→∞ xn = ∞ (resp. limn→∞ xn = −∞) if, and only if, for
each K ∈ R, almost all xn are bigger (resp. smaller) than K. Thus,

lim
n→∞

xn = ∞ ⇔ ∀
K∈R

∃
N∈N

∀
n>N

xn > K, (7.20a)

lim
n→∞

xn = −∞ ⇔ ∀
K∈R

∃
N∈N

∀
n>N

xn < K. (7.20b)

Theorem 7.19. Suppose S := (xn)n∈N is a monotone sequence in R (increasing or
decreasing). Defining A := {xn : n ∈ N}, the following holds:

lim
n→∞

xn =







supA if S is increasing and bounded,

∞ if S is increasing and not bounded,

inf A if S is decreasing and bounded,

−∞ if S is decreasing and not bounded.

(7.21)

Proof. We treat the increasing case; the decreasing case is proved completely analo-
gously. If A is bounded and ǫ > 0, let K := supA − ǫ; if A is unbounded, then let
K ∈ R be arbitrary. In both cases, since K can not be an upper bound, there exists
N ∈ N such that xN > K. Since the sequence is increasing, for each n > N , xN ≤ xn,
showing | supA− xn| < ǫ in the bounded case, and xn > K in the unbounded case. �
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Example 7.20. Theorem 7.19 implies

∀
k∈N

(

lim
n→∞

nk = ∞, lim
n→∞

(−nk) = −∞
)

. (7.22)

—

It is sometimes necessary to consider so-called subsequences and reorderings of a given
sequence. Here, we are interested in sequences in R or C, but for subsequences and
reorderings it is irrelevant in which set A the sequence takes its values. As it presents
virtually no extra difficulty to introduce the notions for general sequences, and since we
will need to consider sequences with values in sets other than R or C in Calculus II, we
admit general sequences in the following definition.

Definition 7.21. Let A be an arbitrary nonempty set. Consider a sequence σ : N −→
A. Given a function φ : N −→ N (that means (φ(n))n∈N constitutes a sequence of
indices), the new sequence (σ ◦ φ) : N −→ A is called a subsequence of σ if, and
only if, φ is strictly increasing (i.e. 1 ≤ φ(1) < φ(2) < . . . ). Moreover, σ ◦ φ is
called a reordering of σ if, and only if, φ is bijective. One can write σ in the form
(zn)n∈N by setting zn := σ(n), and one can write σ ◦ φ in the form (wn)n∈N by setting
wn := (σ ◦ φ)(n) = zφ(n). Especially for a subsequence of (zn)n∈N, it is also common
to write (znk

)k∈N. This notation corresponds to the one above if one lets nk := φ(k).
Analogous definitions work if the index set N of σ is replaced by a general countable
nonempty index set I.

Example 7.22. Consider the sequence (1, 2, 3, . . . ). Then (2, 4, 6, . . . ) constitutes a
subsequence and (2, 1, 4, 3, 6, 5, . . . ) constitutes a reordering. Using the notation of Def.
7.21, the original sequence is given by σ : N −→ N, σ(n) := n; the subsequence
is selected via φ1 : N −→ N, φ1(n) := 2n; and the reordering is accomplished via

φ2 : N −→ N, φ2(n) :=

{

n+ 1 if n is odd,

n− 1 if n is even.

Proposition 7.23. Let (zn)n∈N be a sequence in C. If limn→∞ zn = z, then every
subsequence and every reordering of (zn)n∈N is also convergent with limit z.

Proof. Let (wn)n∈N be a subsequence of of (zn)n∈N, i.e. there is a strictly increasing
function φ : N −→ N such that wn = zφ(n). If limn→∞ zn = z, then, given ǫ > 0, there

is N ∈ N such that zn ∈ Bǫ(z) for each n > N . For Ñ choose any number from N that
is ≥ N and in φ(N). Take M := φ−1(Ñ) (where φ−1 : φ(N) −→ N). Then, for each
n > M , one has φ(n) > Ñ ≥ N , and, thus, wn = zφ(n) ∈ Bǫ(z), showing limn→∞wn = z.

Let (wn)n∈N be a reordering of (zn)n∈N, i.e. there is a bijective function φ : N −→ N

such that wn = zφ(n). Let ǫ and N be as before. Define

M := max{φ−1(n) : n ≤ N}. (7.23)
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As φ is bijective, it is φ(n) > N for each n > M . Then, for each n > M , one has
wn = zφ(n) ∈ Bǫ(z), showing limn→∞wn = z. �

Definition 7.24. Let (zn)n∈N be a sequence in K. A point z ∈ K is called a cluster
point or an accumulation point of the sequence if, and only if, for each ǫ > 0, Bǫ(z)
contains infinitely many members of the sequence (i.e. #{n ∈ N : zn ∈ Bǫ(z)} = ∞).

Example 7.25. The sequence ((−1)n)n∈N has cluster points 1 and −1.

Proposition 7.26. A point z ∈ K is a cluster point of the sequence (zn)n∈N in K if,
and only if, the sequence has a subsequence converging to z.

Proof. If (wn)n∈N is a subsequence of (zn)n∈N, limn→∞wn = z, then every Bǫ(z), ǫ > 0,
contains infinitely many wn, i.e. infinitely many zn, i.e. z is a cluster point of (zn)n∈N.
Conversely, if z is a cluster point of (zn)n∈N, then, inductively, define φ : N −→ N as
follows: For φ(1), choose the index k of any point zk in B1(z) (such a point exists, since
z is a cluster point of the sequence). Now assume that n > 1 and that φ(m) have already
been defined for each m < n. Let M := max{φ(m) : m < n}. Since B 1

n
(z) contains

infinitely many zk, there must be some zk ∈ B 1

n
(z) such that k > M . Choose this k as

φ(n). Thus, by construction, φ is strictly increasing, i.e. (wn)n∈N with wn := zφ(n) is a
subsequence of (zn)n∈N. Moreover, for each ǫ > 0, there is N ∈ N such that 1/N < ǫ.
Then, for each n > N , wn ∈ B 1

n
(z) ⊆ B 1

N
(z) ⊆ Bǫ(z), showing limn→∞wn = z. �

Theorem 7.27 (Bolzano-Weierstrass). Every bounded sequence S := (xn)n∈N in K

has at least one cluster point in K. Moreover, for K = R, the set A := {x ∈ R :
x is cluster point of S} has a max x∗ ∈ R and a min x∗ ∈ R, i.e. every bounded sequence
in R has a largest and a smallest cluster point. In addition, for each ǫ > 0, the inequality
x∗ − ǫ < xn < x∗ + ǫ holds for almost all n.

Proof. We first consider the case K = R. Define

A∗ := {x ∈ R : xn ≤ x for almost all n}, (7.24a)

A∗ := {x ∈ R : xn ≥ x for almost all n}. (7.24b)

We claim A∗ 6= ∅ is bounded from below and x∗ = maxA = inf A∗; A∗ 6= ∅ is bounded
from above and x∗ = minA = supA∗. We prove the claim for A∗ – the proof for A∗ is
conducted completely analogous. Let m,M ∈ R be a lower and an upper bound for S,
respectively. Then M ∈ A∗, showing A∗ 6= ∅; and m is a lower bound for A∗. Since A∗

is bounded from below, a := inf A∗ ∈ R by the completeness of R. Moreover, for each
ǫ > 0, a− ǫ /∈ A∗, as a is a lower bound for A∗, i.e. xn > a− ǫ holds for infinitely many
n ∈ N. On the other hand, a + ǫ/2 ∈ A∗ follows from a being the largest lower bound
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of A∗, i.e. xn > a + ǫ/2 holds for only finitely many n (if any). In particular, we have
shown xn < a+ ǫ holds for almost all n, and a− ǫ < xn < a+ ǫ must hold for infinitely
many n, showing a is a cluster point of S. To see that a is the largest cluster point of
S (i.e. a = maxA), we have to show that x > a implies x is not a cluster point of S.
However, letting ǫ := x − a > 0, we had seen above that xn > a + ǫ/2 holds for only
finitely many n, i.e. Bǫ/2(x) contains only finitely many xn, showing x is not a cluster
point of S.

It now remains to consider the complex case, i.e. a bounded sequence S := (zn)n∈N in C.
For each n ∈ N, let zn = xn+iyn with xn, yn ∈ R. Due to Th. 5.11(d), we have |xn| ≤ |zn|
and |yn| ≤ |zn|, i.e. the boundedness of S implies the boundedness of both (xn)n∈N and
(yn)n∈N. Then we know that (xn)n∈N has a cluster point x and, by Prop. 7.26, S
has a subsequence (znj

)j∈N such that x = limj→∞ xnj
. As the subsequence (ynj

)j∈N is
still bounded, it must have a cluster point y and a subsequence (ynjk

)k∈N such that
y = limk→∞ ynjk

. Since x = limk→∞ xnjk
as well, we now have limk→∞ znjk

= x+ iy =: z,
i.e. S has a subsequence converging to z. According to Prop. 7.26, z is a cluster point
of S. �

Definition 7.28. A sequence (zn)n∈N in C is defined to be a Cauchy sequence if, and
only if, for each ǫ ∈ R+, there exists N ∈ N such that |zn − zm| < ǫ for each n,m > N ,
i.e.

(zn)n∈N Cauchy ⇔ ∀
ǫ∈R+

∃
N∈N

∀
n,m>N

|zn − zm| < ǫ. (7.25)

Theorem 7.29. The sequence (zn)n∈N in C is convergent if, and only if, it is a Cauchy
sequence.

Proof. Suppose the sequence is convergent with limn→∞ zn = z. Then, given ǫ > 0,
there is N ∈ N such that zn ∈ B ǫ

2
(z) for each n > N . If n,m > N , then |zn − zm| ≤

|zn − z|+ |z − zm| < ǫ
2
+ ǫ

2
= ǫ, establishing that (zn)n∈N is a Cauchy sequence.

Conversely, suppose the sequence is a Cauchy sequence. Using similar reasoning as in
the proof of Prop. 7.10(b), we first show the sequence is bounded. If the sequence is
Cauchy, then there exists N ∈ N such that |zn − zm| < 1 for all n,m > N . Thus, the
set A := {|zn| : |zn − zN+1| ≥ 1} ∪ {|z1|} ⊆ R+

0 is nonempty and finite. According to
Th. 3.21(a), A has an upper bound M . Then max{M, |zN+1|+1} is an upper bound for
{|zn| : n ∈ N}, showing that the sequence is bounded. From Th. 7.27, we obtain that
the sequence has a cluster point z. It remains to show limn→∞ zn = z. Given ǫ > 0,
choose N ∈ N such that |zn − zm| < ǫ/2 for all n,m > N . Since z is a cluster point,
there exists k > N such that |zk − z| < ǫ/2. Thus,

∀
n>N

|zn − z| ≤ |zn − zk|+ |zk − z| < ǫ

2
+
ǫ

2
= ǫ, (7.26)

proving limn→∞ zn = z. �
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Example 7.30. Consider the sequence S := (sn)n∈N defined by

sn :=
n∑

k=1

1

k
= 1 +

1

2
+ · · ·+ 1

n
. (7.27)

We claim S is not a Cauchy sequence and, thus, not convergent by Th. 7.29: For each
N ∈ N, we find n,m > N such that sn−sm > 1/2, namely m = N+1 and n = 2(N+1):

s2(N+1) − sN+1 =

2(N+1)
∑

k=N+2

1

k
=

1

N + 2
+

1

N + 3
+ · · ·+ 1

2(N + 1)

> (N + 1) · 1

2(N + 1)
=

1

2
. (7.28)

While we have just seen that S is not convergent, it is clearly increasing, i.e. Th. 7.19
implies S is unbounded and limn→∞ sn = ∞. Sequences defined by longer and longer
sums are known as series and will be studied further in Sec. 7.3 below. The series of the
present example is known as the harmonic series. It has become famous as the simplest
example of a series that does not converge even though its summands converge to 0. In
terms of the notation introduced in Sec. 7.3 below, we have shown

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · · = ∞. (7.29)

7.2 Continuity

7.2.1 Definitions and First Examples

Roughly, a function is continuous if a small change in its input results in a small change
of its output. For functions defined on an interval, the notion of continuity makes
precise the idea of a function having no jump – no discontinuity – at some point x in
its domain. For example, we would say the sign function of (5.9) has precisely one
jump – one discontinuity – at x = 0, whereas quadratic functions (or, more generally,
polynomials) do not have any jumps – they are continuous.

Definition 7.31. Let M ⊆ C. If ζ ∈ M , then a function f : M −→ K is said to be
continuous in ζ if, and only if, for each ǫ > 0, there is δ > 0 such that the distance
between the values f(z) and f(ζ) is less than ǫ, provided the distance between z and ζ
is less than δ, i.e. if, and only if,

∀
ǫ∈R+

∃
δ∈R+

∀
z∈M

(
|z − ζ| < δ ⇒ |f(z)− f(ζ)| < ǫ

)
. (7.30)
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Moreover, f is called continuous if, and only if, f is continuous in every ζ ∈M . The set of
all continuous functions from f : M −→ K is denoted by C(M,K), C(M) := C(M,R).

Example 7.32. (a) Every constant map f : M −→ K, ∅ 6= M ⊆ C, is continuous: In
this case, given ǫ, we can choose any δ > 0 we want, say δ := 42: If ζ, z ∈M , then
|f(ζ)− f(z)| = 0 < ǫ, which holds independently of δ, in particular, if |ζ − z| < δ.

(b) Every affine function f : K −→ K, f(z) := az + b is continuous: For a = 0, this
follows from (a). For a 6= 0, given ǫ > 0, choose δ := ǫ/|a|. Then,

∀
ζ,z∈K






|z − ζ| < δ =
ǫ

|a| ⇒
∣
∣f(z)− f(ζ)

∣
∣ =

∣
∣az + b− aζ − b

∣
∣

= |a| |z − ζ| < |a| ǫ|a| = ǫ




 . (7.31)

(c) The sign function of (5.9) is not continuous: It is continuous in each ξ ∈ R\{0}, but
not continuous in 0: If ξ 6= 0, then, given ǫ > 0, choose δ := |ξ|. If |x− ξ| < δ, then
sgn(x) = sgn(ξ), i.e. | sgn(x) − sgn(ξ)| = 0 < ǫ, proving continuity in ξ. However,
at 0, for ǫ := 1/2, we have

∀
δ>0

∣
∣ sgn(0)− sgn(δ/2)

∣
∣ = |0− 1| = 1 >

1

2
= ǫ, (7.32)

showing sgn is not continuous in 0.

Some subtleties arise from the possibility that f can be defined on subsets of C with
very different properties. The notions introduced in Def. 7.33 help to deal with these
subtleties.

Definition 7.33. Let M ⊆ C.

(a) The point z ∈ C is called a cluster point or accumulation point of M if, and only if,
each ǫ-neighborhood of z, ǫ ∈ R+, contains infinitely many points of M , i.e. if, and
only if,

∀
ǫ∈R+

#(M ∩ Bǫ(z)) = ∞. (7.33)

Note: A cluster point of M is not necessarily in M .

(b) The point z is called an isolated point of M if, and only if, there is ǫ ∈ R+ such
that Bǫ(z) ∩M = {z}. Note: An isolated point of M is always in M .

Proposition 7.34. If M ⊆ C, then each point of M is either a cluster point or an
isolated point of M , i.e.

M = {z ∈M : z cluster point of M} ∪̇{z ∈M : z isolated point of M}. (7.34)
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Proof. Consider z ∈ M that is not a cluster point of M . We have to show that z is an
isolated point of M . Since z is not a cluster point of M , there exists ǫ̃ > 0 such that
A := (M ∩ Bǫ̃(z)) \ {z} is finite. Define

ǫ :=

{

min{|a− z| : a ∈ A} if A 6= ∅,
ǫ̃ if A = ∅. (7.35)

Then Bǫ(z)∩M = {z}, showing z is an isolated point ofM . Finally, the union in (7.34)
is clearly disjoint. �

Lemma 7.35. Let M ⊆ C, f : M −→ K. If ζ is an isolated point of M , then f is
always continuous in ζ.

Proof. Independently of the concrete definition of f , we know there is δ > 0 such that
Bδ(ζ) ∩M = {ζ}. In other words, if z ∈ M with |z − ζ| < δ, then z = ζ, implying
|f(z)− f(ζ)| = 0 < ǫ for each ǫ > 0, showing f to be continuous in ζ. �

Example 7.36. (a) The sign function restricted to the setM :=]−∞,−1]∪{0}∪[1,∞[,
i.e.

sgn(x) =







1 for x ∈ [1,∞[,

0 for x = 0,

−1 for x ∈]−∞,−1]

is continuous: As in Ex. 7.32(c), one sees that sgn is continuous in each ξ ∈M \{0}.
However, now it is also continuous in 0, since 0 is an isolated point of M .

(b) Every function f : N −→ K is continuous, since every n ∈ N is an isolated point of
N (due to {n} = N ∩ B 1

2

(n)).

7.2.2 Continuity, Sequences, and Function Arithmetic

To make available the power of the results on convergent sequences from Sec. 7.1 to
investigations regarding the continuity of functions, we need to understand the relation-
ship between both notions. The core of this relationship is the contents of the following
Th. 7.37, which provides a criterion allowing one to test continuity in terms of convergent
sequences:

Theorem 7.37. Let M ⊆ C, f : M −→ K. If ζ ∈M , then f is continuous in ζ if, and
only if, for each sequence (zn)n∈N in M with limn→∞ zn = ζ, the sequence (f(zn))n∈N
converges to f(ζ), i.e.

lim
n→∞

zn = ζ ⇒ lim
n→∞

f(zn) = f(ζ). (7.36)
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Proof. If ζ ∈M is an isolated point ofM , then there is δ > 0 such thatM∩Bδ(ζ) = {ζ}.
Then every f : M −→ K is continuous in ζ according to Lem. 7.35. On the other hand,
every sequence in M converging to ζ must be finally constant and equal to ζ, i.e. (7.36)
is trivially valid at ζ. Thus, the assertion of the theorem holds if ζ ∈ M is an isolated
point of M .

If ζ ∈M is not an isolated point ofM , then ζ is a cluster point ofM according to Prop.
7.34. So, for the remainder of the proof, let ζ ∈ M be a cluster point of M . Assume
that f is continuous in ζ and (zn)n∈N is a sequence in M with limn→∞ zn = ζ. For each
ǫ > 0, there is δ > 0 such that z ∈ M and |z − ζ| < δ implies |f(z) − f(ζ)| < ǫ. Since
limn→∞ zn = ζ, there is also N ∈ N such that, for each n > N , |zn − ζ| < δ. Thus,
for each n > N , |f(zn) − f(ζ)| < ǫ, proving limn→∞ f(zn) = f(ζ). Conversely, assume
that f is not continuous in ζ. We have to construct a sequence (zn)n∈N in M with
limn→∞ zn = ζ, but (f(zn))n∈N does not converge to f(ζ). Since f is not continuous
in ζ, there must be some ǫ0 > 0 such that, for each 1/n, n ∈ N, there is at least one
zn ∈M satisfying |zn− ζ| < 1/n and |f(zn)− f(ζ)| ≥ ǫ0. Then (zn)n∈N is a sequence in
M with limn→∞ zn = ζ and (f(zn))n∈N does not converge to f(ζ). �

We can now apply the rules of Th. 7.13 to see that all the arithmetic operations defined
in Not. 6.2 preserve continuity:

Theorem 7.38. LetM ⊆ C, f, g : M −→ K, λ ∈ K, ζ ∈M . If f, g are both continuous
in ζ, then λf , f + g, fg, f/g for g 6= 0, |f |, Re f , and Im f are all continuous in ζ. If
K = R, then max(f, g), min(f, g), f+ and f−, are also all continuous in ζ.

Proof. Let (zn)n∈N be a sequence in M such that limn→∞ zn = ζ. Then the continuity
of f and g in ζ yields limn→∞ f(zn) = f(ζ) and limn→∞ g(zn) = g(ζ). Then

(7.11a) ⇒ lim
n→∞

(λf)(zn) = (λf)(ζ),

(7.11b) ⇒ lim
n→∞

(f + g)(zn) = (f + g)(ζ),

(7.11c) ⇒ lim
n→∞

(fg)(zn) = (fg)(ζ),

(7.11d) ⇒ lim
n→∞

(f/g)(zn) = (f/g)(ζ),

(7.11e) ⇒ lim
n→∞

|f |(zn) = |f |(ζ),
(7.2) ⇒ lim

n→∞
(Re f)(zn) = (Re f)(ζ),

(7.2) ⇒ lim
n→∞

(Im f)(zn) = (Im f)(ζ).
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If f, g are both R-valued, then we also have

(7.12a) ⇒ lim
n→∞

max(f, g)(zn) = max(f, g)(ζ),

(7.12b) ⇒ lim
n→∞

min(f, g)(zn) = min(f, g)(ζ),

and, finally, the continuity of f+ and f− follows from the continuity of max(f, g). �

Corollary 7.39. A function f : M −→ C, M ⊆ C, is continuous in ζ ∈ M if, and
only if, both Re f and Im f are continuous in ζ.

Proof. If f is continuous in ζ, then Re f and Im f are both continuous in ζ by Th. 7.38.
If Re f and Im f are both continuous in ζ, then, as

f = Re f + i Im f, (7.37)

f is continuous in ζ, once again, by Th. 7.38. �

Example 7.40. (a) The continuity of the absolute value function z 7→ |z| on K can be
concluded directly from (7.11e) and, alternatively, from combining the continuity
of f : K −→ K, f(z) = z, according to Ex. 7.32(b), with the continuity of |f |
according to Th. 7.38.

(b) Every polynomial P : K −→ K, P (x) =
∑n

j=0 ajx
j, aj ∈ K, is continuous: First

note that every monomial x 7→ xj is continuous on K by (7.11g). Then Th. 7.38
implies the continuity of x 7→ ajx

j on K. Now the continuity of P follows from
(7.16a) or, alternatively, by an induction from the f + g part of Th. 7.38.

(c) Let P,Q : K −→ K, be polynomials and let A := Q−1{0} the set of all zeros of
Q (if any). Then the rational function (P/Q) : K \ A −→ K is continuous as a
consequence of (b) plus the f/g part of Th. 7.38.

Theorem 7.41. Let Df , Dg ⊆ C, f : Df −→ C, g : Dg −→ K, f(Df ) ⊆ Dg. If f
is continuous in ζ ∈ Df and g is continuous in f(ζ) ∈ Dg, then g ◦ f : Df −→ K is
continuous in ζ. In consequence, if f and g are both continuous, then the composition
g ◦ f is also continuous.

Proof. Let ζ ∈ Df and assume f is continuous in ζ and g is continuous in f(ζ). If (zn)n∈N
is a sequence in Df such that limn→∞ zn = ζ, then the continuity of f in ζ implies that
limn→∞ f(zn) = f(ζ). Then the continuity of g in f(ζ) implies limn→∞ g(f(zn)) =
g(f(ζ)), thereby establishing the continuity of g ◦ f in ζ. �
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7.2.3 Bounded, Closed, and Compact Sets

Subsets A of C (and even subsets of R) can be extremely complicated. If the set A has
one or more of the benign properties defined in the following, then this can often be
exploited in some useful way (we will see an important example in Th. 7.54 below).

Definition 7.42. Consider A ⊆ C.

(a) A is called bounded if, and only if, A = ∅ or the set {|z| : z ∈ A} is bounded in R

in the sense of Def. 2.26(a), i.e. if, and only if,

∃
M∈R+

A ⊆ BM(0).

(b) A is called closed if, and only if, every sequence in A that converges in C has its
limit in A (note that ∅ is, thus, closed).

(c) A is called compact if, and only if, A is both closed and bounded.

Example 7.43. (a) Clearly, ∅ and sets containing single points {z}, z ∈ C are com-
pact. The sets C and R are simple examples of closed sets that are not bounded.

(b) Let a, b ∈ R, a < b. Each bounded interval ]a, b[, ]a, b], [a, b[, [a, b] is, indeed,
bounded (e.g. byM := 2max{|a|, |b|}). If (xn)n∈N is a sequence in [a, b], converging
to x ∈ R, then Th. 7.13(c) shows a ≤ x ≤ b, i.e. x ∈ [a, b] and [a, b] is, indeed,
closed. Analogously, one sees that the unbounded intervals [a,∞[ and ]−∞, a] are
also closed. On the other hand, open and half-open intervals are not closed: For
sufficiently large n, the convergent sequence (b− 1

n
)n∈N is in [a, b[, but limn→∞(b−

1
n
) = b /∈ [a, b[, and the other cases are treated analogously. In particular, only

intervals of the form [a, b] (and trivial intervals) are compact.

(c) For each ǫ > 0 and each z ∈ C, the set Bǫ(z) is bounded (since Bǫ(z) ⊆ Bǫ+|z|(0)
by the triangle inequality), but not closed (since, for sufficiently large n ∈ N,
(z + ǫ − 1

n
)n∈N is a sequence in Bǫ(z), converging to z + ǫ /∈ Bǫ(z)). In particular,

Bǫ(z) is not compact.

Proposition 7.44. (a) Finite unions of bounded (resp. closed, resp. compact) sets are
bounded (resp. closed, resp. compact), i.e. if A1, . . . , An ⊆ C, n ∈ N, are bounded
(resp. closed, resp. compact), then A :=

⋃n
j=1Aj is also bounded (resp. closed, resp.

compact).

(b) Arbitrary (i.e. finite or infinite) intersections of bounded (resp. closed, resp. com-
pact) sets are bounded (resp. closed, resp. compact), i.e. if I 6= ∅ is an arbitrary
index set and, for each j ∈ I, Aj ⊆ C is bounded (resp. closed, resp. compact), then
A :=

⋂

j∈I Aj is also bounded (resp. closed, resp. compact).
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Proof. (a): Exercise.

(b): Fix j0 ∈ I. If all Aj, j ∈ I, are bounded, then, in particular, there is M ∈ R+ such
that Aj0 ⊆ BM(0). Thus, A =

⋂

j∈I Aj ⊆ Aj0 ⊆ BM(0) shows A is also bounded. If all
Aj, j ∈ I, are closed and (an)n∈N is a sequence in A that converges to some z ∈ C, then
(an)n∈N is a sequence in each Aj, j ∈ I, and, since each Aj is closed, z ∈ Aj for each
j ∈ I, i.e. z ∈ A =

⋂

j∈I Aj. If all Aj, j ∈ I, are compact, then they are all closed and
bounded and, thus, A is closed and bounded, i.e. A is compact. �

Example 7.45. (a) According to Prop. 7.44(a), all finite subsets of C are compact.

(b) N =
⋃

n∈N{n} shows that infinite unions of compact sets can be unbounded, and
]0, 1[=

⋃

n∈N[
1

n+1
, 1− 1

n+1
] shows that infinite unions of compact sets are not always

closed.

—

Many more examples of closed sets can be obtained as preimages of closed sets under
continuous maps according to the following remark:

Remark 7.46. In Calculus II, it will be shown in the more general context of maps f
between metric spaces that a map f is continuous if, and only if, all preimages f−1(A)
under f of closed sets A are closed. Here, we will only prove the following special case:

f : C −→ K continuous and A ⊆ K closed ⇒ f−1(A) ⊆ C closed. (7.38)

Indeed, suppose f is continuous and A ⊆ K is closed. If (zn)n∈N is a sequence in f−1(A)
with limn→∞ zn = z ∈ C, then (f(zn))n∈N is a sequence in A. The continuity of f then
implies limn→∞ f(zn) = f(z) and, then, f(z) ∈ A, since A is closed. Thus, z ∈ f−1(A),
showing f−1(A) is closed.

Example 7.47. (a) For each z ∈ C and each r > 0, the closed disk Br(z) := {w ∈ C :
|z − w| ≤ r} with radius r and center z is, indeed, closed by (7.38), since

Br(z) = f−1[0, r], (7.39)

where f is the continuous map f : C −→ R, f(w) := |z−w|. Since Br(z) is clearly
bounded, it is also compact.

(b) For each z ∈ C and each r > 0, the circle (also called a 1-sphere) Sr(z) := {w ∈ C :
|z − w| = r} with radius r and center z is closed by (7.38), since Sr(z) = f−1{r},
where f is the same map as in (7.39). Moreover, Sr(z) is also clearly bounded, and,
thus, compact.
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(c) According to (7.38), for each x ∈ R, the closed half-spaces {z ∈ C : Re z ≥ x} =
Re−1[x,∞[ and {z ∈ C : Im z ≥ x} = Im−1[x,∞[ are, indeed, closed.

Theorem 7.48. A subset K of C is compact if, and only if, every sequence in K has a
subsequence that converges to some limit z ∈ K.

Proof. IfK is closed and bounded, and (zn)n∈N is a sequence inK, then the boundedness,
the Bolzano-Weierstrass Th. 7.27, and Prop. 7.26 yield a subsequence that converges to
some z ∈ C. However, since K is closed, z ∈ K.

Conversely, assume every sequence in K has a subsequence that converges to some
limit z ∈ K. Let (zn)n∈N be a sequence in K that converges to some w ∈ C. Then this
sequence must have a subsequence that converges to some z ∈ K. However, according to
Prop. 7.23, it must be w = z ∈ K, showing K is closed. If K is not bounded, then there
exists a sequence (zn)n∈N in K such that limn→∞ |zn| = ∞. Every subsequence (znk

)k∈N
then still has the property that limk→∞ |znk

| = ∞, in particular, each subsequence is
unbounded and can not converge to some z ∈ C (let alone in K). �

Caveat 7.49. In Calculus II, we will generalize the notion of compactness to subsets of
so-called metric spaces, defining a set K to be compact if, and only if, every sequence
in K has a subsequence that converges to some limit in K. While it remains true that
every compact set is closed and bounded, the converse does not(!) hold in general metric
spaces (in general, even in closed sets, there exist bounded sequences that do not have
convergent subsequences).

—

One reason that compact sets are useful is that real-valued continuous functions on
compact sets assume a maximum and a minimum, which is the contents of Th. 7.54
below. In preparation, we now define maxima and minima for real-valued functions.

Definition 7.50. Let M ⊆ C, f : M −→ R.

(a) Given z ∈ M , f has a (strict) global min at z if, and only if, f(z) ≤ f(w) (f(z) <
f(w)) for each w ∈ M \ {z}. Analogously, f has a (strict) global max at z if, and
only if, f(z) ≥ f(w) (f(z) > f(w)) for each w ∈M \{z}. Moreover, f has a (strict)
global extreme value at z if, and only if, f has a (strict) global min or a (strict)
global max at z.

(b) Given z ∈ M , f has a (strict) local min at z if, and only if, there exists ǫ > 0
such that f(z) ≤ f(w) (f(z) < f(w)) for each w ∈ {w ∈ M : |z − w| < ǫ} \ {z}.
Analogously, f has a (strict) local max at z if, and only if, there exists ǫ > 0 such
that f(z) ≥ f(w) (f(z) > f(w)) for each w ∈ {w ∈ M : |z − w| < ǫ} \ {z}.
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Moreover, f has a (strict) local extreme value at z if, and only if, f has a (strict)
local min or a (strict) local max at z.

Remark 7.51. In the context of Def. 7.50, it is immediate from the respective definitions
that f has a (strict) global min at z ∈ M if, and only if, −f has a (strict) global max
at z. Moreover, the same holds if “global” is replaced by “local”. It is equally obvious
that every (strict) global min/max is a (strict) local min/max.

Theorem 7.52. If K ⊆ C is compact, and f : K −→ C is continuous, then f(K) is
compact.

Proof. If (wn)n∈N is a sequence in f(K), then, for each n ∈ N, there is some zn ∈ K
such that f(zn) = wn. As K is compact, there is a subsequence (an)n∈N of (zn)n∈N
with limn→∞ an = a for some a ∈ K. Then (f(an))n∈N is a subsequence of (wn)n∈N and
the continuity of f yields limn→∞ f(an) = f(a) ∈ f(K), showing that (wn)n∈N has a
convergent subsequence with limit in f(K). By Th. 7.48, we have therefore established
that f(K) is compact. �

Lemma 7.53. If K is a nonempty compact subset of R, then K contains a smallest
and a largest element, i.e. there exist m,M ∈ K such that m ≤ x ≤M for each x ∈ K.

Proof. Since the compact set K is bounded, we know that

−∞ < m := infK ≤ supK =:M <∞.

According to the definition of the inf and sup as largest lower bound and smallest upper
bound, respectively, for each n ∈ N, there must be elements xn, yn ∈ K such that
m ≤ xn ≤ m+ 1

n
and M − 1

n
≤ yn ≤M . Since the compact set K is also closed, we get

m = limn→∞ xn ∈ K and M = limn→∞ yn ∈ K. �

Theorem 7.54. If ∅ 6= K ⊆ C is compact, and f : K −→ R is continuous, then f
assumes its max and its min, i.e. there are zm ∈ K and zM ∈ K such that f has a global
min at zm and a global max at zM . In particular, the continuous function f assumes its
max and min on each compact interval K = [a, b] ⊆ R, a, b ∈ R, a 6= b.

Proof. Since ∅ 6= K is compact and f is continuous, ∅ 6= f(K) ⊆ R is compact according
to Th. 7.52. Then, by Lem. 7.53, f(K) contains a smallest element m and a largest
element M . This, in turn, implies that there are zm, zM ∈ K such that f(zm) = m and
f(zM) =M . �

Example 7.55. On an unbounded set, a continuous function does not necessarily have
a global max or a global min, as one can already see from x 7→ x. An example for a
continuous function on a bounded, but not closed, interval, that does not have a global
max is f : ]0, 1] −→ R, f(x) := 1/x, which is continuous by Th. 7.38.
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7.2.4 Intermediate Value Theorem

Theorem 7.56 (Bolzano’s Theorem). Let a, b ∈ R with a < b. If f : [a, b] −→ R is
continuous with f(a) > 0 and f(b) < 0, then f has at least one zero in ]a, b[. More
precisely, the set A := f−1{0} has a min ξ1 and a max ξ2, a < ξ1 ≤ ξ2 < b, where f > 0
on [a, ξ1[ and f < 0 on ]ξ2, b].

Proof. Let ξ1 := inf f−1(R−
0 ).

(a): f(ξ1) ≤ 0: This is clear if ξ1 = b. If ξ1 < b, then, for each n ∈ N sufficiently large,
there exists xn ∈ [ξ1, ξ1 + 1/n[⊆ [a, b] such that f(xn) ≤ 0). Then limn→∞ xn = ξ1 and
the continuity of f implies limn→∞ f(xn) = f(ξ1). Now f(ξ1) ≤ 0 is a consequence of
Th. 7.13(c). In particular, (a) yields a < ξ1 and f > 0 on [a, ξ1[.

(b): f(ξ1) ≥ 0: The continuity of f implies limn→∞ f(ξ1 − 1/n) = f(ξ1) and, since we
have already seen f(ξ1 − 1/n) > 0 for each n ∈ N sufficiently large, f(ξ1) ≥ 0 is again a
consequence of Th. 7.13(c). In particular, we have ξ1 < b.

Combining (a) and (b), we have f(ξ1) = 0 and a < ξ1 < b.

Defining ξ2 := sup f−1(R+
0 ), f(ξ2) = 0 and a < ξ2 < b is shown completely analogous.

Then f < 0 on ]ξ2, b] is also clear as well as ξ1 ≤ ξ2. �

Theorem 7.57 (Intermediate Value Theorem). Let a, b ∈ R with a < b. If f : [a, b] −→
R is continuous, then f assumes every value between f(a) and f(b), i.e.

[

min{f(a), f(b)},max{f(a), f(b)}
]

⊆ f
(
[a, b]

)
. (7.40)

Proof. If f(a) = f(b), then there is nothing to prove. If f(a) < f(b) and η ∈]f(a), f(b)[,
then consider the auxiliary function g : [a, b] −→ R, g(x) := η − f(x). Then g is
continuous with g(a) = η − f(a) > 0 and g(b) = η − f(b) < 0. According to Bolzano’s
Th. 7.56, there exists ξ ∈]a, b[ such that g(ξ) = η − f(ξ) = 0, i.e. f(ξ) = η as claimed.
If f(b) < f(a) and η ∈]f(b), f(a)[, then consider the auxiliary function g : [a, b] −→ R,
g(x) := f(x)−η. Then g is continuous with g(a) = f(a)−η > 0 and g(b) = f(b)−η < 0.
Once again, according to Bolzano’s Th. 7.56, there exists ξ ∈]a, b[ such that g(ξ) =
f(ξ)− η = 0, i.e. f(ξ) = η. �

Theorem 7.58. If I ⊆ R is an interval (of one of the 8 types listed in (4.11)) and
f : I −→ R is continuous, then f(I) is also an interval (it can degenerate to a single
point if f is constant). More precisely, if ∅ 6= I = [a, b] is a compact interval, then
∅ 6= f(I) = [min f(I),max f(I)]; if I is not a compact interval, then one of the following
9 cases occurs:

f(I) = R, (7.41a)
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f(I) =]−∞, sup f(I)], (7.41b)

f(I) =]−∞, sup f(I)[, (7.41c)

f(I) = [inf f(I),∞[ (7.41d)

f(I) = [inf f(I), sup f(I)], (7.41e)

f(I) = [inf f(I), sup f(I)[, (7.41f)

f(I) =] inf f(I),∞[, (7.41g)

f(I) =] inf f(I), sup f(I)], (7.41h)

f(I) =] inf f(I), sup f(I)[. (7.41i)

Proof. If I is a compact interval, then we merely combine Th. 7.54 with Th. 7.57.
Otherwise, let η ∈ f(I). If f(I) has an upper bound, then Th. 7.57 implies [η, sup f(I)[⊆
f(I) and f(I) ∩ [η,∞[⊆ [η, sup f(I)]. If f(I) does not have an upper bound, then Th.
7.57 implies f(I) ∩ [η,∞[= [η,∞[. Analogously, one obtains f(I)∩]−∞, η] =]−∞, η]
or f(I)∩]−∞, η] = [inf f(I), η] or f(I)∩]−∞, η] =] inf f(I), η], showing that there are
precisely the 9 possibilities of (7.41) for f(I) =

(
f(I)∩]−∞, η]

)
∪
(
f(I) ∩ [η,∞[

)
. �

The above results will have striking consequences in the following Sec. 7.2.5.

Example 7.59. The piecewise affine function

f : ]0, 1] −→ R, f(x) :=







(−1)n · n− 2n+1
1

n−1
− 1

n

(
x− 1

n

)
for x ∈ [ 1

n
, 1
n−1

], n even,

(−1)n · n+ 2n+1
1

n−1
− 1

n

(
x− 1

n

)
for x ∈ [ 1

n
, 1
n−1

], n ≥ 3 odd,

satisfies f(1/n) = (−1)n · n for each n ∈ N and is an example of a continuous function
on the bounded half-open interval I :=]0, 1] with f(I) = R.

7.2.5 Inverse Functions, Existence of Roots, Exponential Function, Loga-
rithm

Theorem 7.60. Let I ⊆ R be an interval (of one of the 8 types listed in (4.11)). If
f : I −→ R is strictly increasing (resp. decreasing), then f has an inverse function f−1

defined on J := f(I), i.e. f−1 : J −→ I, and f−1 is continuous and strictly increasing
(resp. decreasing). If f is also continuous, then J must be an interval.

Proof. From Prop. 2.31(b), we know f : I −→ R is one-to-one. Then f : I −→ f(I)
is invertible and Prop. 2.31(c) shows f−1 is strictly monotone in the same sense as f .
We need to prove the continuity of f−1. We assume f to be strictly increasing (the case
where f is strictly decreasing then follows by considering −f). Let η ∈ J , ǫ > 0, and
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ξ ∈ I with f(ξ) = η. If I = {ξ}, then J = {η}, and there is nothing to prove. It remains
to consider three cases:
(a) ξ = min I, i.e. ξ is the left endpoint of I (and ξ 6= max I),
(b) ξ = max I, i.e. ξ is the right endpoint of I (and ξ 6= min I),
(c) ξ is neither the min nor the max of I.
We carry out the proof for (c) and leave the (very similar) cases (a) and (b) as exercises.
In case (c), there are points ξ1, ξ2 ∈ Bǫ(ξ) ∩ I such that

ξ − ǫ < ξ1 < ξ < ξ2 < ξ + ǫ. (7.42)

As f is strictly increasing, this implies

f(ξ1) < η < f(ξ2).

Choose δ > 0 such that

f(ξ1) < η − δ < η < η + δ < f(ξ2).

Then

∀
y∈J∩Bδ(η)

(

f(ξ1) < y < f(ξ2)
f−1 str. inc.⇒ ξ1 < f−1(y) < ξ2

(7.42)⇒ f−1(y) ∈ Bǫ(ξ)
)

,

proving the continuity of f−1 in η. That J must be an interval if f is continuous was
already shown in Th. 7.58. �

Remark and Definition 7.61 (Roots). We are now in a position to fulfill the promise
made in Def. and Rem. 5.8, i.e. to prove the existence of unique roots for nonnegative
real numbers: For each n ∈ N, the function f : R+

0 −→ R, f(x) := xn, is continuous
and strictly increasing with J := f(R+

0 ) = R+
0 . Then Th. 7.60 implies the existence

of a continuous and strictly increasing inverse function f−1 : R+
0 −→ R+

0 . For each

x ∈ R+
0 , we call f−1(x) the nth root of x and write n

√
x := x

1

n := f−1(x). Then

( n
√
x)n = (x

1

n )n = x is immediate from the definition. Caveat: By definition, roots are
always nonnegative and they are only defined for nonnegative numbers (when studying
complex numbers and C-valued functions more deeply in the field of Complex Analysis,
one typically extends the notion of root, but we will not pursue this route in this class).
As anticipated in Def. and Rem. 5.8, one also writes

√
x instead of 2

√
x and calls

√
x the

square root of x.

Remark and Definition 7.62. It turns out that
√
2 (and many other roots) are not

rational numbers, i.e.
√
2 /∈ Q. This is easily proved by contradiction: If

√
2 ∈ Q, then

there exist natural numbers m,n ∈ N such that
√
2 = m/n. Moreover, by canceling

possible factors of 2, we may assume at least one of the numbers m,n is odd. Now
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√
2 = m/n implies m2 = 2n2, i.e. m2 and, thus, m must be even. In consequence, there

exists p ∈ N such that m = 2p, implying 2n2 = m2 = 4p2 and n2 = 2p2. Thus n2 and n
must also be even, in contradiction to m,n not both being even.

The elements of R\Q are called irrational numbers. It turns out that most real numbers
are irrational numbers – one can show that Q is countable, whereas R \Q is not count-
able (actually, every interval contains countably many rational and uncountably many
irrational numbers, see [Phi16, Sec. F], in particular, [Phi16, Th. F.1(c)] and [Phi16,
Cor. F.4]).

Theorem 7.63 (Inequality Between the Arithmetic Mean and the Geometric Mean).
If n ∈ N and x1, . . . , xn ∈ R+

0 , then

n
√
x1 · · · xn ≤ x1 + · · ·+ xn

n
, (7.43)

where the left-hand side is called the geometric mean and the right-hand side is called
the arithmetic mean of the numbers x1, . . . , xn. Equality occurs if, and only if, x1 =
· · · = xn.

Proof. If at least one of the xj is 0, then (7.43) becomes the true statement 0 ≤ x1+···+xn
n

with strict equality if at least one xj > 0. If x1 = · · · = xn = x, then (7.43) also holds
since both sides are equal to x. Thus, for the remainder of the proof, we assume all
xj > 0 and not all xj are equal. First, we consider the special case, where

x1+···+xn
n

= 1.
Since not all xj are equal, there exists k with xk 6= 1. We prove (7.43) by induction for
n ∈ {2, 3, . . . } in the form

(
n∑

j=1

xj = n ∧ ∃
k∈{1,...,n}

xk 6= 1

)

⇒
n∏

j=1

xj < 1.

Base Case (n = 2): Since x1 + x2 = 2, 0 < x1, x2 and not both x1 and x2 are equal to
1, there is ǫ > 0 such that x1 = 1 + ǫ and x2 = 1 − ǫ, i.e. x1x2 = 1 − ǫ2 < 1, which
establishes the base case. Induction Step: We now have n ≥ 2 and 0 < x1, . . . , xn+1

with
∑n+1

j=1 xj = n + 1 plus the existence of k, l ∈ {1, . . . , n + 1} such that xk = 1 + α,
xl = 1− β with α, β > 0. Then define y := xk + xl− 1 = 1+α− β. One observes y > 0
(since β < 1) and

y +
n+1∑

j=1,
j 6=k,l

xj = −1 +
n+1∑

j=1

xj = n
ind. hyp.⇒ y

n+1∏

j=1,
j 6=k,l

xj ≤ 1

(we can not exclude equality as y and all the remaining xj might be equal to 1). Since
xkxl = (1 + α)(1 − β) = 1 + α − β − αβ = y − αβ < y, we now infer

∏n+1
j=1 xj < 1,
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concluding the induction proof. It remains to consider the case x1+···+xn
n

= λ > 0, not
all xj equal. One estimates

n
√
x1 · · · xn = λ n

√
x1
λ

· · · xn
λ

special case
< λ

x1 + · · ·+ xn
λn

=
x1 + · · ·+ xn

n
,

completing the proof of the theorem. �

Corollary 7.64. For each a ∈ R+
0 \ {1}, n ∈ {2, 3, . . . }, p ∈ {1, . . . , n− 1}:

n
√
ap < 1 +

p

n
(a− 1); p = 1 yields n

√
a < 1 +

a− 1

n
. (7.44)

Proof. The simple application

n
√
ap = n

√
√
√
√ap ·

n−p
∏

j=1

1
Th. 7.63
<

pa+ n− p

n
= 1 +

p

n
(a− 1) (7.45)

of Th. 7.63 establishes the case. �

Example 7.65. We use (7.43) to show

lim
n→∞

n
√
n = 1 : (7.46)

First note 0 < x < 1 ⇒ 0 < xn < 1, i.e. n
√
n > 1 for each ( n

√
n)n = n > 1. Now write n

as the product of n factors n =
√
n
√
n ·∏n−2

k=1 1. Then, for n > 1,

n
√
n = n

√
√
√
√

√
n
√
n ·

n−2∏

k=1

1
Th. 7.63
<

2
√
n+ n− 2

n
< 1 +

2√
n
. (7.47)

It is an exercise to show

lim
n→∞

1√
n
= 0. (7.48)

Now this together with 1 ≤ n
√
n ≤ 1 + 2√

n
and the Sandwich Th. 7.16 proves (7.46).

Example 7.66 (Euler’s Number). We use Th. 7.63 to prove the limit

e := lim
n→∞

(

1 +
1

n

)n

(7.49)
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exists. It is known as Euler’s number. One can show it is an irrational number (see
[Phi16, Sec. H.2]) and its first digits are e = 2.71828 . . . It is of exceptional impor-
tance for analysis and mathematics in general, as it pops up in all kinds of different
mathematical contexts. From Th. 7.63, we obtain

∀
n∈N

∀
x∈[−n,∞[,

x 6=0

(

1 +
x

n

)n

= 1 ·
(

1 +
x

n

)n

<

(

1 +
x

n+ 1

)n+1

, (7.50)

where we have used that, on both sides of the inequality in (7.50), there are n+1 factors
having the same sum, namely n + 1 + x; and the inequality in (7.43) is strict, unless
all factors are equal. We now apply (7.50) to the sequences (an)n∈N, (bn)n∈N, (cn)n∈N,
where

∀
n∈N









an :=

(

1 +
1

n

)n

, bn :=

(

1− 1

n

)n

,

cn := b−1
n+1 =

((

1− 1

n+ 1

)−1
)n+1

=

(

1 +
1

n

)n+1









: (7.51)

Applying (7.50) with x = 1 and x = −1, respectively, yields (an)n∈N and (bn)n∈N are
strictly increasing, and (cn)n∈N is strictly decreasing. On the other hand, an < cn holds
for each n ∈ N, showing (an)n∈N is bounded from above by c1, and (cn)n∈N is bounded
from below by a1. In particular, Th. 7.19 implies the convergence of both (an)n∈N and
(cn)n∈N. Moreover, limn→∞ cn = limn→∞

(
an(1+ 1/n)

)
= e · 1 = e, which, together with

an < e < cn for each n ∈ N, can be used to compute e to an arbitrary precision.

Definition 7.67. Let A ⊆ R be a subset of the real numbers. Then A is called dense
in R if, and only if, every ǫ-neighborhood of every real number contains a point from A,
i.e. if, and only if,

∀
x∈R

∀
ǫ∈R+

A ∩ Bǫ(x) 6= ∅.

Theorem 7.68. (a) Q is dense in R.

(b) R \Q is dense in R.

(c) For each x ∈ R, there exist sequences (rn)n∈N and (sn)n∈N in the rational numbers
Q such that x = limn→∞ rn = limn→∞ sn, (rn)n∈N is strictly increasing and (sn)n∈N
is strictly decreasing.

Proof. (a): Since each Bǫ(x) is an interval, it suffices to prove that every interval ]a, b[,
a < b, contains a rational number. If 0 ∈]a, b[, then there is nothing to prove. Suppose
0 < a < b and set δ := b− a > 0. Choose n ∈ N such that 1/n < δ and let

q := max

{
k

n
: k ∈ N ∧ k

n
< b

}

.
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Then q ∈ Q and a < q < b. If a < b < 0, choose δ and n as above, but let

q := min

{

−k
n
: k ∈ N ∧ −k

n
> a

}

.

Then, once again, q ∈ Q and a < q < b.

(b): Analogous to (a), we show that every interval ]a, b[, a < b, contains an irrational
number: According to (a), we choose q ∈ Q∩]a, b[, δ := b − q > 0 and n ∈ N such
that

√
2/n < δ. Then a < λ := q +

√
2/n < b and also λ ∈ R \ Q (otherwise,√

2 = n(λ− q) ∈ Q).

(c): Using (a), for each n ∈ N, we choose rational numbers rn and sn such that

rn ∈
]

x− 1

n
, x− 1

n+ 1

[

, sn ∈
]

x+
1

n+ 1
, x+

1

n

[

.

Then, clearly, (rn)n∈N is strictly increasing, (sn)n∈N is strictly decreasing, and the Sand-
wich Th. 7.16 implies x = limn→∞ rn = limn→∞ sn. �

Definition and Remark 7.69 (Exponentiation). In Not. 5.6, we had defined ax for
(a, x) ∈ C × N0 and for (a, x) ∈ (C \ {0}) × Z. We will now extend the definition to
(a, x) ∈ R+ × R (later, we will further extend the definition to (a, z) ∈ R+ × C). The
present extension to (a, x) ∈ R+ × R is accomplished in two steps – first, in (a), for
rational x, then, in (b), for irrational x.

(a) For rational x = k/n with k ∈ Z and n ∈ N, define

ax := a
k
n :=

n
√
ak. (7.52)

For this definition to make sense, we have to check it does not depend on the special
representation of x, i.e., we have to verify x = k

n
= km

nm
with k ∈ Z and m,n ∈ N

implies a
k
n = a

km
nm . To this end, observe, using Rem. and Def. 7.61,

(a
k
n )nm = (

n
√
ak)nm = akm and (a

km
nm )nm = (

nm
√
akm)nm = akm, (7.53)

proving a
k
n = a

km
nm (here, as in Rem. and Def. 7.61, we used that λ 7→ λN is one-

to-one on R+
0 for each N ∈ N). The exponentiation rules of Th. 5.7 now extend to

rational exponents in a natural way, i.e., for each a, b > 0 and each x, y ∈ Q:

ax+y = ax ay, (7.54a)

ax bx = (ab)x, (7.54b)

(ax)y = ax y. (7.54c)
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For the proof, by possibly multiplying numerator and denominator by some natural
number, we can assume x = k/n and y = l/n with k, l ∈ Z and n ∈ N. Then

(ax+y)n = (a
k+l
n )n = ak+l

Th. 5.7(a)
= ak al = (a

k
n )n (a

l
n )n

Th. 5.7(b)
= (ax ay)n,

proving (7.54a);

(ax bx)n
Th. 5.7(b)

= (a
k
n )n (b

k
n )nak bk

Th. 5.7(b)
= (ab)k = (ab)

k
n
·n Th. 5.7(c)

= ((ab)x)n,

proving (7.54b);

((ax)y)n
2 Th. 5.7(c)

=
(

((ax)
l
n )n
)n

= ((a
k
n )l)n

Th. 5.7(c)
= ((a

k
n )n)l

Th. 5.7(c)
= akl

= (a
kl

n2 )n
2

= (ax y)n
2

,

proving (7.54c).

Moreover, we obtain the following monotonicity rules for each a, b ∈ R+ and each
x, y ∈ Q:

∀
x>0

(

a < b ⇒ ax < bx
)

, (7.55a)

∀
x<0

(

a < b ⇒ ax > bx
)

, (7.55b)

∀
a>1

(

x < y ⇒ ax < ay
)

, (7.55c)

∀
0<a<1

(

x < y ⇒ ax > ay
)

. (7.55d)

If x = k/n with k, n ∈ N and a < b, then a1/n < b1/n according to Rem. and
Def. 7.61, which, in turn, implies ax = (a1/n)k < (b1/n)k = bx, proving (7.55a); and
a−1 > b−1 implies a−x = (a−1)x > (b−1)x = b−x, proving (7.55b). If x < y, set q :=
y − x > 0. Then 1 < a and (7.55a) imply 1 = 1q < aq, i.e. ax < ax aq = ay, proving
(7.55c). Similarly, 0 < a < 1 and (7.55a) imply aq < 1q = 1, i.e. ay = ax aq < ax,
proving (7.55d).

The following estimates will also come in handy: For a ∈ R+ and x, y ∈ Q:

a > 1 ∧ x > 0 ⇒ ax − 1 < x · ax+1, (7.56)

∀
m∈N

(

x, y ∈ [−m,m] ⇒ |ax − ay| ≤ L |x− y|,

where L := max{am+1, (1/a)m+1}
)

.
(7.57)
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For x ≥ 1, (7.56) is proved by ax < ax+1 < x · ax+1 + 1; for x < 1, write x = p/n
with p, n ∈ N and p < n, and apply (7.44) to obtain ax < 1 + x(a− 1) < 1 + xa <
1 + x · ax+1. For the proof of (7.57), first consider a > 1. Moreover, by possibly
renaming x and y, we may assume x < y, i.e. z := y − x > 0. Thus, (7.56) holds
with x replaced by z. Multiplying the resulting inequality by ax yields

ax az − ax = ay − ax < z · ax az+1 = (y − x) ay+1 ≤ (y − x) am+1,

proving (7.57) for a > 1. For a = 1, it is clearly true, and for a < 1, it is a−1 > 1,
i.e.

|ax − ay| = |(a−1)−x − (a−1)−y| ≤ |y − x| (a−1)m+1,

finishing the proof of (7.57).

(b) We now define ax for irrational x by letting

ax := lim
n→∞

aqn , where (qn)n∈N is a sequence in Q with lim
n→∞

qn = x. (7.58)

For this definition to make sense, we have to know such sequences (qn)n∈N exist,
which we do know from Th. 7.68(c). We also know from Th. 7.68(c) that there
exists an increasing sequence (qn)n∈N in Q converging to x, in particular, bounded
by x. Then, by (7.55c) and (7.55d), respectively, (aqn)n∈N is increasing for a > 1
and decreasing for 0 < a < 1. Moreover, the sequence is bounded from above by
aN with N ∈ N, N > x, for a > 1; and bounded from below by 0 for 0 < a < 1.
In both cases, Th. 7.19 implies convergence of the sequence to some limit that we
may call ax. However, we still need to verify that, for each sequence (rn)n∈N in Q

with limn→∞ rn = x, the sequence (arn)n∈N converges to the same limit ax in R. If
limn→∞ rn = x, then limn→∞ |qn − rn| = 0. Since (rn)n∈N and (qn)n∈N are bounded,
(7.57) implies

∃
L∈R+

∀
n∈N

|aqn − arn| ≤ L |qn − rn|, (7.59)

such that Prop. 7.11(a) implies limn→∞ |aqn − arn | = 0 and

lim
n→∞

arn = lim
n→∞

(arn − aqn + aqn) = 0 + ax = ax, (7.60)

showing (7.58) does not depend on the chosen sequence.

Proposition 7.70. The exponentiation rules (7.54), the monotonicity rules (7.55), and
the estimates (7.56) and (7.57) remain valid if x, y ∈ Q is replaced by x, y ∈ R. More-
over, for each a > 0 and each sequence (xn)n∈N in R:

lim
n→∞

xn = x ∈ R ⇒ lim
n→∞

axn = ax. (7.61)
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Proof. Given x, y ∈ R, let (pn)n∈N and (qn)n∈N be sequences in Q such that limn→∞ pn =
x and limn→∞ qn = y.

We start by verifying (7.57). As we can assume (pn)n∈N and (qn)n∈N to be monotone,
we may also assume pn, qn ∈ [−m,m] for each n ∈ N. Then the rational case of (7.57)
implies

∀
n∈N

|apn − aqn | ≤ L |pn − qn|,

and Th. 7.13(c) establishes the case. Then (7.61) also follows, since

0 ≤ |axn − ax| ≤ L |xn − x| → 0.

We deal with (7.54) next. For each a, b > 0:

ax+y = lim
n→∞

apn+qn
(7.54a)
= lim

n→∞
(apn aqn) = ax ay,

ax bx = lim
n→∞

apn lim
n→∞

bpn = lim
n→∞

(apn bpn)
(7.54b)
= lim

n→∞
(ab)pn = (ab)x,

∀
k∈N

(ax)qk = lim
n→∞

(apn)qk
(7.54c)
= lim

n→∞
apnqk = ax qk ,

⇒ (ax)y = lim
n→∞

(ax)qn = lim
n→∞

ax qn
(7.57)
= ax y,

thereby proving (7.54).

Proceeding to (7.55c), let a > 1 and h > 0. If (qn)n∈N is a strictly increasing sequence
in Q+ with limn→∞ qn = h, then ah = limn→∞ aqn > aq1 > 1. Thus, if x < y, let
h := y − x > 0 to obtain ay = ax ah > ax, i.e. (7.55c). If 0 < a < 1 and x < y, then
(1/a)x < (1/a)y, yielding (7.55d). For (7.55a), consider x > 0 and 0 < a < b. Then

b

a
> 1 ⇒ bx

ax
=

(
b

a

)x

> 1 ⇒ bx > ax,

proving (7.55a). If x < 0 and 0 < a < b, then ax = (1/a)−x > (1/b)−x = bx, proving
(7.55b).

Finally, it remains to verify (7.56). For x ≥ 1, the proof for rational x still works for
irrational x. For 0 < x < 1, one uses the usual sequence (qn)n∈N in Q with limn→∞ qn = x
and obtains (recalling a > 1)

ax = lim
n→∞

aqn
(7.44)

≤ lim
n→∞

(
1 + qn(a− 1)

)
= 1 + x(a− 1) < 1 + x · ax+1,

proving (7.56). �
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Definition 7.71 (Exponential and Power Functions). (a) Each function of the form

f : R+ −→ R, f(x) := xα, α ∈ R, (7.62)

is called a power function. For α > 0, the power function is extended to x = 0 by
setting 0α := 0; for α ∈ Z, it is defined on R \ {0}; for α ∈ N0 even on R.

(b) Each function of the form

f : R −→ R+, f(x) := ax, a > 0, (7.63)

is called a (general) exponential function. The case where a = e with e being Euler’s
number from (7.49) is of particular interest and importance. Most of the time, when
referring to an exponential function, one actually means x 7→ ex. It is also common
to write exp(x) instead of ex.

Theorem 7.72. (a) Every power function as defined in Def. 7.71(a) is continuous on
its respective domain. Moreover, for each α > 0, it is strictly increasing on [0,∞[;
for each α < 0, it is strictly decreasing on ]0,∞[.

(b) Every exponential function as defined in Def. 7.71(b) is continuous. Moreover, for
each a > 1, it is strictly increasing; for each 0 < a < 1, it is strictly decreasing.

Proof. (a): The monotonicity claims are provided by (7.55a) and (7.55b), respectively.
For each α ∈ N0, the power function is a polynomial, for each α ∈ Z, a rational function,
i.e. continuity is provided by Ex. 7.40(b) and Ex. 7.40(c), respectively. For a general
α ∈ R, the continuity proof on R+ will be postponed to Ex. 7.76(a) below, where it can
be accomplished more easily. So it remains to show the continuity in x = 0 for α > 0.
However, if (xn)n∈N is a sequence in R+ with limn→∞ xn = 0 and k ∈ N with 1/k ≤ α,

then, at least for n sufficiently large such that xn ≤ 1, 0 < xαn ≤ x
1/k
n by (7.55d). Then

the continuity of x 7→ x1/k implies limn→∞ x
1/k
n = 0 and the Sandwich Th. 7.16 implies

limn→∞ xαn = 0, proving continuity in x = 0.

(b): Everything has already been proved – continuity is provided by (7.61), monotonicity
is provided by (7.55c) and (7.55d). �

Remark and Definition 7.73 (Logarithm). According to Th. 7.72(b), for each a ∈
R+ \ {1}, the exponential function f : R −→ R+, f(x) := ax, is continuous and strictly
monotone with f(R) = R+ (verify that the image is all of R+ as an exercise). Then
Th. 7.60 implies the existence of a continuous and strictly monotone inverse function
f−1 : R+ −→ R. For each x ∈ R+, we call f−1(x) the logarithm of x to base a and write
loga x := f−1(x). The most important special case is where the base is Euler’s number,
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a = e. This is called the natural logarithm. Bases a = 2 and a = 10 also carry special
names, binary and common logarithm, respectively. The notation is

ln x := loge x, lb x := log2 x, lg x := log10 x, (7.64)

however, the notation in the literature varies – one finds log used instead of ln, lb, and
lg; one also finds lg instead of lb. So you always need to verify what precisely is meant
by either notation.

Corollary 7.74. For each a ∈ R+ \ {1}, the logarithm function f : R+ −→ R, f(x) =
loga x is continuous. For a > 1, it is strictly increasing; for 0 < a < 1, it is strictly
decreasing. �

Theorem 7.75. One obtains the following logarithm rules:

∀
a∈R+\{1}

loga 1 = 0, (7.65a)

∀
a∈R+\{1}

loga a = 1, (7.65b)

∀
a∈R+\{1}

∀
x∈R+

aloga x = x, (7.65c)

∀
a∈R+\{1}

∀
x∈R

loga a
x = x, (7.65d)

∀
a∈R+\{1}

∀
x,y∈R+

loga(xy) = loga x+ loga y, (7.65e)

∀
a∈R+\{1}

∀
x∈R+

∀
y∈R

loga(x
y) = y loga x, (7.65f)

∀
a∈R+\{1}

∀
x,y∈R+

loga(x/y) = loga x− loga y, (7.65g)

∀
a∈R+\{1}

∀
x∈R+

∀
n∈N

loga
n
√
x =

1

n
loga x, (7.65h)

∀
a,b∈R+\{1}

∀
x∈R+

logb x = (logb a) loga x. (7.65i)

Proof. All the rules are easy consequences of the logarithm being defined as the inverse
function to f : R −→ R+, f(x) := ax.

(7.65a): It is loga 1 = f−1(1) = 0, as f(0) = a0 = 1.

(7.65b): It is loga a = f−1(a) = 1, as f(1) = a1 = a.

(7.65c): It is aloga x = f(f−1(x)) = x.

(7.65d): It is loga a
x = f−1(f(x)) = x.

(7.65e): It is loga(xy) = f−1(xy) = f−1
(
f(loga x+ loga y)

)
= loga x+ loga y, since

f(loga x+ loga y) = aloga x+loga y = aloga x aloga y
(7.65c)
= xy.
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(7.65f): It is loga(x
y) = f−1(xy) = f−1

(
f(y loga x)

)
= y loga x, since

f(y loga x) = ay loga x = (aloga x)y
(7.65c)
= xy.

(7.65g) is just a combination of (7.65e) and (7.65f): loga(x/y) = loga(xy
−1) = loga x−

loga y.

(7.65h) is just a special case of (7.65f): loga
n
√
x = loga x

1/n = 1
n
loga x.

(7.65i): One computes

(logb a) loga x
(7.65f)
= logb a

loga x
(7.65c)
= logb x.

Thus, we have verified all the rules and concluded the proof. �

Example 7.76. (a) For each α ∈ R, the power function

f : R+ −→ R, f(x) := xα = eα lnx, (7.66)

is continuous, which follows from Th. 7.41, since f = exp ◦(α ln), ln is continuous
by Cor. 7.74, and exp is continuous by Th. 7.72(b).

(b) As a consequence of Th. 7.41, each of the following functions f1, f2, f3, where

f1 : R −→ R, f1(x) :=
(
exp(λ+ x2)

)α
,

f2 : R −→ R, f2(x) :=
1

eαx + λ
,

f3 : R −→ R, f3(x) :=
x5

(λ+ |x|)α ,

is continuous for each α ∈ R and each λ ∈ R+.

7.3 Series

7.3.1 Definition and Convergence

Series are a special type of sequences, namely sequences whose members arise from
summing up the members of another sequence. We have, on occasion, already encoun-
tered series, for example the harmonic series (sn)n∈N, whose members sn were defined
in (7.27). In the present section, we will study series more systematically.
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Definition 7.77. Given a sequence (an)n∈N in K (or, more generally, in any set A,
where an addition is defined), the sequence (sn)n∈N, where

∀
n∈N

sn :=
n∑

j=1

aj, (7.67)

is called an (infinite) series and is denoted by

∞∑

j=1

aj :=
∑

j∈N
aj := (sn)n∈N. (7.68)

The an are called the summands of the series, the sn its partial sums. Moreover, each
series

∑∞
j=k aj with k ∈ N is called a remainder (series) of the series (sn)n∈N.

The example of the remainder series already shows that it is useful to allow countable
index sets other than N. Thus, if (aj)j∈I , where I is a countable index set and φ : N −→
I a bijective map, then define

∑

j∈I
aj :=

∞∑

j=1

aφ(j) (7.69)

(compare the definition in (3.19c) for finite sums). Note that the definition depends on
φ, which is suppressed in the notation

∑

j∈I aj.

—

For sequences in K, the notion of convergence is available, and, thus, it is also available
for series arising from real or complex sequences (as such series are, again, sequences in
K).

Definition 7.78. If (sn)n∈N is a series with the sn defined as in (7.67) and with sum-
mands aj ∈ K, then the series is called convergent with limit s ∈ K if, and only if,
limn→∞ sn = s in the sense of (7.1). In that case, one writes

∞∑

j=1

aj = s (7.70)

and calls s the sum of the series. The series is called divergent if, and only if, it is
not convergent. We write

∑∞
j=1 aj = ∞ (resp.

∑∞
j=1 aj = −∞) if, and only if, (sn)n∈N

diverges to ∞ (resp. −∞) in the sense of Def. 7.18.

Caveat 7.79. One has to use care as the symbol
∑∞

j=1 aj is used with two completely
different meanings. If it is used according to (7.68), then it means a sequence; if it is
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used according to (7.70), then it means a real or complex number (or, possibly, ∞ or
−∞). It should always be clear from the context, if it means a sequence or a number.
For example, in the statement “the series

∑∞
j=1 2

−j is convergent”, it means a sequence;

whereas in the statement “
∑∞

j=1 2
−j = 1”, it means a number.

Example 7.80. (a) For each q ∈ C with |q| < 1,
∑∞

j=0 q
j is called a geometric series.

From (3.22b) (the reader is asked to go back and check that (3.22b) and its proof,
indeed, remain valid for each q ∈ C), we obtain the partial sums sn =

∑n
j=0 q

j =
1−qn+1

1−q . Since |q| < 1, we know limn→∞ qn+1 = 0 from Ex. 7.6. Thus, the series is
convergent with

∀
|q|<1

∞∑

j=0

qj = lim
n→∞

sn = lim
n→∞

1− qn+1

1− q
=

1

1− q
. (7.71)

(b) In Ex. 7.30, we obtained the divergence of the harmonic series:

∞∑

k=1

1

k
= ∞. (7.72)

Corollary 7.81. Let
∑∞

j=1 aj and
∑∞

j=1 bj be convergent series in C.

(a) Linearity:

∀
λ,µ∈C

∞∑

j=1

(λ aj + µ bj) = λ
∞∑

j=1

aj + µ
∞∑

j=1

bj. (7.73)

(b) Complex Conjugation:
∞∑

j=1

aj =
∞∑

j=1

aj. (7.74)

(c) Monotonicity:

(

∀
j∈N

aj, bj ∈ R ∧ aj ≤ bj

)

⇒
∞∑

j=1

aj ≤
∞∑

j=1

bj. (7.75)

(d) Each remainder series
∑∞

j=n+1 aj, n ∈ N, converges, and, letting S :=
∑∞

j=1 aj,
sn :=

∑n
j=1 aj, rn :=

∑∞
j=n+1 aj, one has

(

∀
n∈N

S = sn + rn

)

, lim
n→∞

an = lim
n→∞

rn = 0. (7.76)
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Proof. (a) follows from the first two identities of Th. 7.13(a), (b) is due to

∞∑

j=1

aj = lim
n→∞

n∑

j=1

aj
Def. and Rem. 5.5(a)

= lim
n→∞

n∑

j=1

aj
(7.11f)
= lim

n→∞

n∑

j=1

aj =
∞∑

j=1

aj,

(c) follows from Th. 7.13(c), and, for (d), one computes

lim
n→∞

an = lim
n→∞

(sn − sn−1) = S − S = 0,

∀
n∈N

rn = lim
k→∞

k∑

j=n+1

aj = lim
k→∞

(sk − sn) = S − sn,

lim
n→∞

rn = lim
n→∞

(S − sn) = S − S = 0,

completing the proof. �

7.3.2 Convergence Criteria

Corollary 7.82. Let
∑∞

j=1 aj be series such that all aj ∈ R+
0 . If sn :=

∑n
j=1 aj are the

partial sums of
∑∞

j=1 aj, then

lim
n→∞

sn =

{

sup{sn : n ∈ N} if (sn)n∈N is bounded,

∞ if (sn)n∈N is not bounded.
(7.77)

Proof. Since (sn)n∈N is increasing, (7.77) is a consequence of (7.21). �

Theorem 7.83. Let
∑∞

j=1 aj and
∑∞

j=1 bj be series in C such that |aj| ≤ |bj| holds for
each j ≥ k for some fixed k ∈ N.

(a) If
∑∞

j=1 |bj| is convergent, then
∑∞

j=1 aj is convergent as well, and, moreover,
∣
∣
∣
∣
∣

∞∑

j=k

aj

∣
∣
∣
∣
∣
≤

∞∑

j=k

|bj|. (7.78)

(b) If
∑∞

j=1 aj is divergent, then
∑∞

j=1 |bj| is divergent as well.

Proof. Since (b) is merely the contraposition of (a), it suffices to prove (a). To this end,
let sn :=

∑n
j=1 aj and tn :=

∑n
j=1 |bj| be the partial sums of

∑∞
j=1 aj and

∑∞
j=1 |bj|,

respectively. Since (tn)n∈N converges, it must be a Cauchy sequence by Th. 7.29. Thus,

∀
ǫ∈R+

∃
N∈N,
N≥k

∀
n>m>N

|tn − tm| = |bm+1|+ · · ·+ |bn| < ǫ
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and the triangle inequality for finite sums implies

∀
ǫ∈R+

∃
N∈N,
N≥k

∀
n>m>N

|sn − sm| = |am+1 + · · ·+ an| ≤ |am+1|+ · · ·+ |an|
≤ |bm+1|+ · · ·+ |bn| < ǫ,

showing (sn)n∈N is a Cauchy sequence as well, i.e. convergent by Th. 7.29. Since the
triangle inequality for finite sums also implies

∣
∣
∑n

j=k aj
∣
∣ ≤ ∑n

j=k |bj| for each n ≥ k,
(7.78) is now a consequence of Th. 7.13(c). �

Definition 7.84. A series
∑∞

j=1 aj in R is called alternating if, and only if, its summands
alternate between positive and negative signs, i.e. if sgn(aj+1) = − sgn(aj) 6= 0 for each
j ∈ N.

Theorem 7.85 (Leibniz Criterion). Let
∑∞

j=1 aj be an alternating series. If the se-
quence (|an|)n∈N of absolute values is decreasing and limn→∞ an = 0, then the series is
convergent and

∀
n∈N

∃
0≤θn≤1

rn :=
∞∑

j=n+1

aj = θn an+1, (7.79)

that means the error made when approximating the limit by the partial sum sn has the
same sign as the first neglected summand an+1 (or is 0), and its absolute value is at
most |an+1|. Moreover, one even obtains 0 < θn < 1 in (7.79), if (|an|)n∈N is strictly
decreasing.

Proof. We first consider the case where a1 > 0, i.e. where there exists a decreasing
sequence of positive numbers (bn)n∈N such that an = (−1)n+1bn. As the bn are decreasing,
we obtain bn − bn+1 ≥ 0 for each n ∈ N, such that the sequences (un)n∈N and (vn)n∈N,
defined by

∀
n∈N

un := s2n =
n∑

j=1

(b2j−1 − b2j) = (b1 − b2) + (b3 − b4) + · · ·+ (b2n−1 − b2n),

∀
n∈N

vn := s2n+1 = b1 −
n∑

j=1

(b2j − b2j+1)

= b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n − b2n+1),

are monotone, namely (un)n∈N increasing and (vn)n∈N decreasing. Since, 0 ≤ un < un+
b2n+1 = vn ≤ b1 for each n ∈ N, both sequences (un)n∈N and (vn)n∈N are also bounded,
and, thus, convergent by Th. 7.19, i.e. U := limn→∞ un ∈ R and V := limn→∞ vn ∈ R.
Since

V − U = lim
n→∞

(vn − un) = lim
n→∞

(s2n+1 − s2n) = lim
n→∞

a2n+1 = 0,
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we obtain U = V and limn→∞ sn = U and

0 ≤ U ≤ b1 = a1. (7.80)

In particular, there is θ ∈ [0, 1] satisfying
∑∞

j=1 aj = θ a1 (if (|an|)n∈N is strictly decreas-
ing, then the inequalities in (7.80) are strict and we obtain θ ∈]0, 1[).
In the case a1 < 0, the above proof yields convergence of −∑∞

j=1 aj =
∑∞

j=1(−aj) with∑∞
j=1(−aj) = θ (−a1) for a suitable θ ∈ [0, 1]. However, this then yields, as before,

∑∞
j=1 aj = θ a1.

Applying the above result to each remainder series
∑∞

j=n+1 aj, n ∈ N, completes the
proof of (7.79) and the theorem. �

Example 7.86. (a) Each of the following alternating series clearly converges, as the
Leibniz criterion of Th. 7.85 clearly applies in each case:

∞∑

j=1

(−1)j+1

j
= 1− 1

2
+

1

3
−+ . . . , (7.81a)

∞∑

j=1

(−1)j+1

2 j − 1
= 1− 1

3
+

1

5
−+ . . . , (7.81b)

∞∑

j=1

(−1)j+1

ln(j + 1)
=

1

ln 2
− 1

ln 3
+

1

ln 4
−+ . . . (7.81c)

(b) To see that Th. 7.85 is false without its monotonicity requirement, take any diver-
gent series with

∑∞
j=1 aj = ∞, 0 < aj, limj→∞ aj = 0 (for example the harmonic

series), any convergent series with
∑∞

j=1 cj = s ∈ R+ and 0 < cj (for example any
geometric series with 0 < q < 1), and define

dn :=

{

a(n+1)/2 for n odd,

−cn/2 for n even.

It is an exercise to show that
∑∞

j=1 dj is an alternating series with limn→∞ dn = 0
and

∑∞
j=1 dj = ∞.

Definition 7.87. The series
∑∞

j=1 aj in C is said to be absolutely convergent if, and
only if,

∑∞
j=1 |aj| is convergent.

Corollary 7.88. Every absolutely convergent series
∑∞

j=1 aj is also convergent and
satisfies the triangle inequality for infinite series:

∣
∣
∣
∣
∣

∞∑

j=1

aj

∣
∣
∣
∣
∣
≤

∞∑

j=1

|aj|. (7.82)
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Proof. The corollary is given by the special case aj = bj for each j ∈ N of Th. 7.83(a). �

Theorem 7.89. We consider the series
∑∞

j=1 aj in C.

(a) If
∑∞

j=1 cj is a convergent series such that cj ∈ R+
0 and |aj| ≤ cj for each j ∈ N,

then
∑∞

j=1 aj is absolutely convergent.

(b) Root Test:

(

∃
0<q<1

( n
√

|an| ≤ q < 1 for almost all n ∈ N)

)

⇒
∞∑

j=1

aj is absolutely convergent, (7.83a)

#
{

n ∈ N : n
√

|an| ≥ 1
}

= ∞ ⇒
∞∑

j=1

aj is divergent. (7.83b)

(c) Ratio Test: If all an 6= 0, then

(

∃
0<q<1

(∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≤ q < 1 for almost all n ∈ N

))

⇒
∞∑

j=1

aj is absolutely convergent, (7.84a)

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≥ 1 for almost all n ∈ N ⇒

∞∑

j=1

aj is divergent. (7.84b)

Proof. (a) is just another special case of Th. 7.83(a).

(b): If there is q ∈]0, 1[ and N ∈ N such that n
√

|an| ≤ q for each n > N , i.e. |an| ≤ qn

for each n > N , then, by (7.71),
∑∞

j=1 |aj| is bounded by 1
1−q +

∑N
j=1 |aj| and, thus,

convergent. If n
√

|an| ≥ 1 for infinitely many n ∈ N, then |an| ≥ 1 for infinitely many
n ∈ N, showing that (an)n∈N does not converge to 0, proving the divergence of

∑∞
j=1 aj.

(c): If there is q ∈]0, 1[ and N ∈ N such that
∣
∣
∣
an+1

an

∣
∣
∣ ≤ q for each n > N , then,

letting C := |aN+1|, an induction shows |aN+1+k| ≤ Cqk for each k ∈ N, i.e., by (7.71),
∑∞

j=1 |aj| is bounded by C
1−q +

∑N+1
j=1 |aj| and, thus, convergent. If there is N ∈ N such

that
∣
∣
∣
an+1

an

∣
∣
∣ ≥ 1 for each n > N , then |an| ≥ |aN+1| > 0 for each n > N , showing (an)n∈N

does not converge to 0 and proving the divergence of
∑∞

j=1 aj. �
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Caveat 7.90. In (7.83a), it does not suffice to have n
√

|an| < 1 to conclude convergence,
and, likewise, |an+1

an
| < 1 does not suffice in (7.84a): As a counterexample, consider

the harmonic series, which does not converge, but n
√

1/n < 1 for each n ≥ 2 and
1/(n+1)

1/n
= n

n+1
< 1 for each n ∈ N.

Example 7.91. (a) For each z ∈ C with |z| < 1 and each p ∈ N0, the series
∑∞

n=1 n
p zn

is absolutely convergent: We have limn→∞
n
√
np = 1 as a consequence of Ex. 7.65.

This implies limn→∞
n
√

|an| = limn→∞
n
√

np|z|n = |z| < 1. Thus, the root test of
(7.83a) applies and proves convergence of the series.

(b) Let z ∈ C. The series
∑∞

n=1
zn n!
nn is absolutely convergent for |z| < e and divergent

for |z| ≥ e, where e is Euler’s number from (7.49). We have, for each n ∈ N,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

|z| (n+ 1)nn

(n+ 1)n+1
=

|z|
(
1 + 1

n

)n → |z|
e

for n→ ∞. (7.85)

Thus, the ratio test of (7.84a) applies and proves absolute convergence of the series
for |z| < e. For |z| > e, (7.84b) applies and proves divergence. Since, according to
Ex. 7.66,

(
1 + 1

n

)n
< e for each n ∈ N, (7.84b) applies to prove divergence also for

|z| = e.

7.3.3 Absolute Convergence and Rearrangements

In general, one has to use care when dealing with infinite series, as convergence properties
and even the limit in case of convergence can depend on the order of the summands (in
obvious contrast to the situation of finite sums). For real series that are convergent, but
not absolutely convergent, one has the striking Riemann rearrangement theorem [Phi16,
Th. 7.93] that states one can choose an arbitrary number S ∈ R∪{−∞,∞} and reorder
the summands such that the new series converges to S (actually, [Phi16, Th. 7.93] says
even more, namely that one can prescribe an entire interval of cluster points for the
rearranged series). However, the situation is better for absolutely convergent series. In
the present section, we will prove results that show the sum of absolutely convergent
series does not depend on the order of the summands.

Theorem 7.92. Let
∑∞

j=1 aj and
∑∞

j=1 bj be series in C such that (bn)n∈N is a reordering
of (an)n∈N in the sense of Def. 7.21. If

∑∞
j=1 aj is absolutely convergent, then so is

∑∞
j=1 bj and

∑∞
j=1 aj =

∑∞
j=1 bj.

Proof. Let sn :=
∑n

j=1 aj, s̃n :=
∑n

j=1 |aj|, and tn :=
∑n

j=1 bj denote the respective
partial sums. We will show that limn→∞(sn − tn) = 0. Given ǫ > 0, since (s̃n)n∈N is a
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Cauchy sequence by Th. 7.29, there exists N ∈ N, such that

∀
n>m>N

|s̃n − s̃m| = |am+1|+ · · ·+ |an| < ǫ.

Since (bn)n∈N is a reordering of (an)n∈N, there exists a bijective map φ : N −→ N such
that bn = aφ(n) for each n ∈ N. Since φ is bijective, there exists M ∈ N such that
{1, 2, . . . , N + 1} ⊆ φ{1, 2, . . . ,M}. Then n > M implies φ(n) > N + 1, and

∀
n>M

∃
k∈N

|sn − tn| ≤ |aN+2|+ · · ·+ |aN+k| < ǫ,

since all aj with j ≤ N+1 occur in both sn and tn and cancel in sn−tn (i.e. all aj that do
not cancel must have an index j > N +1). So we have shown that limn→∞(sn− tn) = 0,
which, in turn, implies

∞∑

j=1

bj = lim
n→∞

tn = lim
n→∞

(tn − sn + sn) = 0 +
∞∑

j=1

aj =
∞∑

j=1

aj.

Applying this to s̃n :=
∑n

j=1 |aj| yields
∑∞

j=1 |bj| =
∑∞

j=1 |aj|, proving absolute conver-
gence of

∑∞
j=1 bj. �

Theorem 7.93. Let I be an arbitrary infinite countable index set and let

I =
⋃̇

n∈N
In (7.86)

be a disjoint decomposition of I into (empty, finite, or infinite) countable index sets In.

(a) If the series
∑

j∈I aj (cf. (7.69)) is absolutely convergent, then

∑

j∈I
aj =

∞∑

n=1

∑

α∈In
aα. (7.87)

(b) The following statements are equivalent:

(i)
∑

j∈I aj is absolutely convergent.

(ii) There exists a constant C ∈ R+
0 such that

∑

j∈J |aj| ≤ C for each finite subset
J of I.

(iii)
∑∞

n=1

∑

α∈In |aα| <∞.

Proof. The proof needs some work; see, e.g., [Phi16, Th. 7.95]. �
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Example 7.94. We apply Th. 7.93 to so-called double series, i.e. to series with index
set I := N× N. The following notation is common:

∞∑

m,n=1

amn :=
∑

(m,n)∈N×N

a(m,n), (7.88)

where one writes amn (also am,n) instead of a(m,n). Recall from Th. 3.24 that N × N is
countable. In general, the convergence properties of the double series and, if it exists,
the value of the sum, will depend on the chosen bijection φ : N −→ N× N.

However, we will now assume our double series to be absolutely convergent. Then Th.
7.92 guarantees the sum does not depend on the chosen bijection and we can apply Th.
7.93. Applying Th. 7.93 to the decompositions

N× N =
⋃̇

m∈N
{(m,n) : n ∈ N}, (7.89a)

N× N =
⋃̇

n∈N
{(m,n) : m ∈ N}, (7.89b)

N× N =
⋃̇

k∈N
{(m,n) ∈ N× N : m+ n = k}, (7.89c)

yields

∑

(m,n)∈N×N

a(m,n)
(7.89a)
=

∞∑

m=1

∞∑

n=1

amn
(7.89b)
=

∞∑

n=1

∞∑

m=1

amn

(7.89c)
=

∞∑

k=2

∑

m+n=k

amn :=
∞∑

k=2

k−1∑

m=1

am,k−m. (7.90)

Theorem 7.95. It is possible to compute the product of two absolutely convergent (real
or complex) series

∑∞
m=1 am and

∑∞
m=1 bm as a double series:

( ∞∑

m=1

am

)( ∞∑

m=1

bm

)

=
∞∑

m,n=1

ambn =
∞∑

k=2

k−1∑

m=1

ambk−m =
∞∑

k=2

ck,

where ck :=
k−1∑

m=1

ambk−m = a1bk−1 + a2bk−2 + · · ·+ ak−1b1.

(7.91)

This form of computing the product is known as a Cauchy product.
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Proof. We first show that
∑∞

m,n=1 ambn is absolutely convergent: By letting A :=
∑∞

m=1 |am| and B :=
∑∞

m=1 |bm|, we obtain

∞∑

m=1

∞∑

n=1

|ambn| =
∞∑

m=1

(
|am|B

)
= AB <∞,

i.e.
∑∞

m,n=1 ambn is absolutely convergent according to Th. 7.93(b)(iii). Now the second
equality in (7.91) is just the third equality in (7.90), and the first equality in (7.91) also
follows from (7.90):

∞∑

m,n=1

ambn =
∞∑

m=1

∞∑

n=1

ambn =
∞∑

m=1

am

∞∑

n=1

bn =

( ∞∑

m=1

am

)( ∞∑

m=1

bm

)

,

completing the proof. �

Theorem 7.95 will be useful in Sec. 8.2 below.

7.3.4 b-Adic Representations of Real Numbers

We are mostly used to representing real numbers in the decimal system. For example,
we write

x =
395

3
= 131.6 = 1 · 102 + 3 · 101 + 1 · 100 +

∞∑

n=1

6 · 10−n, (7.92a)

where ∞∑

n=1

6 · 10−n (7.71)
= 6 ·

(
1

1− 1
10

− 1

)

= 6 · 1
9
=

2

3
.

The decimal system represents real numbers as, in general, infinite series of decimal
fractions. Digital computers represent numbers in the dual system, using base 2 instead
of 10. For example, the number from (7.92a) has the dual representation

x = 10000011.10 = 27 + 21 + 20 +
∞∑

n=0

2−(2n+1), (7.92b)

where it is an exercise to verify

∞∑

n=0

2−(2n+1) =
2

3
.

Representations with base 16 (hexadecimal) and 8 (octal) are also of importance when
working with digital computers. More generally, each natural number b ≥ 2 can be used
as a base.
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Definition 7.96. Let b ≥ 2 be a natural number.

(a) Given an integer N ∈ Z and a sequence (dN , dN−1, dN−2, . . . ) in {0, . . . , b− 1}, the
series ∞∑

ν=0

dN−ν b
N−ν (7.93)

is called a b-adic series. The number b is called the base or the radix, and the
numbers dν are called digits.

(b) If x ∈ R+
0 is the sum of the b-adic series given by (7.93), than one calls the b-adic

series a b-adic representation or a b-adic expansion of x.

Theorem 7.97. Given a natural number b ≥ 2 and a nonnegative real number x ∈
R+

0 , there exists a b-adic series representing x, i.e. there is N ∈ Z and a sequence
(dN , dN−1, dN−2, . . . ) in {0, . . . , b− 1} such that

x =
∞∑

ν=0

dN−ν b
N−ν . (7.94)

If one introduces the additional requirement that 0 6= dN , then each x > 0 has either a
unique b-adic representation or precisely two b-adic representations. More precisely, for
0 6= dN and x > 0, the following statements are equivalent:

(i) The b-adic representation of x is not unique.

(ii) There are precisely two b-adic representations of x.

(iii) There exists a b-adic representation of x such that dn = 0 for each n ≤ n0 for
some n0 < N .

(iv) There exists a b-adic representation of x such that dn = b− 1 for each n ≤ n0 for
some n0 ≤ N .

Proof. The proof is a bit lengthy and is provided in [Phi16, Sec. E.2]. �

Example 7.98. Every natural number has precisely two decimal (i.e. 10-adic) repre-
sentations. For instance,

2 = 2.0 = 1.9 = 1 +
∞∑

n=1

9 · 10−n (7.71)
= 1 + 9 ·

(
1

1− 1
10

− 1

)

= 1 + 9 · 1
9
, (7.95)

and analogously for all other natural numbers.
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8 Convergence of K-Valued Functions

8.1 Pointwise and Uniform Convergence

So far we have studied the convergence of sequences in K. We will now also need to
study the convergence of sequences (fn)n∈N, where each member fn of the sequence is
a function fn : M −→ K, M ⊆ C. Here, for the first time, we encounter the situation
that there exist different useful notions of convergence for such sequences.

Definition 8.1. Let (fn)n∈N be a sequence of functions, fn : M −→ K, ∅ 6=M ⊆ C.

(a) We say (fn)n∈N converges pointwise to f : M −→ K if, and only if, limn→∞ fn(z) =
f(z) for each z ∈M , i.e. if, and only if,

∀
z∈M

∀
ǫ∈R+

∃
N∈N

∀
n>N

|fn(z)− f(z)| < ǫ. (8.1)

So, in general, N in (8.1) depends on both z and ǫ.

(b) We say (fn)n∈N converges uniformly to f : M −→ K if, and only if,

∀
ǫ∈R+

∃
N∈N

∀
n>N

∀
z∈M

|fn(z)− f(z)| < ǫ. (8.2)

In (8.2), N is still allowed to depend on ǫ, but, in contrast to the situation of (8.1),
not on z – in that sense, the convergence is uniform in z.

Remark 8.2. It is immediate from Def. 8.1(a),(b) that uniform convergence implies
pointwise convergence, but Ex. 8.3(b) below will show the converse is not true.

Example 8.3. (a) Let ∅ 6= M ⊆ C (for example M = [0, 1] or M = B1(0)), and
fn : M −→ K, fn(z) = 1/n for each n ∈ N. Then, clearly, (fn)n∈N converges
uniformly to f ≡ 0.

(b) The sequence (fn)n∈N, where fn : [0, 1] −→ R, fn(x) := xn, converges pointwise,
but not uniformly, to

f : [0, 1] −→ R, f(x) :=

{

0 for 0 ≤ x < 1,

1 for x = 1 :
(8.3)

For x = 1, limn→∞ xn = limn→∞ 1 = 1, and, for 0 ≤ x < 1, limn→∞ xn = 0 by Ex.
7.6. To see that the convergence is not uniform, consider ǫ := 1

2
. Then, for every
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n ∈ N, according to the intermediate value Th. 7.57, there exists ξn ∈]0, 1[ such
that fn(ξn) = ξnn = 1

2
, i.e.

∀
n∈N

|fn(ξn)− f(ξn)| = ξnn =
1

2
= ǫ, (8.4)

proving the convergence is not uniform.

Theorem 8.4. Let (fn)n∈N be a sequence of functions, fn : M −→ K, ∅ 6= M ⊆ C. If
(fn)n∈N converges uniformly to f : M −→ K and all fn are continuous at ζ ∈ M , then
f is also continuous at ζ. In particular, if each fn is continuous, then so is f (uniform
limits of continuous functions are continuous).

Proof. Let ǫ > 0. Due to the uniform convergence of (fn)n∈N,

∃
m∈N

∀
z∈M

|fm(z)− f(z)| < ǫ

3
. (8.5)

Due to the continuity of fm in ζ,

∃
δ>0

∀
z∈M∩Bδ(ζ)

|fm(z)− fm(ζ)| <
ǫ

3
. (8.6)

Thus,

∀
z∈M∩Bδ(ζ)

|f(z)−f(ζ)| ≤ |f(z)−fm(z)|+|fm(z)−fm(ζ)|+|fm(ζ)−f(ζ)| < 3· ǫ
3
= ǫ, (8.7)

proving continuity of f in ζ. �

8.2 Power Series

Definition 8.5. (a) In Def. 7.77, it was mentioned that series can be formed from each
sequence in a set A, where an addition is defined. Letting ∅ 6= M ⊆ C, we now
consider A := F(M,K), i.e. the set of functions from M into K. Then the addition
on A is defined according to (6.1a) and, given a sequence of functions (fn)n∈N in A,
the series ∞∑

j=1

fj := (sn)n∈N (8.8)

is defined as the sequence of partial sums sn :=
∑n

j=1 fj.
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(b) Given a sequence of functions (fn)n∈N0
, where fn : K −→ K, fn(z) = an z

n with
an ∈ K, the series

∞∑

j=0

aj z
j :=

∞∑

j=0

fj (8.9)

is called a power series and the aj are called the coefficients of the power series.
Note: The notation

∑∞
j=0 aj z

j introduced in (8.9) is very common, but not entirely

correct, since one writes aj z
j = fj(z) for the summands, even though one actually

means fj. Moreover, one uses the same notation if one actually does mean the series
∑∞

j=0 fj(z) in K, so one has to see from the context if
∑∞

j=0 aj z
j means a series of

K-valued functions or a series of numbers.

Definition 8.6. Consider a series of K-valued functions
∑∞

j=1 fj as in Def. 8.5(a), in
particular, sn :=

∑n
j=1 fj for each n ∈ N.

(a) The series converges pointwise to f : M −→ K if, and only if, it (i.e. (sn)n∈N)
converges pointwise in the sense of Def. 8.1(a). In that case, we use the notation

f =
∞∑

j=1

fj. (8.10)

If (8.10) holds, then the series is sometimes called a series expansion of f , in par-
ticular, a power series expansion if the series happens to be a power series.

Analogous to the situation of series in K, the notation
∑∞

j=1 fj is also used with
two different meanings – it can mean the sequence of partial sums as in (8.8) or, in
the case of convergent series, the limit function as in (8.10) (cf. Caveat 7.79).

(b) The series converges uniformly to f : M −→ K if, and only if, it converges uniformly
in the sense of Def. 8.1(b).

Corollary 8.7. Consider a function series
∑∞

j=1 fj with fj : M −→ K, ∅ 6=M ⊆ C.

(a) The series converges uniformly to some f : M −→ K if, and only if, for each
n ∈ N and each z ∈M , the remainder series

∑∞
j=n+1 fj(z) in K converges to some

rn(z) ∈ K such that
∀

ǫ∈R+
∃

N∈N
∀

n>N
∀

z∈M
|rn(z)| < ǫ. (8.11)

(b) If
∑∞

j=1 aj is a convergent series in R+
0 , then the condition

∀
z∈M

∀
j∈N

|fj(z)| ≤ aj (8.12)

implies uniform convergence of
∑∞

j=1 fj.
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(c) If each fj is continuous in ζ ∈M and the series converges uniformly to f : M −→
K, then f is continuous in ζ. In particular, if each fj is continuous, then f is
continuous.

Proof. (a): If
∑∞

j=1 fj converges uniformly to f , then f(z) =
∑∞

j=1 fj(z) holds for each
z ∈ M , rn(z) = f(z) − sn(z) for each n ∈ N, z ∈ M according to (7.76), where
sn(z) :=

∑n
j=1 fj(z). Then (8.11) is just (8.2), where the sn now play the role of the fn

in (8.2). Conversely, if the remainder series converge for each z ∈M , then we can define
f : M −→ K, f(z) := f1(z)+r1(z) =

∑∞
j=1 fj(z). Then, once again, rn(z) = f(z)−sn(z)

for each n ∈ N, z ∈M , and (8.11) is just (8.2), yielding the uniform convergence of the
series.

(b): First, (8.12) implies each remainder series
∑∞

j=n+1 fj(z) converges absolutely. Thus,
with rn(z) as in (a),

∀
z∈M

|rn(z)|
(7.82)

≤
∞∑

j=n+1

|fj(z)| ≤
∞∑

j=n+1

aj → 0 for n→ ∞,

such that (a) yields uniform convergence.

(c) is immediate from Th. 8.4. �

Remark 8.8. Given a function series
∑∞

j=1 fj with fj : M −→ K, ∅ 6=M ⊆ C; for each
z ∈ M ,

∑∞
j=1 fj(z) constitutes a series in K. Typically, one will only have convergence

of
∑∞

j=1 fj(z) in K on a subset C ⊆ M . The series then converges pointwise in the
sense of Def. 8.6(a) if all fj are restricted to C. It can be very difficult to determine
if
∑∞

j=1 fj(z) converges or diverges for some z ∈ M , and such investigations are often
of particular interest in the context of function series. Even for power series, studying
convergence can still be difficult, but the availability of the following Th. 8.9 does help
to (at least partially) settle the question in many cases.

Theorem 8.9. For each power series
∑∞

j=0 aj z
j, aj ∈ K, there exists a number r ∈

[0,∞] := R+
0 ∪ {∞}, called the radius of convergence of the power series, such that

(

z ∈ K ∧ |z| < r
)

⇒
∞∑

j=0

aj z
j converges absolutely in K, (8.13a)

(

z ∈ K ∧ |z| > r
)

⇒
∞∑

j=0

aj z
j diverges in K (8.13b)

(for r = ∞, (8.13a) claims absolute convergence for each z ∈ K). In particular,
∑∞

j=0 aj z
j converges pointwise in the sense of Def. 8.6(a) for each z ∈ Br(0) (cf. Def.
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7.7(a)). Moreover,

∀
0<r0<r

( ∞∑

j=0

aj z
j converges uniformly on Br0(0) (cf. Ex. 7.47(a))

in the sense of Def. 8.6(b)

)

. (8.14)

For the radius of convergence, one has the formula

r =
1

L
, where L := lim sup

n→∞
n
√

|an|. (8.15)

In (8.15), lim sup denotes the so-called limit superior, which is defined as the largest
cluster point of the sequence ( n

√

|an|)n∈N if the sequence is bounded (cf. Th. 7.27) and
∞ if the sequence is unbounded. As the limit superior can be 0 or ∞, we also define
1/0 := ∞ and 1/∞ := 0 in (8.15).

One has the simpler formula

r = lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣
, (8.16)

provided all an are nonzero and provided the limit in (8.16) either exists in R+
0 or is ∞.

Proof. For the proof of (8.15), we apply the root test from Th. 7.89(b). Here, for the
root test, we have to consider the sequence ( n

√

|an||z|n)n∈N. As a consequence of (7.11a)
and Prop. 7.26, lim supn→∞(λxn) = λ lim supn→∞ xn for each λ > 0 and each sequence
(xn)n∈N in R (with λ · ∞ := ∞, this also holds if the limit superior is infinite). Thus,

lim sup
n→∞

n
√

|an||z|n = |z| lim sup
n→∞

n
√

|an| = |z|L.

If |z| > 1/L, then |z|L > 1 and (7.83b) applies, i.e. (8.13b) holds for r = 1/L. If
|z| < 1/L, then |z|L < 1, and, recalling the Bolzano-Weierstrass Th. 7.27, one sees that
(7.83a) applies, i.e. (8.13a) holds for r = 1/L.

Next, if 0 < r0 < r, then
∑∞

j=0 |aj rj0| converges according to (8.13a). Since, for each

z ∈ Br0(0) and each j ∈ N, we have |aj zj| ≤ |aj rj0|, (8.14) is a consequence of Cor.
8.7(b).

The validity of (8.16) follows from the ratio test of Th. 7.89(c): If all an 6= 0 and z 6= 0,
then

lim
n→∞

∣
∣
∣
∣

an+1z
n+1

anzn

∣
∣
∣
∣
= |z| lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

|z|
limn→∞

∣
∣
∣
an
an+1

∣
∣
∣

.

If |z| < l := limn→∞

∣
∣
∣
an
an+1

∣
∣
∣, then |z|/l < 1, i.e. (7.84a) applies, proving (8.13a) for r = l.

If |z| > l, then |z|/l > 1, i.e. (7.84b) applies, proving (8.13b) for r = l. �
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Corollary 8.10. If
∑∞

j=0 aj z
j, aj ∈ K, is a power series with radius of convergence

r ∈]0,∞], then the function

f : Br(0) −→ K, f(z) :=
∞∑

j=0

aj z
j, (8.17)

is continuous. In particular, if r = ∞, then f is continuous on K.

Proof. Each partial sum z 7→∑n
j=0 aj z

j is a polynomial, i.e. continuous onK. Moreover,
if ζ ∈ Br(0), then the power series converges uniformly on M := B|ζ|(0) by (8.14), i.e.
it is continuous at ζ ∈M by Th. 8.4. �

Example 8.11. (a) For each α ∈ R, the radius of convergence of
∑∞

n=1 n
α zn is r = 1,

since
lim sup
n→∞

n
√

|an| = lim
n→∞

n
√
nα = 1, (8.18)

which, for each α ∈ Z, follows from (7.46) and Th. 7.13(a), and, then, for all α ∈ R

from the Sandwich Th. 7.16.

Let us investigate what can happen for |z| = r = 1 for some cases: The series
∑∞

n=1 z
n (α = 0) is divergent for each z ∈ C with z = 1 by the observation that

(zn)n∈N does not converge to 0 for n → ∞ (as |zn| = 1 for each n ∈ N); the
series

∑∞
n=1 n

−1 zn (α = −1) is the harmonic series, i.e. divergent, for z = 1, but
convergent for z = −1 according to Ex. 7.86(a).

(b) The radius of convergence of both
∑∞

n=0
zn

n!
and

∑∞
n=0

zn

nn is r = ∞ by (8.16) and
(8.15), respectively, since

lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣
= lim

n→∞
(n+ 1)!

n!
= lim

n→∞
(n+ 1) = ∞, (8.19a)

lim sup
n→∞

n
√

|an| = lim
n→∞

n

√

1

nn
= lim

n→∞
1

n
= 0. (8.19b)

(c) The radius of convergence of
∑∞

n=0 n! z
n is r = 0 by (8.16), since

lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣
= lim

n→∞
n!

(n+ 1)!
= lim

n→∞
1

n+ 1
= 0. (8.20)

Caveat 8.12. Theorem 8.9 does not claim the uniform convergence of
∑∞

j=0 aj z
j on

Br(0), which is usually not true (e.g., it is an exercise to show that
∑∞

j=0 z
j does not

converge uniformly on B1(0)). Theorem 8.9 also claims nothing about the convergence
or divergence of

∑∞
j=0 aj z

j for |z| = r, which has to be determined case by case (cf. Ex.
8.11(a)).
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Definition and Remark 8.13. Given two power series p :=
∑∞

j=0 aj z
j and q :=

∑∞
j=0 bj z

j in K, we define their Cauchy product

p ∗ q :=
∞∑

j=0

cj z
j , where cj :=

j
∑

k=0

akbj−k = a0bj + a1bj−1 + · · ·+ ajb0. (8.21)

Note that we have not assumed any convergence of the series so far, i.e. p, q, and p ∗ q
are not K-valued functions, but sequences of K-valued functions according to Def. 8.5
(sequences of polynomials, actually). Sometimes one also calls the Cauchy product p∗ q
the convolution of p and q.

Now, if we do assume p and q to have some nonzero radii of convergence, say rp, rq ∈
]0,∞], respectively, then, by (8.13a), both series are absolutely convergent for each
z ∈ Br(0), where r := min{rp, rq}. Thus, the functions

f : Br(0) −→ K, f(z) :=
∞∑

j=0

aj z
j, g : Br(0) −→ K, g(z) :=

∞∑

j=0

bj z
j, (8.22)

are well-defined, and (7.91) implies

∀
z∈Br(0)

f(z)g(z) =
∞∑

j=0

cj z
j with cj as in (8.21). (8.23)

8.3 Exponential Functions

The notion of power series allows us to extend the definition of exponential functions to
complex arguments:

Definition and Remark 8.14. We define the exponential function

exp : C −→ C, exp(z) :=
∞∑

n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ . . . (8.24)

From Ex. 8.11(b), we already know the radius of convergence of the power series in
(8.24) is ∞, such that the function in (8.24) is well-defined.

For the time being, we also redefine Euler’s number as e := exp(1) > 1 > 0 and, for each
x ∈ R+, ln x := logexp(1)(x). This, as well as calling the function of (8.24) exponential
function, will be justified as soon as we will have proved

lim
n→∞

(

1 +
1

n

)n

=
∞∑

n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . (8.25)
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and

∀
x∈R

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . (8.26)

in (8.36) of Th. 8.18 and in Th. 8.16(c) below, respectively.

Proposition 8.15. If a continuous function E : R −→ R satisfies

a := E(1) > 0 and (8.27a)

∀
x,y∈R

E(x+ y) = E(x)E(y), (8.27b)

then f is an exponential function – more precisely

∀
x∈R

E(x) = ax. (8.28)

Proof. First, a = E(1) = E(0 + 1) = E(0)E(1) = E(0) a and a > 0 shows E(0) = 1.

Then, for each x ∈ R, 1 = E(0) = E(x − x) = E(x)E(−x), i.e. E(−x) =
(
E(x)

)−1
,

showing E(x) 6= 0 for each x ∈ R. Thus, E(1) > 0, the continuity of E, and the
intermediate value Th. 7.57 imply E(x) > 0 for each x ∈ R. Next, an induction shows

∀
x∈R

∀
n∈N

E(n · x) =
(
E(x)

)n
: (8.29)

The base case is trivially true and the induction step is

E((n+ 1)x) = E(nx)E(x)
ind. hyp.
= (E(x))nE(x) = (E(x))n+1.

Applying (8.29) with x = 1 shows E(n) = an for each n ∈ N. Applying (8.29) with
x = 1/n, n ∈ N, shows a = E(1) = (E(1/n))n, i.e. E(1/n) = a1/n since E(1/n) > 0.
Next,

∀
n,k∈N

E(k/n)
(8.29)
=
(
E(1/n)

)k
= (a1/n)k = a

k
n ,

showing (8.28) holds for each x ∈ Q+. Then (8.28) also holds for each x ∈ R+, since, if
(qn)n∈N is a sequence in Q+ with limn→∞ qn = x, then the continuity of E implies

ax = lim
n→∞

aqn = lim
n→∞

E(qn) = E(x).

Finally, if x ∈ R−, then

ax = (a−x)−1 =
(
E(−x)

)−1
= E(x),

completing the proof that (8.28) holds for each x ∈ R. �
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Theorem 8.16. We consider the exponential function exp as defined in (8.24). The
following holds:

(a) exp is continuous on C.

(b) exp(z + w) = exp(z) exp(w) is valid for all z, w ∈ C.

(c) With e := exp(1) (cf. Def. and Rem. 8.14), it is

∀
x∈R

ex = exp(x) =
∞∑

n=0

xn

n!
.

Proof. (a) holds by Cor. 8.10; for (b), we compute (using (7.91)),

∀
z,w∈C









exp(z) exp(w) =
∞∑

n=0

cn,

where cn =
n∑

j=0

zj

j!

wn−j

(n− j)!
=

1

n!

n∑

j=0

(
n

j

)

zj wn−j
(5.23)
=

(z + w)n

n!









;

(8.30)
and then (c) is an immediate consequence of (a), (b), and Prop. 8.15. �

Definition 8.17. Let M ⊆ C. If ζ ∈ C is a cluster point of M , then a function
f : M −→ K is said to tend to η ∈ K (or to have the limit η ∈ K) for z → ζ
(denoted by limz→ζ f(z) = η) if, and only if, for each sequence (zk)k∈N in M \ {ζ} with
limk→∞ zk = ζ, the sequence (f(zk))k∈N converges to η ∈ K, i.e.

lim
z→ζ

f(z) = η ⇔ ∀
(zk)k∈N in M\{ζ}

(

lim
k→∞

zk = ζ ⇒ lim
k→∞

f(zk) = η
)

. (8.31)

Theorem 8.18. We consider the exponential function exp as defined in (8.24). With
ez := exp(z) for each z ∈ C and ln x := logexp(1)(x) for each x ∈ R+ (cf. Th. 8.16(c)
and Def. and Rem. 8.14), we have the following limits:

lim
z→0

ez − 1

z
= 1

(
z ∈M := C \ {0}

)
, (8.32)

lim
x→0

ln(1 + x)

x
= 1

(
x ∈M :=]− 1,∞[\{0}

)
, (8.33)

∀
ξ∈R

lim
x→0

ln(1 + ξ x)
1

x = ξ
(
x ∈M := {x ∈ R : 1 + ξ x > 0} \ {0}

)
, (8.34)

∀
ξ∈R

lim
x→0

(1 + ξ x)
1

x = eξ
(
x ∈M := {x ∈ R : 1 + ξ x > 0} \ {0}

)
, (8.35)

∀
x∈R

lim
n→∞

(

1 +
x

n

)n

= ex =
∞∑

n=0

xn

n!
. (8.36)
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Proof. (8.32): From (8.24) and ez = exp(z), we obtain

∀
z 6=0

ez − 1

z
=

∞∑

n=0

zn

(n+ 1)!
= 1 +

z

2!
+
z2

3!
+ . . . ,

which, since z 7→∑∞
n=0

zn

(n+1)!
is continuous on C by Cor. 8.10, implies (8.32).

(8.33): Consider the auxiliary function f : ] − 1,∞[:−→ R, f(x) := ln(x + 1), with
f−1(x) = ex − 1. Now, given a sequence (xk)k∈N in ] − 1,∞[\{0} with limk→∞ xk = 0,
one obtains

lim
k→∞

ln(1 + xk)

xk
= lim

k→∞

ln
(
1 + f−1(f(xk))

)

f−1(f(xk))
= lim

k→∞

ln
(
1 + ef(xk) − 1

)

ef(xk) − 1

= lim
k→∞

f(xk)

ef(xk) − 1

(8.32)
= 1,

where, in the last step, it was used that limk→∞ xk = 0 and the continuity of f implies
limk→∞ f(xk) = ln 1 = 0.

Similarly, but simpler, one obtains (8.34) and (8.35) (exercise). Finally, for the sequence
(xn)n∈N with xn := 1/n, (8.35) implies (8.36). �

Definition 8.19 (Exponentiation with Complex Exponents). For each (a, z) ∈ R+×C,
we define

az := exp(z ln a), (8.37)

where exp is the function defined in (8.24). For a = e, (8.37) yields ez = exp(z), i.e.
(8.37) is consistent with (8.26).

Theorem 8.20. (a) The first two exponentiation rules of (7.54) still hold for each
a, b > 0 and each z, w ∈ C:

az+w = az aw, (8.38a)

az bz = (ab)z. (8.38b)

(b) For each a ∈ R+, the exponential function

f : C −→ C, f(z) := az, (8.39a)

is continuous, and, for each ζ ∈ C, the power function

g : R+ −→ C, g(x) := xζ , (8.39b)

is continuous.



8 CONVERGENCE OF K-VALUED FUNCTIONS 128

(c) The limit in (8.36) extends to complex numbers:

∀
z∈C

lim
n→∞

(

1 +
z

n

)n

= ez =
∞∑

n=0

zn

n!
. (8.40)

Proof. (a): We compute

az+w
(8.37)
= exp((z + w) ln a) = exp(z ln a+ w ln a)

Th. 8.16(b)
= exp(z ln a) exp(w ln a)

(8.37)
= az aw,

proving (8.38a), and

az bz
(8.37)
= exp(z ln a) exp(z ln b)

Th. 8.16(b)
= exp(z ln a+ z ln b)

(7.65e)
= exp

(
z ln(ab)

) (8.37)
= (ab)z,

proving (8.38b).

(b): The continuity of both functions follows from the continuity of exp (according to
Th. 8.16(a)) and from the fact that continuity is preserved by compositions (according
to Th. 7.41): The exponential function f , given by f(z) = ez ln a, is the composition of
the continuous functions z 7→ z ln a and w 7→ ew, whereas (analogous to Ex. 7.76(a)),
the power function g, given by g(x) = eζ lnx, is the composition g = exp ◦(ζ ln), where
ln is continuous by Cor. 7.74.

(c): We have to show that

lim
n→∞

∣
∣
∣
∣
∣

(

1 +
z

n

)n

−
∞∑

k=0

zk

k!

∣
∣
∣
∣
∣
= 0.

Given ǫ > 0, choose K ∈ N such that

∀
n≥K

∞∑

k=n

(|z|+ 1)k

k!
<
ǫ

3
.

We continue by using (5.23) to estimate

∀
n∈N

An :=

∣
∣
∣
∣
∣

(

1 +
z

n

)n

−
∞∑

k=0

zk

k!

∣
∣
∣
∣
∣
≤ Rn + Sn + T,

where

∀
n∈N

Rn :=
K−1∑

k=0

∣
∣
∣
∣

(
n

k

)
zk

nk
− zk

k!

∣
∣
∣
∣
, Sn :=

n∑

k=K

(
n

k

) |z|k
nk

, T :=
∞∑

k=K

|z|k
k!
.
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We proceed to estimate each of the three terms Rn, Sn, and T , starting with the last:

T =
∞∑

k=K

|z|k
k!

<
∞∑

k=K

(|z|+ 1)k

k!
<
ǫ

3
.

To estimate Sn, we first estimate

∀
n∈N

∀
1≤k≤n

(
n

k

)
1

nk
=

n!

k! (n− k)!nk
=

1

k!

k∏

j=1

n− k + j

n
≤ 1

k!
.

We then obtain

∀
n≥K

Sn =
n∑

k=K

(
n

k

) |z|k
nk

≤
∞∑

k=K

|z|k
k!

= T <
ǫ

3
.

To estimate Rn, we first compute the limit

lim
n→∞

(
n

k

)
1

nk
=

1

k!
lim
n→∞

k∏

j=1

n− k + j

n
=

1

k!

k∏

j=1

1 =
1

k!
,

implying limn→∞Rn = 0 and

∃
N≥K

∀
n>N

Rn <
ǫ

3
.

Combining the three estimates shows

∀
n>N≥K

An ≤ Rn + Sn + T <
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ,

completing the proof. �

8.4 Trigonometric Functions

The first “definition” of the trigonometric functions sine and cosine is the one based on
geometric visualization usually given in high school: cosx and sin x are the coordinates
of the point p = (p1, p2) ∈ R2 on the unit circle, such that x is the angle measured in
radian between the line segment between (0, 0) and (1, 0) and the line segment between
(0, 0) and p.

While this “definition” allows to obtain many important properties of sine and cosine
using geometric arguments, it is not mathematically rigorous, and, for example, provides
no clue how to compute values like sin 1. The problem is related to the fact that the
angle measured in radian between the line segment between (0, 0) and (1, 0) and the line
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segment between (0, 0) and p is supposed to be the length of the segment of the unit
circle between (1, 0) and p (taken in the counter-clockwise direction).

In the following Def. and Rem. 8.21, we will provide a mathematically rigorous definition
of sine and cosine using power series, and we will then verify that the functions have the
familiar properties one learns in high school. However, as the computation of lengths
of curved paths is actually beyond the scope of this lecture, we will not be able to see
that our sine and cosine functions are precisely the same we visualized in high school
(the interested reader is referred to Ex. 1 in Sec. 5.14 of [Wal02]).

Definition and Remark 8.21. We define the sine function, denoted sin, and the
cosine function, denoted cos by

sin : C −→ C, sin z :=
∞∑

n=0

(−1)n z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
−+ . . . , (8.41a)

cos : C −→ C, cos z :=
∞∑

n=0

(−1)n z2n

(2n)!
= 1− z2

2!
+
z4

4!
−+ . . . . (8.41b)

(a) sin and cos are well-defined and continuous: For both series and each z ∈ C, we can
estimate the absolute value of the nth summand by the nth summand of the series
for the exponential function e|z| (cf. (8.36)), which we know to be convergent from
Ex. 8.11(b). Thus, by Th. 8.9, both series in (8.41) have radius of convergence ∞
and are continuous by Cor. 8.10.

(b) cos : R −→ R (i.e. cos↾R) has a smallest positive zero α ∈ R+. We define π := 2α.
One can show π is an irrational number (see [Phi16, Sec. H.3]) and its first digits
are π = 3.14159 . . .

To see cos has a smallest positive zero and to obtain a first (very coarse) estimate,
note

∀
x∈R+

∀
k∈N

(
xk

k!
>

xk+1

(k + 1)!
⇔ 1 >

x

k + 1
⇔ k + 1 > x

)

,

showing xk

k!
> xk+1

(k+1)!
holds for each k ≥ 2 and each x ∈]0, 3[. In particular, the

summands of the series in (8.41) converge monotonically to 0 (for k ≥ 2) and, since
the series are alternating for x 6= 0, Th. 7.85 applies and (7.79) yields

∀
0<x<3







f(x) := 1− x2

2
< cos x < 1− x2

2
+
x4

24
=: g(x),

x− x3

6
< sin x < x− x3

6
+

x5

120
.







(8.42)
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The zeros of x 7→ f(x) are −
√
2,
√
2, i.e.

√
2 is its smallest positive zero; the zeros

of x 7→ g(x) are −
√

6− 2
√
3,−

√

6 + 2
√
3,
√

6− 2
√
3,
√

6 + 2
√
3, i.e.

√

6− 2
√
3

is its smallest positive zero. Thus, as f(0) = g(0) = 1, the intermediate value Th.
7.57 implies cos has a smallest positive zero α and

1.4 <
√
2 <

π

2
:= α <

√

6− 2
√
3 < 1.6 (8.43)

Theorem 8.22. We have the following identities:

sin 0 = 0, cos 0 = 1, (8.44a)

∀
z∈C

sin z = − sin(−z), cos z = cos(−z), (8.44b)

∀
z,w∈C

sin(z + w) = sin z cosw + cos z sinw, (8.44c)

∀
z,w∈C

cos(z + w) = cos z cosw − sin z sinw, (8.44d)

∀
z∈C

(sin z)2 + (cos z)2 = 1, (8.44e)

cos
π

2
= 0, sin

π

2
= 1, ∀

x∈[0,π
2
[

cos x > 0, (8.44f)

∀
z∈C

sin
(

z +
π

2

)

= cos z, cos
(

z +
π

2

)

= − sin z, (8.44g)

∀
z∈C

sin(z + π) = − sin z, cos(z + π) = − cos z, (8.44h)

∀
z∈C

sin(z + 2π) = sin z, cos(z + 2π) = cos z, (8.44i)

lim
z→0

sin z

z
= 1, lim

z→0

cos z − 1

z2
= −1

2
. (8.44j)

Identities (8.44i) can be restated as sine and cosine being periodic functions with period
2π.

Proof. (8.44a) is immediate from (8.41) since, for z = 0, all summands of the sine
series are 0 and all summands of the cosine series are 0, except the first one, which is
(−1)0 00

0!
= 1.

(8.44b) is also immediate from (8.41), since (−z)2n+1 = (−1)2n+1z2n+1 = −z2n+1 and
(−z)2n = (−1)2nz2n = z2n.
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(8.44c) and (8.44d) can be verified using the Cauchy product: According to (7.91),

∀
z,w∈C















sin z cosw =
∞∑

n=0

cn, cos z sinw =
∞∑

n=0

dn,

where cn =
n∑

j=0

(−1)j z2j+1

(2j + 1)!

(−1)n−j w2(n−j)

(2(n− j))!
,

dn =
n∑

j=0

(−1)j z2j

(2j)!

(−1)n−j w2(n−j)+1

(2(n− j) + 1)!
,















,

that means, for each z, w ∈ C,

cn + dn =
n∑

j=0

(−1)n z2j+1

(2j + 1)!

w2(n−j)

(2(n− j))!
+

n∑

j=0

(−1)n z2j

(2j)!

w2(n−j)+1

(2(n− j) + 1)!

=
n∑

j=0

(−1)n z2j+1

(2j + 1)!

w2n+1−(2j+1)

(2n+ 1− (2j + 1))!
+

n∑

j=0

(−1)n z2j

(2j)!

w2n+1−2j

(2n+ 1− 2j)!

= (−1)n
2n+1∑

j=0

zj

j!

w2n+1−j

(2n+ 1− j)!
=

(−1)n

(2n+ 1)!

2n+1∑

j=0

(
2n+ 1

j

)

zj w2n+1−j

=
(−1)n (z + w)2n+1

(2n+ 1)!
,

proving (8.44c). Similarly, according to (7.91),

∀
z,w∈C















cos z cosw =
∞∑

n=0

cn, sin z sinw =
∞∑

n=0

dn,

where cn =
n∑

j=0

(−1)j z2j

(2j)!

(−1)n−j w2(n−j)

(2(n− j))!
,

dn =
n∑

j=0

(−1)j z2j+1

(2j + 1)!

(−1)n−j w2(n−j)+1

(2(n− j) + 1)!
,















,
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that means, for each z, w ∈ C,

c0 = 1 and

∀
n∈N

cn − dn−1 =
n∑

j=0

(−1)n z2j

(2j)!

w2(n−j)

(2(n− j))!
−

n−1∑

j=0

(−1)n−1 z2j+1

(2j + 1)!

w2(n−1−j)+1

(2(n− 1− j) + 1)!

=
n∑

j=0

(−1)n z2j

(2j)!

w2n−2j

(2n− 2j)!
+

n−1∑

j=0

(−1)n z2j+1

(2j + 1)!

w2n−(2j+1)

(2n− (2j + 1))!

= (−1)n
2n∑

j=0

zj

j!

w2n−j

(2n− j)!
=

(−1)n

(2n)!

2n∑

j=0

(
2n

j

)

zj w2n−j

=
(−1)n (z + w)2n

(2n)!
,

proving (8.44d).

(8.44e): One computes for each z ∈ C:

(sin z)2 + (cos z)2 = cos z cos(−z)− sin z sin(−z) (8.44d)
= cos(z − z) = cos 0 = 1.

(8.44f): cos π
2
= 0 and cos x > 0 for 0 ≤ x < π

2
hold according to the definition of π in

Def. and Rem. 8.21(b). Then

(

sin
π

2

)2 (8.44e)
= 1−

(

cos
π

2

)2

= 1 and sin
π

2
>
π

2
− (π/2)3

6

(8.43)
> 1.4− (1.6)3

6
> 0.7 > 0.

(8.44g) is immediate from (8.44c), (8.44d), and (8.44f).

(8.44h): One obtains

sin π = sin
(π

2
+
π

2

)
(8.44c)
= 1 · 0 + 0 · 1 = 0,

cos π = cos
(π

2
+
π

2

)
(8.44d)
= 0 · 0− 1 · 1 = −1,

∀
z∈C

sin(z + π)
(8.44c)
= − sin z + 0 = − sin z,

∀
z∈C

cos(z + π)
(8.44d)
= − cos z + 0 = − cos z.
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(8.44i): One obtains

sin(2π) = sin(π + π)
(8.44c)
= 0 + 0 = 0,

cos(2π) = cos(π + π)
(8.44d)
= (−1)(−1)− 0 = 1,

∀
z∈C

sin(z + 2π)
(8.44c)
= sin z + 0 = sin z,

∀
z∈C

cos(z + 2π)
(8.44d)
= cos z − 0 = cos z.

(8.44j): One obtains

∀
z∈C\{0}









sin z

z
=

∞∑

n=0

(−1)n z2n

(2n+ 1)!
= 1− z2

3!
+
z4

5!
−+ . . . ,

cos z − 1

z2
=

∞∑

n=0

(−1)n+1 z2n

(2(n+ 1))!
= − 1

2!
+
z2

4!
− z4

6!
+− . . .









.

For both series on the right-hand side and each z ∈ C, we can estimate the absolute
value of each summand by the corresponding summand of the exponential series for e|z|

(cf. (8.36)), showing they have radius of convergence ∞ and are continuous by Cor. 8.10.
In particular, their continuity in z = 0 proves (8.44j). �

Theorem 8.23. One has sin(R) = cos(R) = [−1, 1], i.e. the image of both sine and
cosine is [−1, 1]. Moreover, for each k ∈ Z:

sin is strictly increasing on
[

−π
2
+ 2kπ,

π

2
+ 2kπ

]

, (8.45a)

sin is strictly decreasing on

[
π

2
+ 2kπ,

3π

2
+ 2kπ

]

, (8.45b)

cos is strictly increasing on [(2k − 1)π, 2kπ], (8.45c)

cos is strictly decreasing on [2kπ, (2k + 1)π], (8.45d)

which, due to (8.44e), can be summarized (and visualized) by saying that, if x runs from
2kπ to 2(k + 1)π, then (cosx, sin x) runs once counterclockwise through the unit circle,
starting at (1, 0).

Proof. From (8.44e), we know sin(R) ⊆ [−1, 1] and cos(R) ⊆ [−1, 1]. As

sin
π

2

(8.44f)
= 1, sin

(

−π
2

)
(8.44b)
= −1, cos 0

(8.44a)
= 1, cos π

(8.44h)
= − cos 0 = −1,
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the continuity of sine and cosine together with the intermediate value Th. 7.57 implies
sin(R) = cos(R) = [−1, 1].

From (8.42), we know 0 < x− x3

6
< sin x and cosx < 1− x2

2
+ x4

24
< 1 for each x ∈]0, π

2
],

implying

∀
0≤x<x+y≤π

2

cos(x+ y) = cos x cos y − sin x sin y ≤ cos x cos y < cos x,

showing cos is strictly decreasing on [0, π
2
]. Then cos is strictly increasing on [−π

2
, 0] by

(8.44b), sin is strictly increasing on [0, π
2
] and strictly decreasing on [π

2
, π] by (8.44g),

implying sin is strictly increasing on [−π
2
, 0] and strictly decreasing on [−π,−π

2
] by

(8.44b), i.e. sin is strictly increasing on [3π
2
, 2π] and strictly decreasing on [π, 3π

2
] by

(8.44i), implying cos is strictly decreasing on [π
2
, π] and strictly increasing on [−π,−π

2
]

by (8.44g). Since this fixes the monotonicity properties of both sine and cosine over
more than one period, the general statements in (8.45) are provided by (8.44i). �

We now come to important complex number relations between sine, cosine, and the
exponential function.

Theorem 8.24. One has the following formulas, relating the (complex) sine, cosine,
and exponential function:

∀
z∈C

eiz = cos z + i sin z (Euler formula), (8.46a)

∀
z∈C

cos z =
eiz + e−iz

2
, (8.46b)

∀
z∈C

sin z =
eiz − e−iz

2i
. (8.46c)

Proof. Let z ∈ C. For (8.46a), one computes

eiz
(8.37),(8.24)

=
∞∑

n=0

(iz)n

n!
=

∞∑

n=0

(
(−1)n z2n

(2n)!
+
i (−1)n z2n+1

(2n+ 1)!

)

Th. 7.93(a)
=

∞∑

n=0

(−1)n z2n

(2n)!
+ i

∞∑

n=0

(−1)n z2n+1

(2n+ 1)!

(8.41)
= cos z + i sin z.

Then

eiz + e−iz
(8.46a)
= cos z + i sin z + cos(−z) + i sin(−z) = 2 cos z

proves (8.46b), and

eiz − e−iz
(8.46a)
= cos z + i sin z − cos(−z)− i sin(−z) = 2i sin z

proves (8.46c). �
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As a first application of (8.46), we can now determine all solutions to the equation
ez = 1 and all zeros (if any) of exp, sin, and cos:

Theorem 8.25. The set of (complex) solutions to the equation ez = 1 consists precisely
of all integer multiples of 2πi, the exponential function has no zeros (neither in R nor
in C), and the set of all (real or complex) zeros of sine and cosine consists of a discrete
set of real numbers. More precisely:

exp−1{1} = {2kπi : k ∈ Z}, (8.47a)

exp−1{0} = ∅, (8.47b)

sin−1{0} = {kπ : k ∈ Z}, (8.47c)

cos−1{0} =
{
(2k + 1) π

2
: k ∈ Z

}
. (8.47d)

Proof. We start by considering the zeros of the functions cos, sin : R −→ R: Due to
(8.44f), cos x > 0 for each x ∈ [0, π

2
[ such that cos(−x) = cosx (by (8.44b)) implies π

2

to be the only zero of cos in the interval ]− π
2
, π

2
]. Then, since cos(x+ π) = − cos x for

each x ∈ R by (8.44h), π
2
and π

2
+π are the only zeros of cos in the interval ]− π

2
, π

2
+π],

and, thus, using that cos has period 2π according to (8.44i), adding integer multiples of
2π to π

2
and π

2
+ π must generate precisely all zeros of cos : R −→ R, i.e.

R ∩ cos−1{0} =
{
π
2
+ k π : k ∈ Z

}
=
{
(2k + 1) π

2
: k ∈ Z

}
.

Since, by (8.44g), sin x = − cos(x+ π
2
) for each x ∈ R, we also obtain

R ∩ sin−1{0} =
{
−π

2
+ x : x ∈ R ∩ cos−1{0}

}
= {kπ : k ∈ Z}.

We consider (8.47a) next. If k ∈ Z, then

e2kπi =
(
e2πi
)k (8.46a)

=
(
cos(2π) + i sin(2π)

)k
= 1k = 1,

proving “⊇”. For the remaining inclusion, assume z ∈ exp−1{1}, i.e. ez = 1, and write
z = x+ iy with x, y ∈ R. Then

1 = |ez| = ex |eiy| (8.46a)
= ex

∣
∣ cos y + i sin y| = ex

√

(sin y)2 + (cos y)2
(8.44e)
= ex,

first implying x = 0 and, then, using (8.46a) once again, 1 = ez = eiy = cos y + i sin y
implies cos y = 1 and sin y = 0, i.e. y ∈ {2kπ : k ∈ Z}, proving “⊆”.

To finish the proof of (8.47c), assume sin z = 0. Then eiz = cos z = cos(−z) = e−iz,
implying e2iz = 1 and, by (8.47a), there is k ∈ Z such that 2iz = 2kπi, i.e. z = kπ,
proving (8.47c). Since, by (8.44g), cos z = sin(z + π

2
) for each z ∈ C, we also obtain

(8.47d):
cos−1{0} =

{
−π

2
+ z : z ∈ sin−1{0}

}
=
{
(2k + 1) π

2
: k ∈ Z

}
.

Finally, if z = x+ iy with x, y ∈ R, then |ez| = ex |eiy| = ex 6= 0 proves (8.47b). �
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Definition and Remark 8.26. We define tangent and cotangent by

tan : C \ cos−1{0}
︸ ︷︷ ︸

C \ {(2k + 1)π
2
: k ∈ Z} by (8.47d)

−→ C, tan z :=
sin z

cos z
, (8.48a)

cot : C \ sin−1{0}
︸ ︷︷ ︸

C \ {kπ : k ∈ Z} by (8.47c)

−→ C, cot z :=
cos z

sin z
, (8.48b)

respectively. Since sine and cosine are both continuous, tangent and cotangent are also
both continuous on their respective domains. Both functions have period π, since, for
each z in the respective domains,

tan(z + π) =
sin(z + π)

cos(z + π)

(8.44h)
=

− sin z

− cos z
= tan z, cot(z + π)

(8.44h)
=

− cos z

− sin z
= cot z.

(8.49)
Since

lim
n→∞

sin

(
π

2
− 1

n

)

= sin
π

2
= 1 ∧ lim

n→∞
cos

(
π

2
− 1

n

)

= cos
π

2
= 0

∧ cos

(
π

2
− 1

n

)

> 0 ⇒ lim
n→∞

tan

(
π

2
− 1

n

)

= ∞,

lim
n→∞

sin

(

−π
2
+

1

n

)

= sin
(

−π
2

)

= −1 ∧ lim
n→∞

cos

(

−π
2
+

1

n

)

= cos
(

−π
2

)

= 0

∧ cos

(

−π
2
+

1

n

)

> 0 ⇒ lim
n→∞

tan

(

−π
2
+

1

n

)

= −∞,

lim
n→∞

sin
1

n
= sin 0 = 0 ∧ lim

n→∞
cos

1

n
= cos 0 = 1 ∧ sin

1

n
> 0

⇒ lim
n→∞

cot
1

n
= ∞,

lim
n→∞

sin

(

π − 1

n

)

= sin π = 0 ∧ lim
n→∞

cos

(

π − 1

n

)

= cos π = −1

∧ sin

(

π − 1

n

)

> 0 ⇒ lim
n→∞

cot

(

π − 1

n

)

= −∞,

we obtain tan(R \ cos−1{0}) = cot(R \ sin−1{0}) = R.
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For each k ∈ Z,

tan is strictly increasing on
]

−π
2
+ kπ,

π

2
+ kπ

[

, (8.50a)

cot is strictly decreasing on
]

kπ, (k + 1)π
[

: (8.50b)

On ]0, π
2
[, sin is strictly increasing and cos is strictly decreasing, i.e. tan is strictly

increasing and cot is strictly decreasing. Since tan(−x) = sin(−x)/ cos(−x) = − tan(x),
on ]− π

2
, 0[, tan is strictly increasing and cot is strictly decreasing. Taking into account

the signs of tan and cot on the respective intervals and their π-periodicity according to
(8.49) proves (8.50).

Definition and Remark 8.27. Since we have seen sin to be strictly increasing on
[−π

2
, π
2
] with image [−1, 1], cos to be strictly decreasing on [0, π] with image [−1, 1], tan

to be strictly increasing on ]− π
2
, π
2
[ with image R, and cot to be strictly decreasing on

]0, π[ with image R; and since all four functions are continuous, Th. 7.60 implies the
existence of inverse functions, denoted by

arcsin : [−1, 1] −→ [−π/2, π/2], (8.51a)

arccos : [−1, 1] −→ [0, π], (8.51b)

arctan : R −→]− π/2, π/2[, (8.51c)

arccot : R −→]0, π[, (8.51d)

respectively, where all four inverse functions are continuous, arcsin is strictly increasing,
arccos is strictly decreasing, arctan is strictly increasing, and arccot is strictly decreasing.

Of course, using (8.45) and (8.50), respectively, one can also obtain the inverse functions
on different intervals, and, in the literature, such inverse functions are, indeed, considered
as well. Somewhat confusingly, it is common to denote all these different functions by
the same symbols, namely the ones introduced in (8.51). Here, we will not need to pursue
this any further, i.e. we will only consider the inverse functions precisely as defined in
(8.51), which are also known as the principle inverse functions of sin, cos, tan, and cot,
respectively.

8.5 Polar Form of Complex Numbers, Fundamental Theorem
of Algebra

Theorem 8.28. For each complex number z ∈ C, there exist real numbers r ≥ 0 and
ϕ ∈ R such that

z = r eiϕ. (8.52)
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Moreover, if (8.52) holds with r ≥ 0 and ϕ ∈ R, then r is the modulus of z and, for
z 6= 0, ϕ is uniquely determined up to addition of an integer multiple of 2π, i.e.

∀
z∈C\{0}

(

z = r eiϕ1 = r eiϕ2 ∧ r ≥ 0 ⇒ r = |z| ∧ ∃
k∈Z

ϕ1 − ϕ2 = 2πk
)

. (8.53)

Proof. For z = 0, there is nothing to prove, so we assume z 6= 0 and set r := |z|. We
write z = x+ iy with x, y ∈ R, first assuming y ≥ 0. Then

z

r
= ξ + iη, where ξ =

x

r
, η =

y

r
≥ 0, ξ2 + η2 = 1. (8.54)

In particular, −1 ≤ ξ ≤ 1. Thus, letting

ϕ := arccos ξ,

we obtain ϕ ∈ [0, π], ξ = cosϕ, and sinϕ ≥ 0, yielding

sinϕ =
√

1− (cosϕ)2 =
√

1− ξ2
(8.54)
= η.

In consequence,
z

r
= ξ + iη = cosϕ+ i sinϕ

(8.46a)
= eiϕ,

as desired. If y ≤ 0, then the above shows the existence of ψ ∈ R such that z̄ = x− iy =
reiψ = r cosψ + ir sinψ. Letting ϕ := −ψ, we, once again, have z = r cosψ − ir sinψ =
re−iψ = reiϕ, as desired, completing the existence proof for the representation (8.52).
Now assume (8.52) holds with r ≥ 0. Then

|z| = r|eiϕ| = r
√

(sinϕ)2 + (cosϕ)2 = r.

Finally, if r eiϕ1 = r eiϕ2 with r > 0, then ei(ϕ1−ϕ2) = 1, i.e. i(ϕ1 − ϕ2) ∈ {2kπi : k ∈ Z}
by (8.47a). �

Definition and Remark 8.29. The representation of z ∈ C given by (8.52) is called its
polar form, where (r, ϕ) are also called polar coordinates of z, ϕ is called an argument of
z. For z 6= 0, one can fix the argument uniquely by the additional requirement ϕ ∈ [0, 2π[
(but one also finds other choices, for example ϕ ∈]− π, π], in the literature). The above
terminology is consistent with the common use of calling (r, ϕ) polar coordinates of the
vector z = (x, y) ∈ R2(= C) (in contrast to the Cartesian coordiantes (x, y)), where r
constitutes the distance of the point z = (x, y) from the origin (0, 0) and ϕ is the angle
between the vector z = (x, y) and the x-axis (cf. the three introductory paragraphs
of the previous Sec. 8.4). As promised, we can now better understand the geometric
interpretation of complex multiplication already described in Rem. 5.12: If z1 = r1e

iϕ1

and z2 = r2e
iϕ2 , then z1z2 = r1r2e

i(ϕ1+ϕ2), i.e. complex multiplication, indeed, means
multiplying absolute values and adding arguments.
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Corollary 8.30. If z ∈ C, then |z| = 1 holds if, and only if, there exists ϕ ∈ R such
that z = eiϕ – in other words, the map

f : R −→ {z ∈ C : |z| = 1}, f(ϕ) := eiϕ, (8.55)

is surjective. Moreover f(ϕ1) = f(ϕ2) holds if, and only if, ϕ1 − ϕ2 = 2πk for some
k ∈ Z.

Proof. Everything is immediate from Th. 8.28. �

Corollary 8.31 (Roots of Unity). For each n ∈ N, the equation zn = 1 has precisely n
distinct solutions ζ1, . . . , ζn ∈ C, where

∀
k=1,...,n

ζk := ek2πi/n
(8.46a)
= cos

k2π

n
+ i sin

k2π

n
= ζk1 . (8.56)

The numbers ζ1, . . . , ζn defined in (8.56) are called the nth roots of unity.

Proof. It is ζnk = ek2πi = 1 for each k ∈ {1, . . . , n} and the ζ1, . . . , ζn are all distinct
by Cor. 8.30, since, for k, l ∈ {1, . . . , n} with k 6= l, (k − l)/n /∈ Z. As ζ1, . . . , ζn are
n distinct zeros of the polynomial P : C −→ C, P (z) := zn − 1, and P has at most n
zeros by Th. 6.6(a), ζ1, . . . , ζn constitute all solutions to zn = 1. �

We are now in a position to prove one of the central results of analysis and algebra,
namely the fundamental theorem of algebra. The following proof does not need any tools
beyond the ones provided by this class – it is actually mainly founded on continuous
functions attaining a min and a max on compact sets according to Th. 7.54 and the
existence of nth roots of unity according to Cor. 8.31.

Theorem 8.32 (Fundamental Theorem of Algebra). Every polynomial P : C −→ C,
P (z) :=

∑n
j=0 ajz

j, of degree n ≥ 1 (i.e. a0, . . . , an ∈ C with an 6= 0) has at least one
zero z0 ∈ C.

Proof. Dividing the equation P (z) = 0 by an 6= 0, it suffices to consider the case an = 1.
We therefore assume

∀
z∈C

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0.

Claim 1. The function |P | attains its global min on C, i.e. there exists z0 ∈ C such that
|P | is minimal in z0.



8 CONVERGENCE OF K-VALUED FUNCTIONS 141

Proof. We first note

∀
z 6=0

P (z) = zn
(
1 + r(z)

)
, where r(z) :=

an−1

z
+ · · ·+ a0

zn
.

Set M := |a0|+ · · ·+ |an−1| and R := max{1, 2M}.
Then

∀
|z|≥R

|r(z)|
|z|≥1

≤ M

|z|
|z|≥2M

≤ 1

2

and, thus,

∀
|z|≥R

|P (z)| = |z|n
∣
∣1 + r(z)

∣
∣ ≥ |z|n

2
≥M.

This estimate together with |P (0)| = |a0| ≤M shows that the min of |P | on the compact
disk BR(0) (see Ex. 7.47(a)) (such a min z0 ∈ BR(0) exists due to Th. 7.54) must be
the global min of |P | on C. N

Claim 2. If |P | has a min in z0 ∈ C, then P (z0) = 0.

Proof. Proceeding by contraposition, we assume P (z0) 6= 0 and show that |P | does not
have a min in z0. We need to construct z1 ∈ C such that |P (z1)| < |P (z0)|. To this end,
define

p : C −→ C, p(z) :=
P (z0 + z)

P (z0)
.

Then p is still a polynomial of degree n. Since p(0) = 1,

∃
k∈{1,...,n}

∃
bk,...,bn∈C

∀
z∈C

p(z) = 1 +
n∑

j=k

bjz
j, bk 6= 0.

Write −b−1
k in polar form, i.e. −b−1

k = reiϕ with r ∈ R+ and ϕ ∈ R. Define

β := k
√
r eiϕ/k

(
i.e. βk = reiϕ = −b−1

k

)

and

q : C −→ C, q(z) := p(βz) = 1 + bkβ
kzk +

n∑

j=k+1

bjβ
jzj = 1− zk + zk+1 S(z),

where S is the polynomial

S : C −→ C, S(z) :=
n−k−1∑

j=0

bk+1+jβ
k+1+jzj (S ≡ 0 in case k = n).
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Then, according to Th. 7.54,

∃
C∈R+

∀
z∈B1(0)

|S(z)| ≤ C.

Letting
c := min{1, C−1},

one obtains
∀

0<|z|<c

∣
∣zk+1 S(z)

∣
∣ ≤ C |z|k+1 < |z|k

and, thus,
∀

x∈]0,c[
|q(x)| ≤ 1− xk +

∣
∣xk+1 S(x)

∣
∣ < 1− xk + xk = 1.

Thus, finally,

∀
x∈]0,c[

|P (z0 + βx)|
|P (z0)|

= |p(βx)| = |q(x)| < 1,

showing |P | does not have a min in z0. N

Combining Claims 1 and 2 completes the proof of the theorem. �

Corollary 8.33. For every polynomial P : C −→ C of degree n ≥ 1, there exist numbers
c, ζ1, . . . , ζn ∈ C such that

P (z) = c

n∏

j=1

(z − ξj) = c(z − ζ1)(z − ζ2) · · · (z − ζn) (8.57)

(the ζ1, . . . , ζn are precisely all the zeros of P , some or all of which might be identical).

Proof. One just combines Th. 8.32 with Rem. 6.7. �

9 Differential Calculus

9.1 Definition of Differentiability and Rules

The basic idea of differential calculus is to locally approximate nonlinear functions f by
linear functions. In our case, f will be defined on a subset M of R and, given ξ ∈ M
and R-valued f , we will investigate the question if we can define a number f ′(ξ) ∈ R

that represents the slope of the graph of f at ξ such that the line through ξ with slope
f ′(ξ) (called the tangent of f in ξ) can be considered as a local approximation of the
graph of f .



9 DIFFERENTIAL CALCULUS 143

If such a local approximation of f in ξ is at all reasonable, then, for x 6= ξ,

f(x)− f(ξ)

x− ξ

should provide “good” approximations of f ′(ξ) if x tends to ξ. This leads to the following
Def. 9.1, where we also allow C-valued functions (while the above-described geometric
interpretation only works for R-valued functions, it can be applied to both the real and
the imaginary parts of a C-valued function, cf. Rem. 9.2 below); but note that we do
not consider differentiability of functions f : C −→ C, which would lead to the notion
of complex differentiability or holomorphicity, which is studied in the field of Complex
Analysis and is beyond the scope of this class.

Definition 9.1. Let a < b, f : ]a, b[−→ K (a = −∞, b = ∞ is admissible), and ξ ∈]a, b[.
Then f is said to be differentiable at ξ if, and only if, the following limit in (9.1) exists

in the sense of Def. 8.17 (where x 7→ f(x)−f(ξ)
x−ξ plays the role of x 7→ f(x) in Def. 8.17).

The limit is then called the derivative of f in ξ. Many symbols are used in the literature
to denote derivatives, the following provides a selection:

f ′(ξ) := ∂xf(ξ) :=
df(ξ)

dx
:= lim

x→ξ

f(x)− f(ξ)

x− ξ
= lim

h→0

f(ξ + h)− f(ξ)

h
. (9.1)

Note both limits occurring in (9.1) are, indeed, identical, since the sequence (xk)k∈N in
]a, b[ converges to ξ if, and only if, the sequence (hk)k→∞ with hk := xk − ξ converges
to 0. The number in (9.1) (if it exists) is also called a differential quotient, whereas
f(x)−f(ξ)

x−ξ is known as a difference quotient.

f is called differentiable if, and only if, it is differentiable at each ξ ∈]a, b[. In that case,
one calls the function

f ′ : ]a, b[−→ K, x 7→ f ′(x), (9.2)

the derivative of f .

Remark 9.2. In the situation of Def. 9.1, the complex-valued function f : ]a, b[−→ C

is differentiable at ξ ∈]a, b[ if, and only if, both functions Re f, Im f : ]a, b[−→ R are
differentiable, and, in that case

f ′(ξ) = (Re f)′(ξ) + i (Im f)′(ξ). (9.3)

Indeed, we merely have to note

∀
x,ξ∈]a,b[,
x 6=ξ

f(x)− f(ξ)

x− ξ
=

Re f(x)− Re f(ξ)

x− ξ
+ i

Im f(x)− Im f(ξ)

x− ξ
(9.4)

and that, by (7.2) a sequence (zn)n∈N in C converges to ζ ∈ C if, and only if, both
limn→∞ Re zn = Re ζ and limn→∞ Im zn = Im ζ hold.
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Definition 9.3. If f : ]a, b[−→ R as in Def. 9.1 is differentiable at ξ ∈]a, b[, then the
graph of the affine function

L : R −→ R, L(x) := f(ξ) + f ′(ξ)(x− ξ), (9.5)

i.e. the line through (ξ, f(ξ)) with slope f ′(ξ) is called the tangent to the graph of f at
ξ.

Theorem 9.4. If f : ]a, b[−→ K as in Def. 9.1 is differentiable at ξ ∈]a, b[, then it is
continuous at ξ. In particular, if f is everywhere differentiable, then it is everywhere
continuous.

Proof. Let (xk)k∈N be a sequence in ]a, b[\{ξ} such that limk→∞ xk = ξ. Then

lim
k→∞

(
f(xk)− f(ξ)

)
= lim

k→∞

(xk − ξ)
(
f(xk)− f(ξ)

)

xk − ξ
= 0 · f ′(ξ) = 0, (9.6)

proving the continuity of f in ξ. �

Example 9.5. (a) For each a, b ∈ K, the affine function f : R −→ K, f(x) := ax+ b,
is differentiable with f ′(x) = a for each x ∈ R: If x ∈ R and (hk)k∈N is a sequence
with hk 6= 0 such that limk→∞ hk = 0, then

lim
k→∞

f(x+ hk)− f(x)

hk
= lim

k→∞

a(x+ hk) + b− ax− b

hk
= lim

k→∞

a hk
hk

= a. (9.7)

In particular, each constant function f ≡ b has derivative f ′ ≡ 0.

(b) For each c ∈ K, the function f : R −→ K, f(x) := ecx, is differentiable with
f ′(x) = c ecx for each x ∈ R (in particular, c = 1 yields f ′(x) = ex for f(x) = ex,
and c = ln a yields f ′(x) = (ln a) ax for f(x) = ax = ex ln a, a ∈ R+): The case c = 0
was treated in (a). Thus, let c 6= 0. If x ∈ R and (hk)k∈N is a sequence with hk 6= 0
such that limk→∞ hk = 0, then

lim
k→∞

f(x+ hk)− f(x)

hk
= lim

k→∞

ecx+chk − ecx

hk
= c ecx lim

k→∞

echk − 1

chk

(8.32)
= c ecx. (9.8)

(c) The sine and the cosine function f, g : R −→ R, f(x) := sin x, g(x) := cos x, are
differentiable with f ′(x) = cos x and g′(x) = − sin x for each x ∈ R: If x ∈ R and
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(hk)k∈N is a sequence with hk 6= 0 such that limk→∞ hk = 0, then

lim
k→∞

f(x+ hk)− f(x)

hk
= lim

k→∞

sin(x+ hk)− sin x

hk
(8.44c)
= lim

k→∞

sin x coshk + cos x sinhk − sin x

hk

= sin x lim
k→∞

hk(coshk − 1)

h2k
+ cos x lim

k→∞

sinhk
hk

(8.44j)
= (sin x) · 0 ·

(

−1

2

)

+ (cos x) · 1 = cos x. (9.9)

The proof of g′(x) = − sin x is left as an exercise.

(d) The absolute value function f : R −→ R, f(x) := |x|, is not differentiable at ξ = 0:

lim
n→∞

f(0 + 1
n
)− f(0)
1
n

= lim
n→∞

1 = 1, (9.10a)

lim
n→∞

f(0− 1
n
)− f(0)

− 1
n

= lim
n→∞

1
n

− 1
n

= −1, (9.10b)

showing that f(0+h)−f(0)
h

does not have a limit for h→ 0.

Theorem 9.6. Let a < b, f, g : ]a, b[−→ K (a = −∞, b = ∞ is admissible), and
ξ ∈]a, b[. Assume f and g are differentiable at ξ.

(a) For each λ ∈ K, λf is differentiable at ξ and (λf)′(ξ) = λf ′(ξ).

(b) f + g is differentiable at ξ and (f + g)′(ξ) = f ′(ξ) + g′(ξ).

(c) Product Rule: fg is differentiable at ξ and (fg)′(ξ) = f ′(ξ)g(ξ) + f(ξ)g′(ξ).

(d) Quotient Rule: If g(ξ) 6= 0, then f/g is differentiable at ξ and

(f/g)′(ξ) =
f ′(ξ)g(ξ)− f(ξ)g′(ξ)

(g(ξ))2
, in particular (1/g)′(ξ) = − g′(ξ)

(g(ξ))2
.

Proof. Let (hk)k∈N be a sequence with hk 6= 0 such that limk→∞ hk = 0.

For (a), one computes

lim
k→∞

(λf)(ξ + hk)− (λf)(ξ)

hk
= lim

k→∞

λf(ξ + hk)− λf(ξ)

hk

= λ lim
k→∞

f(ξ + hk)− f(ξ)

hk
= λ f ′(ξ).
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For (b), one computes

lim
k→∞

(f + g)(ξ + hk)− (f + g)(ξ)

hk
= lim

k→∞

f(ξ + hk)− f(ξ) + g(ξ + hk)− g(ξ)

hk

= lim
k→∞

f(ξ + hk)− f(ξ)

hk
+ lim

k→∞

g(ξ + hk)− g(ξ)

hk
= f ′(ξ) + g′(ξ).

For (c), one computes

lim
k→∞

(fg)(ξ + hk)− (fg)(ξ)

hk

= lim
k→∞

f(ξ + hk)g(ξ + hk)− f(ξ)g(ξ + hk) + f(ξ)g(ξ + hk)− f(ξ)g(ξ)

hk

= lim
k→∞

g(ξ + hk) lim
k→∞

f(ξ + hk)− f(ξ)

hk
+ f(ξ) lim

k→∞

g(ξ + hk)− g(ξ)

hk

= f ′(ξ)g(ξ) + f(ξ)g′(ξ),

where, in the last equality, we used the continuity of g in ξ according to Th. 9.4.

For (d), one first proves the special case f ≡ 1 by

lim
k→∞

(1/g)(ξ + hk)− (1/g)(ξ)

hk
= lim

k→∞

g(ξ)− g(ξ + hk)

g(ξ + hk)g(ξ)hk
= − g′(ξ)

(g(ξ))2
,

which implies the general case using (c):

(f/g)′(ξ) =

(

f · 1
g

)′
(ξ) =

f ′(ξ)

g(ξ)
− f(ξ)g′(ξ)

(g(ξ))2
=
f ′(ξ)g(ξ)− f(ξ)g′(ξ)

(g(ξ))2
,

completing the proof. �

Example 9.7. (a) Each polynomial is differentiable and the derivative is, again, a
polynomial. More precisely,

P : R −→ K, P (x) =
n∑

j=0

ajx
j, aj ∈ K

⇒ P ′ : R −→ K, P ′(x) =
n∑

j=1

j ajx
j−1 :

(9.11)

The cases n = 0, 1 are provided by Ex. 9.5(a). To complete the induction proof of
(9.11), we carry out the induction step for each n ∈ N: Writing P (x) =

∑n
j=0 ajx

j+
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an+1xx
n and applying the induction hypothesis as well as the rules of Th. 9.6 yields

P ′(x) =
n∑

j=1

j ajx
j−1 + an+1(1 · xn + x · n · xn−1) =

n+1∑

j=1

j ajx
j−1,

which establishes the case.

(b) Clearly, the derivatives of rational functions P/Q with polynomials P and Q can
be computed from (9.11) and the quotient rule of Th. 9.6(d).

(c) The functions tan and cot as defined in (8.48) and restricted to R \ cos−1{0} and
R \ sin−1{0}, respectively, are differentiable and one obtains

tan′ : R \ cos−1{0}
︸ ︷︷ ︸

R\{(2k+1)π
2
: k∈Z}

−→ R, tan′ x =
1

(cos x)2
= 1 + (tan x)2, (9.12a)

cot′ : R \ sin−1{0}
︸ ︷︷ ︸

R\{kπ: k∈Z}

−→ R, cot′ x = − 1

(sin x)2
= −(1 + (cot x)2) : (9.12b)

One merely needs the derivatives of sin and cos from Ex. 9.5(c) and the quotient
rule of Th. 9.6(d):

tan′ x =
cos x cos x− sin x(− sin x)

(cosx)2
(8.44e)
=

1

(cosx)2
(8.44e)
= 1 + (tan x)2,

cot′ x =
− sin x sin x− cosx cos x

(sin x)2
(8.44e)
= − 1

(sin x)2
(8.44e)
= −(1 + (cot x)2).

Theorem 9.8 (Derivative of Inverse Functions). Let a < b, I :=]a, b[ (a = −∞, b = ∞
is admissible). If f : I −→ R is differentiable and strictly increasing (resp. decreasing),
then f has a continuous, strictly increasing (resp. decreasing) inverse function f−1 de-
fined on the interval J := f(I), i.e. f−1 : J −→ I, and, for each ξ ∈ I with f ′(ξ) 6= 0,
f−1 is differentiable at η := f(ξ) with

(f−1)′(η) =
1

f ′(ξ)
=

1

f ′
(
f−1(η)

) . (9.13)

Proof. As a differentiable function, f is continuous by Th. 9.4, i.e. Th. 7.60 provides
all the present assertions, except differentiability at η and (9.13). Let (yk)k∈N be a
sequence in J \ {η} such that limk→∞ yk = η. Then, as f−1 is bijective and continuous,
(f−1(yk))k∈N is a sequence in I \ {ξ} such that limk→∞ f−1(yk) = ξ, and one obtains

lim
k→∞

f−1(yk)− f−1(η)

yk − η
= lim

k→∞

f−1(yk)− f−1(η)

f
(
f−1(yk)

)
− f

(
f−1(η)

) =
1

f ′
(
f−1(η)

) , (9.14)

establishing the case. �
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Example 9.9. (a) The function ln : R+ −→ R is differentiable and, for each x ∈ R+,
ln′ x = 1/x: If f(x) = ex, then f ′(x) = ex 6= 0 for each x ∈ R, ln x = f−1(x), and
(9.13) yields

ln′ x =
1

f ′(ln x)
=

1

elnx
=

1

x
.

(b) The function arcsin : ] − 1, 1[−→] − π/2, π/2[ is differentiable and, for each x ∈
] − 1, 1[, arcsin′ x = 1/

√
1− x2: If f(x) = sin x, then f ′(x) = cos x 6= 0 for each

x ∈]− π/2, π/2[, arcsin x = f−1(x), and (9.13) yields

arcsin′ x =
1

f ′(arcsin x)
=

1

cos arcsin x

(∗)
=

1
√

1− (sin arcsin x)2
=

1√
1− x2

,

where, at (∗), it was used that cos2 = 1−sin2 and cos t > 0 for each t ∈]−π/2, π/2[.

(c) The function arccos : ] − 1, 1[−→]0, π[ is differentiable and, for each x ∈] − 1, 1[,
arccos′ x = −1/

√
1− x2: If f(x) = cos x, then f ′(x) = − sin x 6= 0 for each x ∈]0, π[,

arccos x = f−1(x), and (9.13) yields

arccos′ x =
1

f ′(arccosx)
=

1

− sin arccos x

(∗)
= − 1

√

1− (cos arccos x)2
= − 1√

1− x2
,

where, at (∗), it was used that sin2 = 1− cos2 and sin t > 0 for each t ∈]0, π[.

(d) The function arctan : R −→] − π/2, π/2[ is differentiable and, for each x ∈ R,
arctan′ x = 1/(1 + x2): Apply Th. 9.8 with f(x) = tan x as an exercise.

(e) The function arccot : R −→]0, π[ is differentiable and, for each x ∈ R, arccot′ x =
−1/(1 + x2): Apply Th. 9.8 with f(x) = cot x as an exercise.

Theorem 9.10 (Chain Rule). Let a < b, c < d, f : ]a, b[−→ R, g : ]c, d[−→ K,
f(]a, b[) ⊆]c, d[ (a, c = −∞; b, d = ∞ is admissible). If f is differentiable in ξ ∈]a, b[
and g is differentiable in f(ξ) ∈]c, d[, then g ◦ f : ]a, b[−→ K is differentiable in ξ and

(g ◦ f)′(ξ) = f ′(ξ)g′(f(ξ)). (9.15)

Proof. Let η := f(ξ) and define the auxiliary function

g̃ : ]c, d[−→ K, g̃(x) :=

{
g(x)−g(η)
x−η for x 6= η,

g′(x) for x = η.
(9.16)

Then
∀

x∈]c,d[
g(x)− g(η) = g̃(x)(x− η). (9.17)
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Let (xk)k∈N be a sequence in ]a, b[\{ξ} such that limk→∞ xk = ξ. One obtains

lim
k→∞

g
(
f(xk)

)
− g
(
f(ξ)

)

xk − ξ

(9.17)
= lim

k→∞

g̃
(
f(xk)

)(
f(xk)− f(ξ)

)

xk − ξ

= lim
k→∞

g̃
(
f(xk)

)
lim
k→∞

f(xk)− f(ξ)

xk − ξ

= f ′(ξ)g′(f(ξ)), (9.18)

establishing the case. �

Example 9.11. (a) According to the chain rule of Th. 9.10, the function h : R −→ R,
h(x) := sin(−x3) is differentiable and, for each x ∈ R, h′(x) = −3x2 cos(−x3).

(b) According to the chain rule of Th. 9.10, each power function h : R+ −→ K, h(x) :=
xα = eα lnx, α ∈ K, is differentiable and, for each x ∈ R+, h′(x) = α

x
eα lnx = αxα−1.

Indeed, h = g◦f , where f : R+ −→ R, f(x) := ln x with f ′ : R+ −→ R, f ′(x) := 1
x
,

according to Ex. 9.5(b), and g : R −→ K, g(x) := eαx, with g′ : R −→ K,
g′(x) := α eαx according to Ex. 9.9(a).

9.2 Higher Order Derivatives and the Sets Ck

Definition 9.12. Let a < b, I :=]a, b[, f : I −→ K (a = −∞, b = ∞ is admissible). If f
is differentiable, then f ′ might or might not itself be differentiable. If f ′ is differentiable,
then its derivative is denoted by f ′′ and is called the second derivative of f . Clearly, this
process can be iterated, leading to the following general recursive definition of higher-
order derivatives:

Let f (0) := f . For k ∈ N0 assume the kth derivative of f , denoted by f (k) exists on
I. Then f is said to have a derivative of order k + 1 at ξ ∈ I if, and only if, f (k) is
differentiable at ξ. In that case, define

f (k+1)(ξ) := (f (k))′(ξ). (9.19)

If f (k+1)(ξ) exists for all ξ ∈ I, then f is said to be (k + 1)-times differentiable and the
function f (k+1) : I −→ K, x 7→ f (k+1)(ξ), is called the (k + 1)st derivative of f . It is
common to write f ′ := f (1), f ′′ := f (2), f ′′′ := f (3), but f (k) if k ≥ 4.

If f (k) exists, it might or might not be continuous (cf. Ex. 9.13(c) below). One defines

∀
k∈N0

Ck(I,K) :=
{

f ∈ F(I,K) : f (k) exists and is continuous on I
}

, (9.20)

C∞(I,K) :=
⋂

k∈N0

Ck(I,K) (9.21)
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(note C0(I,K) = C(I,K) and C(I,K) ⊇ C1(I,K) ⊇ C2(I,K) ⊇ . . . ). Finally, we define
the notation Ck(I) := Ck(I,R) for k ∈ N0 ∪ {∞}.

Example 9.13. (a) One has sin ∈ C∞(R) with sin′ = cos, sin′′ = − sin, sin′′′ = − cos,
sin(4) = sin, . . .

(b) A simple induction shows, for each polynomial P : R −→ K, P (x) =
∑n

j=0 ajx
j ,

aj ∈ K, n ∈ N0, that P
(n)(x) = n! an. In particular, P ∈ C∞(R,K).

(c) It is an exercise to show the following function f is differentiable, but f ′ is not
continuous, i.e. f /∈ C1(R):

f : R −→ R, f(x) :=

{

x2 cos
(
1
x

)
for x 6= 0,

0 for x = 0.

9.3 Mean Value Theorem, Monotonicity, and Extrema

Theorem 9.14. Let a < b. If f : ]a, b[−→ R is differentiable in ξ ∈]a, b[ and f has a
local min or max in ξ, then f ′(ξ) = 0.

Proof. Suppose f has a local max at ξ. Then there exists ǫ > 0 such that |h| < ǫ implies
f(ξ + h)− f(ξ) ≤ 0. Now let (hk)k∈N be a sequence in ]0, ǫ[ with limk→∞ hk = 0. Then
f(ξ ± hk)− f(ξ) ≤ 0 for all k ∈ N implies

f ′(ξ) = lim
k→∞

f(ξ + hk)− f(ξ)

hk
≤ 0, f ′(ξ) = lim

k→∞

f(ξ − hk)− f(ξ)

−hk
≥ 0, (9.22)

showing f ′(ξ) = 0. Now, if f has a local min at ξ, then −f has a local max at ξ, and
f ′(ξ) = −(−f)′(ξ) = 0 establishes the case. �

Remark 9.15. For f : R −→ R, f(x) := x3, it is f ′(0) = 0, but f does not have a local
min or max at 0, showing that, while being necessary for an differentiable function f to
have a local extremum at ξ, f ′(ξ) = 0 is not a sufficient condition for such an extremum
at ξ. Points ξ with f ′(ξ) = 0 are sometimes called stationary or critical points of f .

—

Now, we first prove an important special case of the mean value theorem:

Theorem 9.16 (Rolle’s Theorem). Let a < b. If f : [a, b] −→ R is continuous on the
compact interval [a, b], differentiable on the open interval ]a, b[, and f(a) = f(b), then
there exists ξ ∈]a, b[ such that f ′(ξ) = 0.
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Proof. If f is constant, then f ′(ξ) = 0 holds for each ξ ∈]a, b[. If f is nonconstant,
then there exists x ∈]a, b[ with f(x) 6= f(a). If f(x) > f(a), then Th. 7.54 implies the
existence of ξ ∈]a, b[ such that f attains its (global and, thus, local) max in ξ. Then
Th. 9.14 yields f ′(ξ) = 0. The case f(x) < f(a) is treated analogously. �

Theorem 9.17 (Mean Value Theorem). Let a < b. If f, g : [a, b] −→ R are continuous
on the compact interval [a, b], differentiable on the open interval ]a, b[, and g′(x) 6= 0 for
each x ∈]a, b[, then there exists ξ ∈]a, b[ such that

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)
. (9.23a)

In the special case that g : [a, b] −→ R, g(x) = x, one obtains the standard form

f(b)− f(a)

b− a
= f ′(ξ). (9.23b)

Proof. First note that Rolle’s Th. 9.16 and g′ 6= 0 imply g(b) − g(a) 6= 0. Next, one
applies Rolle’s Th. 9.16 to the auxiliary function

h : [a, b] −→ R, h(x) := f(x)−
(
g(x)− g(a)

) f(b)− f(a)

g(b)− g(a)
. (9.24)

Since f and g are continuous on [a, b] and differentiable on ]a, b[, so is h. Moreover,
h(a) = f(a) = h(b), i.e. Rolle’s Th. 9.16 applies and yields ξ ∈]a, b[ satisfying h′(ξ) = 0.
However, (9.24) implies h′(ξ) = 0 is equivalent to (9.23a). �

Corollary 9.18. Let c < d and f : ]c, d[−→ R be differentiable (c = −∞, d = ∞ is
admissible).

(a) If f ′ ≥ 0 (resp. f ′ ≤ 0), then f is increasing (resp. decreasing). Moreover, if the
inequalities are strict, then the monotonicity of f is strict as well.

(b) If f ′ ≡ 0, then f is constant.

Proof. If c < a < b < d and f ′ ≥ 0 (resp. f ′ ≤ 0, resp. f ′ ≡ 0), then (9.23b) implies
f(b) ≥ f(a) (resp. f(b) ≤ f(a), resp. f(b) = f(a)). Moreover, strict inequalities for f ′

yield strict inequality between f(b) and f(a). �

Lemma 9.19. Let a < b, f : ]a, b[−→ R, ξ ∈]a, b[, and assume f is differentiable at ξ.
If f ′(ξ) > 0 (resp. f ′(ξ) < 0), then there exists ǫ > 0 such that ]ξ − ǫ, ξ + ǫ[⊆]a, b[ and

∀
a1∈]ξ−ǫ,ξ[

∀
b1∈]ξ,ξ+ǫ[

f(a1) < f(ξ) < f(b1)
(
resp. f(a1) > f(ξ) > f(b1)

)
.
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Proof. If there does not exist ǫ > 0 such that f(a1) < f(ξ) < f(b1) for each a1 ∈]ξ− ǫ, ξ[
and each b1 ∈]ξ, ξ + ǫ[, then then there exists a sequence (xk)k∈N in ]a, b[\{ξ} such that
limk→∞ xk = ξ and

∀
k∈N

f(xk)− f(ξ)

xk − ξ
≤ 0,

showing f ′(ξ) ≤ 0. Analogously, one obtains that f ′(ξ) ≥ 0 provided there does not exist
ǫ > 0 such that f(a1) > f(ξ) > f(b1) for each a1 ∈]ξ − ǫ, ξ[ and each b1 ∈]ξ, ξ + ǫ[. �

Theorem 9.20 (Sufficient Conditions for Extrema). Let c < d, let f : ]c, d[−→ R be
differentiable, and assume f ′(ξ) = 0 for some ξ ∈]c, d[.

(a) If f ′(x) > 0 for each x ∈]c, ξ[ and f ′(x) < 0 for each x ∈]ξ, d[, then f has a strict
max at ξ. Likewise, if f ′′(ξ) exists and is negative, then f has a strict max at ξ.

(b) If f ′(x) < 0 for each x ∈]c, ξ[ and f ′(x) > 0 for each x ∈]ξ, d[, then f has a strict
min at ξ. Likewise, if f ′′(ξ) exists and is positive, then f has a strict min at ξ.

Proof. We just present the proof for (a); (b) is proved analogously. If f ′(x) > 0 for each
x ∈]c, ξ[, then (9.23b) shows f(ξ)−f(a) > 0 for each c < a < ξ; analogously, if f ′(x) < 0
for each x ∈]ξ, d[, then (9.23b) shows f(ξ)−f(b) > 0 for each ξ < b < d. Altogether, we
have shown f to have a strict max at ξ. If f ′′(ξ) exists and is negative, then Lem. 9.19
yields the existence of ǫ > 0 such that f ′ is positive on ]ξ−ǫ, ξ[ and negative on ]ξ, ξ+ǫ[.
Applying what we have already proved with c := ξ − ǫ and d := ξ + ǫ establishes the
case. �

Example 9.21. One obtains

f : R −→ R, f(x) := x ex, (9.25a)

f ′ : R −→ R, f ′(x) = ex + x ex = (1 + x) ex, (9.25b)

f ′′ : R −→ R, f ′′(x) = 2ex + x ex = (2 + x) ex. (9.25c)

From Th. 9.14, we know that f can have at most one extremum, namely at ξ = −1,
where f ′(ξ) = 0. Since f ′′(ξ) = e−x > 0, Th. 9.20(b) implies that f has a strict min at
−1.

9.4 L’Hôpital’s Rule

L’Hôpital’s rule is a result that can help to determine (function) limits (cf. Def. 8.17).

Theorem 9.22 (L’Hôpital’s Rule). Let ξ ∈ R and either I =]a, ξ[ with a < ξ or
I :=]ξ, b[ with ξ < b. Moreover, assume f, g : I −→ R are differentiable, g′(x) 6= 0 for
each x ∈ I, and one of the following two conditions (a), (b) is satisfied:
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(a) limx→ξ f(x) = limx→ξ g(x) = 0.

(b) limx→ξ g(x) = ∞ or limx→ξ g(x) = −∞, where Def. 8.17 is extended to the case
η ∈ {−∞,∞} in the obvious way.

Then

lim
x→ξ

f ′(x)

g′(x)
= η ⇒ lim

x→ξ

f(x)

g(x)
= η. (9.26)

The above statement also holds for ξ ∈ {−∞,∞} and/or η ∈ {−∞,∞} if, as in (b),
one extends Def. 8.17 to these cases in the obvious way.

Proof. First, we assume (a). Consider the case ξ ∈ R. Since f and g are continuous, (a)
implies f and g remain continuous, if we extend them to ξ by letting f(ξ) := g(ξ) = 0.
This extension will now allow us to apply Th. 9.17 to f and g. To prove (9.26), let
(xk)k∈N be a sequence in I with limk→∞ xk = ξ. Then (9.23a) yields, for each k ∈ N,
some ξk ∈]xk, ξ[ if xk < ξ and some ξk ∈]ξ, xk[ if ξ < xk, satisfying

f(xk)

g(xk)
=
f(xk)− f(ξ)

g(xk)− g(ξ)
=
f ′(ξk)

g′(ξk)
. (9.27)

From the Sandwich Th. 7.16, we obtain limk→∞ ξk = ξ, i.e. (9.27) and limx→ξ
f ′(x)
g′(x)

= η

imply limx→ξ
f(x)
g(x)

= η (also for η ∈ {−∞,∞}). Now consider the case ξ ∈ {−∞,∞}
and let (xk)k∈N be as before. If ξ = ∞, then choose 1 ≤ c ∈ I and set Ĩ :=]0, c−1[; if
ξ = −∞, then choose −1 ≥ c ∈ I and set Ĩ :=]c−1, 0[. We apply what we have already
proved above to the auxiliary functions

f̃ : Ĩ −→ R, f̃(x) := f(1/x), g̃ : Ĩ −→ R, g̃(x) := g(1/x)

at ξ̃ := 0. From the chain rule (9.15), we know f̃ ′(x) = −f ′(1/x)
x2

and g̃′(x) = −g′(1/x)
x2

for

each x ∈ Ĩ. Thus, limx→ξ
f ′(x)
g′(x)

= η implies,

η = lim
k→∞

f ′(xk)

g′(xk)
= lim

k→∞

−x2k f ′(xk)

−x2kg′(xk)
= lim

k→∞

f̃ ′(1/xk)

g̃′(1/xk)
= lim

k→∞

f̃(1/xk)

g̃(1/xk)
= lim

k→∞

f(xk)

g(xk)
,

proving limx→ξ
f(x)
g(x)

= η.

We now assume (b), still letting (xk)k∈N be as before. Note that g′ 6= 0 implies g
is injective by Rolle’s Th. 9.16. Then the intermediate value theorem implies g is
either strictly increasing or strictly decreasing. We proceed with the proof for the case
I =]a, ξ[, the proof for I =]ξ, b[ can be done completely analogous. We first consider
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the case where g is strictly increasing, i.e. limx→ξ g(x) = ∞. Assume η ∈ R and ǫ > 0.

Then limx→ξ
f ′(x)
g′(x)

= η and limx→ξ g(x) = ∞ imply

∃
c∈]a,ξ[

∀
x∈]c,ξ[

(

g(x) > 0 ∧ η − ǫ

2
<
f ′(x)

g′(x)
< η +

ǫ

2

)

.

Since limk→∞ xk = ξ, there exists N0 ∈ N such that, for each k > N0, c < xk < ξ. Next,
according to Th. 9.17,

∀
k>N0

∃
ξk∈]c,xk[

η − ǫ

2
<
f(xk)− f(c)

g(xk)− g(c)
=
f ′(ξk)

g′(ξk)
< η +

ǫ

2
.

In consequence, using g(xk) > g(c), as g is strictly increasing,

∀
k>N0

(

η − ǫ

2

)

(g(xk)− g(c)) < f(xk)− f(c) <
(

η +
ǫ

2

)

(g(xk)− g(c))

and

∀
k>N0

(

η − ǫ

2

)

+
f(c)−

(
η − ǫ

2

)
g(c)

g(xk)
<
f(xk)

g(xk)
<
(

η +
ǫ

2

)

+
f(c)−

(
η + ǫ

2

)
g(c)

g(xk)
.

Since limk→∞ g(xk) = ∞,

∃
N≥N0

∀
k>N

(∣
∣
∣
∣
∣

f(c)−
(
η − ǫ

2

)
g(c)

g(xk)

∣
∣
∣
∣
∣
<
ǫ

2
∧

∣
∣
∣
∣
∣

f(c)−
(
η + ǫ

2

)
g(c)

g(xk)

∣
∣
∣
∣
∣
<
ǫ

2

)

,

that means

∀
k>N

η − ǫ <
f(xk)

g(xk)
< η + ǫ,

proving limx→ξ
f(x)
g(x)

= η. For η = ∞ and given n ∈ N, the argument is similar:

limx→ξ
f ′(x)
g′(x)

= η and limx→ξ g(x) = ∞ imply

∃
c∈]a,ξ[

∀
x∈]c,ξ[

(

g(x) > 0 ∧ n <
f ′(x)

g′(x)

)

.

As before, since limk→∞ xk = ξ, there exists N0 ∈ N such that, for each k > N0,
c < xk < ξ. Again, according to Th. 9.17,

∀
k>N0

∃
ξk∈]c,xk[

n <
f(xk)− f(c)

g(xk)− g(c)
=
f ′(ξk)

g′(ξk)
.
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In consequence, using g(xk) > g(c), as g is strictly increasing,

∀
k>N0

n (g(xk)− g(c)) < f(xk)− f(c)

and

∀
k>N0

n+
f(c)− n g(c)

g(xk)
<
f(xk)

g(xk)
.

Since limk→∞ g(xk) = ∞,

∃
N≥N0

∀
k>N

∣
∣
∣
∣

f(c)− n g(c)

g(xk)

∣
∣
∣
∣
< 1,

that means

∀
k>N

n− 1 <
f(xk)

g(xk)
,

proving limx→ξ
f(x)
g(x)

= η. If η = −∞, then, using what we have already shown,

lim
x→ξ

f ′(x)

g′(x)
= η ⇒ lim

x→ξ

−f ′(x)

g′(x)
= ∞ = lim

x→ξ

−f(x)
g(x)

⇒ lim
x→ξ

f(x)

g(x)
= η.

Finally, if g strictly decreasing, then −g is strictly increasing and we obtain

lim
x→ξ

f ′(x)

g′(x)
= η ⇒ lim

x→ξ

f ′(x)

−g′(x) = −η = lim
x→ξ

f(x)

−g(x) ⇒ lim
x→ξ

f(x)

g(x)
= η,

concluding the proof. �

Example 9.23. (a) Applying L’Hôpital’s rule to f : ]−π/2, π/2[−→ R, f(x) := tan x,
g : ]− π/2, π/2[−→ R, g(x) := ex − 1, with ξ = 0 yields

lim
x→0

tan x

ex − 1
= lim

x→0

1 + tan2 x

ex
=

1

1
= 1 (9.28)

(note g′(x) = ex 6= 0 for each x ∈]− π/2, π/2[).

(b) It can happen that a single application of L’Hôpital’s rule does not, yet, yield a
useful result, but that a repeated application does. An example is provided by
considering α > 0, n ∈ N, and f : R+ −→ R, f(x) := eαx, g : R+ −→ R,
g(x) := xn, ξ := ∞. Applying L’Hôpital’s rule n times yields

∀
α∈R+

∀
n∈N

lim
x→∞

eαx

xn
= lim

x→∞
αn eαx

n!
= ∞ (9.29)

(note g(k)(x) = n(n − 1) · · · (n − k + 1)xn−k 6= 0 for each k ∈ {1, . . . , n} and each
x ∈ R+).
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(c) It can also happen that even repeated applications of L’Hôpital’s rule do not

help at all, even though limx→ξ
f(x)
g(x)

does exist and the hypotheses of Th. 9.22

are all satisfied. A simple example is given by f : R −→ R, f(x) := ex, g :

R −→ R, g(x) := 2ex, and ξ = −∞. Even though limx→−∞
f(x)
g(x)

= 1
2
, one has

limx→−∞ f (n)(x) = limx→−∞ g(n)(x) = 0 for every n ∈ N.

10 The Riemann Integral on Intervals in R

10.1 Definition and Simple Properties

Given a nonnegative function f : M −→ R+
0 , M ⊆ R, we aim to compute the area

∫

M
f

of the set “under the graph” of f , i.e. of the set

{
(x, y) ∈ R2 : x ∈M and 0 ≤ y ≤ f(x)

}
. (10.1)

This area
∫

M
f (if it exists) will be called the integral of f over M . Moreover, for

functions f : M −→ R that are not necessarily nonnegative, we would like to count
areas of sets of the form (10.1) (which are below the graph of f and above the set
M ∼=

{
(x, 0) ∈ R2 : x ∈ M

}
⊆ R2) with a positive sign, and whereas we would like to

count areas of sets above the graph of f and below the set M with a negative sign. In
other words, making use of the positive and negative parts f+ and f− of f = f+ − f−

as defined in (6.1i) and (6.1j), respectively, we would like our integral to satisfy
∫

M

f =

∫

M

f+ −
∫

M

f−. (10.2)

Difficulties arise from the fact that both the function f and the set M can be extremely
complicated. To avoid dealing with complicated sets M , we restrict ourselves to the
situation of integrals over compact intervals, i.e. to integrals over sets of the form M =
[a, b]. Moreover, we will also restrict ourselves to bounded functions f , which we now
define:

Definition 10.1. Let ∅ 6= M ⊆ R and f : M −→ R. Then f is called bounded if, and
only if, the set {|f(x)| : x ∈M} ⊆ R+

0 is bounded, i.e. if, and only if,

‖f‖sup := sup{|f(x)| : x ∈M} ∈ R+
0 . (10.3)

The basic idea for the definition of the Riemann integral
∫

M
f is rather simple: De-

compose the set M into small pieces I1, . . . , IN and approximate
∫

M
f by the finite sum

∑N
j=1 f(xj)|Ij|, where xj ∈ Ij and |Ij| denotes the size of the set Ij. Define

∫

M
f as the
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limit of such sums as the size of the Ij tends to zero (if the limit exists). However, to
carry out this idea precisely and rigorously does require some work.

As stated before, we will assume thatM is a closed bounded interval, and we will choose
the Ij to be closed bounded intervals as well. To emphasize we are dealing with intervals,
in the following, we will prefer to use the symbol I instead of M .

Definition 10.2. If a, b ∈ R, a ≤ b, and I := [a, b], then we call

|I| := b− a = |a− b|, (10.4)

the length or the (1-dimensional) size, volume, or measure of I.

Definition 10.3. Given a real interval I := [a, b] ⊆ R, a, b ∈ R, a < b, the (N+1)-tuple
∆ := (x0, . . . , xN ) ∈ RN+1, N ∈ N, is called a partition of I if, and only if, a = x0 <
x1 < · · · < xN = b. We call x0, . . . , xN the nodes of ∆, and let ν(∆) := {x0, . . . , xN}
be the set of all nodes. A tagged partition of I is a partition together with an N -tuple
(t1, . . . , tN) ∈ RN such that tj ∈ [xj−1, xj ] for each j ∈ {1, . . . , N}. Given a partition ∆
(with or without tags) of I as above and letting Ij := [xj−1, xj ], the number

|∆| := max
{
|Ij| : j ∈ {1, . . . , N}

}
, (10.5)

is called the mesh size of ∆. It is sometimes convenient, if we extend our definitions to
trivial intervals, consisting of just one point: For a = b, we have I = [a, a] = {a}. We
then define ∆ = x0 = a to be a partition of I, ν(∆) = {x0}, and a is then the only tag
that makes ∆ into a tagged partition. We also set I0 := I = {a}, and the mesh size in
this case is |∆| := 0.

Definition 10.4. Let ∆ be a partition of I = [a, b] ⊆ R, a ≤ b, as in Def. 10.3. Given
a function f : I −→ R that is bounded according to Def. 10.1, define

mj := mj(f) := inf{f(x) : x ∈ Ij}, Mj :=Mj(f) := sup{f(x) : x ∈ Ij}, (10.6)

and

r(∆, f) :=
N∑

j=1

mj |Ij| =
N∑

j=1

mj(xj − xj−1), (10.7a)

R(∆, f) :=
N∑

j=1

Mj |Ij| =
N∑

j=1

Mj(xj − xj−1), (10.7b)

where r(∆, f) is called the lower Riemann sum and R(∆, f) is called the upper Riemann
sum associated with ∆ and f . If ∆ is tagged by τ := (t1, . . . , tN), then we also define
the intermediate Riemann sum

ρ(∆, f) :=
N∑

j=1

f(tj) |Ij| =
N∑

j=1

f(tj)(xj − xj−1). (10.7c)
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Note that, for a = b, all the above sums are empty and we have r(∆, f) = R(∆, f) =
ρ(∆, f) = 0.

Definition 10.5. Let I = [a, b] ⊆ R be an interval, a ≤ b, and suppose f : I −→ R is
bounded.

(a) Define

J∗(f, I) := sup
{
r(∆, f) : ∆ is a partition of I

}
, (10.8a)

J∗(f, I) := inf
{
R(∆, f) : ∆ is a partition of I

}
. (10.8b)

We call J∗(f, I) the lower Riemann integral of f over I and J∗(f, I) the upper
Riemann integral of f over I.

(b) The function f is called Riemann integrable over I if, and only if, J∗(f, I) = J∗(f, I).
If f is Riemann integrable over I, then

∫ b

a

f(x) dx :=

∫

I

f(x) dx :=

∫ b

a

f :=

∫

I

f := J∗(f, I) = J∗(f, I) (10.9)

is called the Riemann integral of f over I. The set of all functions f : I −→ R that
are Riemann integrable over I is denoted by R(I,R) or just by R(I).

(c) The function g : I −→ C is called Riemann integrable over I if, and only if, both
Re g and Im g are Riemann integrable. The set of all Riemann integrable functions
g : I −→ C is denoted by R(I,C). If g ∈ R(I,C), then

∫

I

g :=

(∫

I

Re g,

∫

I

Im g

)

=

∫

I

Re g + i

∫

I

Im g ∈ C (10.10)

is called the Riemann integral of g over I.

Remark 10.6. If I = [a, b] ⊆ R, ∆ is a partition of I, and f : I −→ R is bounded,
then (10.6) implies

mj(f)
(4.9c)
= −Mj(−f) and mj(−f)

(4.9d)
= −Mj(f), (10.11a)

(10.7) implies

r(∆, f) = −R(∆,−f) and r(∆,−f) = −R(∆, f), (10.11b)

and (10.8) implies

J∗(f, I) = −J∗(−f, I) and J∗(−f, I) = −J∗(f, I). (10.11c)
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Example 10.7. (a) If I = [a, b] ⊆ R as before and f : I −→ R is constant, i.e. f ≡ c
with c ∈ R, then f ∈ R(I) and

∫ b

a

f = c (b− a) = c |I| : (10.12)

We have, for each partition ∆ of I,

r(∆, f) =
N∑

j=1

mj |Ij| = c
N∑

j=1

|Ij| = c |I| = c (b− a) =
N∑

j=1

Mj |Ij| = R(∆, f),

(10.13)
proving J∗(f, I) = c (b− a) = J∗(f, I).

(b) An example of a function that is not Riemann integrable for a < b is given by the
Dirichlet function

f : [a, b] −→ R, f(x) :=

{

0 for x irrational,

1 for x rational,
a < b. (10.14)

Since r(∆, f) = 0 and R(∆, f) =
∑N

j=1 |Ij| = b− a for every partition ∆ of I, one
obtains J∗(f, I) = 0 6= (b− a) = J∗(f, I), showing that f /∈ R(I).

Definition 10.8. (a) If ∆ is a partition of [a, b] ⊆ R as in Def. 10.3, then another
partition ∆′ of [a, b] is called a refinement of ∆ if, and only if, ν(∆) ⊆ ν(∆′), i.e. if,
and only if, the nodes of ∆′ include all the nodes of ∆.

(b) If ∆ and ∆′ are partitions of [a, b] ⊆ R, then the superposition of ∆ and ∆′, denoted
∆+∆′, is the unique partition of [a, b] having ν(∆)∪ν(∆′) as its set of nodes. Note
that the superposition of ∆ and ∆′ is always a common refinement of ∆ and ∆′.

Lemma 10.9. Let a, b ∈ R, a < b, I := [a, b], and suppose f : I −→ R is bounded with
M := ‖f‖sup ∈ R+

0 . Let ∆′ be a partition of I and assume

α := #
(

ν(∆′) \ {a, b}
)

≥ 1 (10.15)

is the number of interior nodes that occur in ∆′. Then, for each partition ∆ of I, the
following holds:

r(∆, f) ≤ r(∆ +∆′, f) ≤ r(∆, f) + 2αM |∆|, (10.16a)

R(∆, f) ≥ R(∆ +∆′, f) ≥ R(∆, f)− 2αM |∆|. (10.16b)
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Proof. We carry out the proof of (10.16a) – the proof of (10.16b) can be conducted
completely analogous. Consider the case α = 1 and let ξ be the single element of
ν(∆′) \ {a, b}. If ξ ∈ ν(∆), then ∆+∆′ = ∆, and (10.16a) is trivially true. If ξ /∈ ν(∆),
then xk−1 < ξ < xk for a suitable k ∈ {1, . . . , N}. Define

I ′ := [xk−1, ξ], I ′′ := [ξ, xk] (10.17)

and
m′ := inf{f(x) : x ∈ I ′}, m′′ := inf{f(x) : x ∈ I ′′}. (10.18)

Then we obtain

r(∆ +∆′, f)− r(∆, f) = m′ |I ′|+m′′ |I ′′| −mk |Ik| = (m′ −mk) |I ′|+ (m′′ −mk) |I ′′|.
(10.19)

Together with the observation

0 ≤ m′ −mk ≤ 2M, 0 ≤ m′′ −mk ≤ 2M, (10.20)

(10.19) implies

0 ≤ r(∆ +∆′, f)− r(∆, f) ≤ 2M
(
|I ′|+ |I ′′|

)
≤ 2M |∆|. (10.21)

The general form of (10.16a) follows by an induction on α. �

Theorem 10.10. Let a, b ∈ R, a ≤ b, I := [a, b], and let f : I −→ R be bounded.

(a) Suppose ∆ and ∆′ are partitions of I such that ∆′ is a refinement of ∆. Then

r(∆, f) ≤ r(∆′, f), R(∆, f) ≥ R(∆′, f). (10.22)

(b) For arbitrary partitions ∆ and ∆′, the following holds:

r(∆, f) ≤ R(∆′, f). (10.23)

(c) J∗(f, I) ≤ J∗(f, I).

(d) For each sequence of partitions (∆n)n∈N of I such that limn→∞ |∆n| = 0, one has

lim
n→∞

r(∆n, f) = J∗(f, I), lim
n→∞

R(∆n, f) = J∗(f, I). (10.24)

In particular, if f ∈ R(I), then

lim
n→∞

r(∆n, f) = lim
n→∞

R(∆n, f) =

∫

I

f, (10.25a)

and if f ∈ R(I) and the ∆n are tagged, then also

lim
n→∞

ρ(∆n, f) =

∫

I

f. (10.25b)
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Proof. (a): If ∆′ is a refinement of ∆, then ∆′ = ∆ + ∆′. Thus, (10.22) is immediate
from (10.16).

(b): This also follows from (10.16):

r(∆, f)
(10.16a)

≤ r(∆ +∆′, f)
(10.7)

≤ R(∆ +∆′, f)
(10.16b)

≤ R(∆′, f). (10.26)

(c): One just combines (10.8) with (b).

(d): For a = b, there is nothing to show. For a < b, let (∆n)n∈N be a sequence of
partitions of I such that limn→∞ |∆n| = 0, and let ∆′ be an arbitrary partition of I with
numbers α and M defined as in Lem. 10.9. Then, according to (10.16a):

r(∆n, f) ≤ r(∆n +∆′, f) ≤ r(∆n, f) + 2αM |∆n| for each n ∈ N. (10.27)

From (b), we conclude the sequence
(
r(∆n, f)

)

n∈N is bounded. According to the Bolza-
no-Weierstrass Th. 7.27, if we can show that the sequence has J∗(f, I) as its only cluster
point, then the first equality of (10.24) must hold. Thus, according to Prop. 7.26, it suf-
fices to show that every converging subsequence of (r(∆n, f))n∈N converges to J∗(f, I).
To this end, suppose (r(∆nk

, f))k∈N is a converging subsequence of (r(∆n, f))n∈N with
β := limk→∞ r(∆nk

, f). First note β ≤ J∗(f, I) due to the definition of J∗(f, I). More-
over, (10.27) implies limk→∞ r(∆nk

+∆′, f) = β. Since r(∆′, f) ≤ r(∆nk
+∆′, f) and ∆′

is arbitrary, we obtain J∗(f, I) ≤ β, i.e. J∗(f, I) = β. Thus, we have shown that, indeed,
every subsequence of (r(∆n, f))n∈N converges to β = J∗(f, I). In the same manner, one
conducts the proof of J∗(f, I) = limn→∞R(∆n, f). Then (10.25a) is immediate from
the definition of Riemann integrability, and (10.25b) follows from (10.25a), since (10.7)
implies r(∆, f) ≤ ρ(∆, f) ≤ R(∆, f) for each tagged partition ∆ of I. �

Theorem 10.11. Let a, b ∈ R, a ≤ b, I := [a, b].

(a) The integral is linear: More precisely, if f, g ∈ R(I,K) and λ, µ ∈ K, then λf+µg ∈
R(I,K) and ∫

I

(λf + µg) = λ

∫

I

f + µ

∫

I

g. (10.28)

(b) Let ∆̃ = (y0, . . . , yM), M ∈ N, be a partition of I, Jk := [yk−1, yk]. Then f ∈
R(I,K) if, and only if, f ∈ R(Jk,K) for each k ∈ {1, . . . ,M}. If f ∈ R(I,K),
then

∫ b

a

f =

∫

I

f =
M∑

k=1

∫

Jk

f =
M∑

k=1

∫ yk

yk−1

f. (10.29)
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(c) Monotonicity of the Integral: If f, g : I −→ R are bounded and f ≤ g (i.e. f(x) ≤
g(x) for each x ∈ I), then J∗(f, I) ≤ J∗(g, I) and J∗(f, I) ≤ J∗(g, I). In particular,
if f, g ∈ R(I) and f ≤ g, then ∫

I

f ≤
∫

I

g. (10.30)

(d) Triangle Inequality: For each f ∈ R(I,C), one has

∣
∣
∣
∣

∫

I

f

∣
∣
∣
∣
≤
∫

I

|f |. (10.31)

(e) Mean Value Theorem for Integration: If f ∈ R(I), then, for each m,M ∈ R with
m ≤ f ≤M :

m (b− a) = m |I| ≤
∫ b

a

f =

∫

I

f ≤M |I| =M (b− a). (10.32)

The theorem’s name comes from the fact that, for a < b, |I|−1
∫

I
f is sometimes

referred to as the mean value of f on I.

Proof. (a): First, consider K = R, i.e. f, g : I −→ R and λ, µ ∈ R. For a = b,
there is nothing to prove, so let a < b. Let (∆n)n∈N be a sequence of partitions of I,
∆n = (xn,0, . . . , xn,Nn

), In,j := [xn,j−1, xn,j ], satisfying limn→∞ |∆n| = 0. Note that, for
each n ∈ N and each j ∈ {1, . . . , Nn},

mn,j(f + g) = inf{f(x) + g(x) : x ∈ In,j}
≥ inf{f(x) : x ∈ In,j}+ inf{g(x) : x ∈ In,j}
= mn,j(f) +mn,j(g), (10.33a)

Mn,j(f + g) = sup{f(x) + g(x) : x ∈ In,j}
≤ sup{f(x) : x ∈ In,j}+ sup{g(x) : x ∈ In,j}
= Mn,j(f) +Mn,j(g), (10.33b)

∀
λ∈R

mn,j(λf) = inf{λf(x) : x ∈ In,j}

(4.9d)
=

{

λ inf{f(x) : x ∈ In,j} = λmn,j(f) for λ ≥ 0,

λ sup{f(x) : x ∈ In,j} = λMn,j(f) for λ < 0,
(10.33c)

∀
λ∈R

Mn,j(λf) = sup{λf(x) : x ∈ In,j}

(4.9c)
=

{

λ sup{f(x) : x ∈ In,j} = λMn,j(f) for λ ≥ 0,

λ inf{f(x) : x ∈ In,j} = λmn,j(f) for λ < 0.
(10.33d)
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Thus,

J∗(f + g, I)
(10.24)
= lim

n→∞
r(∆n, f + g)

(10.7a)
= lim

n→∞

Nn∑

j=1

mn,j(f + g) |In,j|

(10.33a)

≥ lim
n→∞

(
r(∆n, f) + r(∆n, g)

)
= J∗(f, I) + J∗(g, I), (10.34a)

J∗(f + g, I)
(10.24)
= lim

n→∞
R(∆n, f + g)

(10.7b)
= lim

n→∞

Nn∑

j=1

Mn,j(f + g) |In,j|

(10.33b)

≤ lim
n→∞

(
R(∆n, f) +R(∆n, g)

)
= J∗(f, I) + J∗(g, I),(10.34b)

∀
λ∈R

J∗(λf, I)
(10.24)
= lim

n→∞
r(∆n, λf)

(10.7a)
= lim

n→∞

Nn∑

j=1

mn,j(λf) |In,j|

(10.33c)
=

{

λ limn→∞ r(∆n, f) = λJ∗(f, I) for λ ≥ 0,

λ limn→∞R(∆n, f) = λJ∗(f, I) for λ < 0,
(10.34c)

∀
λ∈R

J∗(λf, I)
(10.24)
= lim

n→∞
R(∆n, λf)

(10.7b)
= lim

n→∞

Nn∑

j=1

Mn,j(λf) |In,j|

(10.33d)
=

{

λ limn→∞R(∆n, f) = λJ∗(f, I) for λ ≥ 0,

λ limn→∞ r(∆n, f) = λJ∗(f, I) for λ < 0.
(10.34d)

Thus, if f and g are both Riemann integrable over I, then we obtain J∗(f + g, I) ≥
J∗(f, I)+J∗(g, I) = J∗(f, I)+J∗(g, I) ≥ J∗(f+g, I), i.e., by Th. 10.10(c), (f+g) ∈ R(I);
and J∗(λf, I) = λJ∗(f, I) = λJ∗(f, I) for λ ≥ 0, J∗(λf, I) = λJ∗(f, I) = λJ∗(f, I) for
λ < 0, i.e. (λf) ∈ R(I) in each case. In particular, for each λ, µ ∈ R,

∫

I

(λf + µg) = J∗(λf + µg, I) = λJ∗(f, I) + µJ∗(g, I) = λ

∫

I

f + µ

∫

I

g,

proving (10.28) for K = R. It remains to consider f, g ∈ R(I,C) and λ, µ ∈ C. One
computes, using the real-valued case,

∫

I

(λf) =

(∫

I

(ReλRe f − Imλ Im f),

∫

I

(Reλ Im f + ImλRe f)

)

=

(

Reλ

∫

I

Re f − Imλ

∫

I

Im f, Reλ

∫

I

Im f + Imλ

∫

I

Re f

)

= λ

∫

I

f
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and
∫

I

(f + g) =

(∫

I

Re(f + g),

∫

I

Im(f + g)

)

=

(∫

I

Re f +

∫

I

Re g,

∫

I

Im g +

∫

I

Im g

)

=

(∫

I

Re f,

∫

I

Im f

)

+

(∫

I

Re g,

∫

I

Im g

)

=

∫

I

f +

∫

I

g.

(b): Once again, consider K = R first. For a = b, there is nothing to prove, so let
a < b. For M = 1, there is still nothing to prove. For M = 2, we have a = y0 <
y1 < y2 = b. Consider a sequence (∆n)n∈N of partitions of I, ∆n = (xn,0, . . . , xn,Nn

),
such that limn→∞ |∆n| = 0 and y1 ∈ ν(∆n) for each n ∈ N. Define ∆′

n := (xn,0, . . . , y1),
∆′′
n := (y1, . . . , xn,Nn

). Then ∆′
n and ∆′′

n are partitions of J1 and J2, respectively, and
limn→∞ |∆′

n| = limn→∞ |∆′′
n| = 0. Moreover,

∀
n∈N

(

r(∆n, f) = r(∆′
n, f) + r(∆′′

n, f), R(∆n, f) = R(∆′
n, f) +R(∆′′

n, f)
)

,

implying J∗(f, I) = J∗(f, J1)+J∗(f, J2) and J∗(f, I) = J∗(f, J1)+J∗(f, J2). This proves∫

I
f =

∫

J1
f +

∫

J2
f provided f ∈ R(I) ∩R(J1) ∩R(J2). So it just remains to show the

claimed equivalence between f ∈ R(I) and f ∈ R(J1) ∩ R(J2). If f ∈ R(J1) ∩ R(J2),
then J∗(f, I) = J∗(f, J1)+J∗(f, J2) = J∗(f, J1)+J∗(f, J2) = J∗(f, I), showing f ∈ R(I).
Conversely, J∗(f, I) = J∗(f, I) implies J∗(f, J1) = J∗(f, J1) + J∗(f, J2) − J∗(f, J2) ≥
J∗(f, J1), showing J∗(f, J1) = J∗(f, J1) and f ∈ R(J1); f ∈ R(J2) follows completely
analogous. The general case now follows by induction on M . If, f ∈ R(I,C), then one
computes, using the real-valued case,

∫

I

f =

(∫

I

Re f,

∫

I

Im f

)

=

(
M∑

k=1

∫

Jk

Re f,
M∑

k=1

∫

Jk

Im f

)

=
M∑

k=1

∫

Jk

f.

(c): If f, g : I −→ R are bounded and f ≤ g, then, for each partition ∆ of I, r(∆, f) ≤
r(∆, g) and R(∆, f) ≤ R(∆, g) are immediate from (10.7). As these inequalities are
preserved when taking the sup and the inf, respectively, all claims of (c) are established.

(d): We will see in Th. 10.17(b) below, that f ∈ R(I,K) implies |f | ∈ R(I). Let ∆ be
an arbitrary partition of I, tagged by (t1, . . . , tN). Then, using the same notation as in
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Def. 10.3 and Def. 10.4,

∣
∣
∣

(
ρ(∆,Re f), ρ(∆, Im f)

)
∣
∣
∣ :=

∣
∣
∣
∣
∣

(
N∑

j=1

Re f(tj) |Ij|,
N∑

j=1

Im f(tj) |Ij|
)∣
∣
∣
∣
∣

≤
N∑

j=1

∣
∣
∣

(
Re f(tj), Im f(tj)

)
∣
∣
∣ |Ij|

=
N∑

j=1

|f(tj)| |Ij| =: ρ(∆, |f |). (10.35)

Since the intermediate Riemann sums in (10.35) converge to the respective integrals by
(10.25b), one obtains

∣
∣
∣
∣

∫

I

f

∣
∣
∣
∣
= lim

|∆|→0

∣
∣
∣

(
ρ(∆,Re f), ρ(∆, Im f)

)
∣
∣
∣

(10.35)

≤ lim
|∆|→0

ρ(∆, |f |) =
∫

I

|f |,

proving (10.31).

(e): We compute

m |I| (10.12)
=

∫

I

m
(c)

≤
∫

I

f
(c)

≤
∫

I

M
(10.12)
= M |I|, (10.36)

thereby establishing the case. �

Theorem 10.12 (Riemann’s Integrability Criterion). Let I = [a, b] ⊆ R and suppose
f : I −→ R is bounded. Then f is Riemann integrable over I if, and only if, for each
ǫ > 0, there exists a partition ∆ of I such that

R(∆, f)− r(∆, f) < ǫ. (10.37)

Proof. Suppose, for each ǫ > 0, there exists a partition ∆ of I such that (10.37) is
satisfied. Then

J∗(f, I)− J∗(f, I) ≤ R(∆, f)− r(∆, f) < ǫ, (10.38)

showing J∗(f, I) ≤ J∗(f, I). As the opposite inequality always holds, we have J∗(f, I) =
J∗(f, I), i.e. f ∈ R(I) as claimed. Conversely, if f ∈ R(I) and (∆n)n∈N is a sequence of
partitions of I with limn→∞ |∆n| = 0, then (10.25a) implies that, for each ǫ > 0, there
is N ∈ N such that R(∆n, f)− r(∆n, f) < ǫ for each n > N . �

The previous theorem will allow us to prove that every continuous function on [a, b] is
Riemann integrable. However, we will also need to make use of the following result:



10 THE RIEMANN INTEGRAL ON INTERVALS IN R 166

Proposition 10.13. Let I = [a, b] ⊆ R, a ≤ b, f : I −→ R. If f is continuous, then f
is even uniformly continuous, i.e.

∀
ǫ∈R+

∃
δ∈R+

∀
x,y∈I

(
|x− y| < δ ⇒ |f(x)− f(y)| < ǫ

)
. (10.39)

Proof. Arguing by contraposition, we assume f not to be uniformly continuous on I.
Then the negation of (10.39) must hold, i.e.

∃
ǫ0∈R+

∀
δ∈R+

∃
x,y∈I

(
|x− y| < δ ∧ |f(x)− f(y)| ≥ ǫ0

)
. (10.40)

In particular, for each n ∈ N, there exist xn, yn ∈ I such that

|xn − yn| < δn := 1/n (10.41)

and |f(xn) − f(yn)| ≥ ǫ0. Then the sequence (xn)n∈N is bounded and the Bolzano-
Weierstrass Th. 7.27 provides a convergent subsequence (xφ(n))n∈N, i.e. there is ξ ∈ R

with limn→∞ xφ(n) = ξ. Clearly, ξ ∈ [a, b] and (10.41) implies limn→∞ yφ(n) = ξ as
well. However, due to |f(xφ(n)) − f(yφ(n))| ≥ ǫ0 > 0, the sequences

(
f(xφ(n))

)

n∈N and
(
f(yφ(n))

)

n∈N can not both converge to f(ξ), showing that f can not be continuous. �

Caveat 10.14. It is important in Prop. 10.13 that f is defined on a compact interval I.
The examples f : ]0, 1] −→ R, f(x) := 1/x, and f : R −→ R, f(x) := x2 are examples
of continuous functions that are not uniformly continuous.

Theorem 10.15. Let I = [a, b] ⊆ R, a ≤ b.

(a) If f : I −→ C is continuous, then f is Riemann integrable over I.

(b) If f : I −→ R is increasing or decreasing, then f is Riemann integrable over I.

Proof. (a): As f is continuous if, and only if, Re f and Im f are both continuous, it
suffices to consider a real-valued continuous f . For a = b, there is nothing to prove, so
let a < b. First note that, if f is continuous on I = [a, b], then f is bounded by Th.
7.54. Moreover, f is uniformly continuous due to Prop. 10.13. Thus, given ǫ > 0, there
is δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ǫ/|I| for each x, y ∈ I. Then, for
each partition ∆ of I satisfying |∆| < δ, we obtain

R(∆, f)− r(∆, f) =
N∑

j=1

(Mj −mj)|Ij| ≤
ǫ

|I|

N∑

j=1

|Ij| = ǫ, (10.42)

as |∆| < δ implies |x − y| < δ for each x, y ∈ Ij and each j ∈ {1, . . . , N}. Finally,
(10.42) implies f ∈ R(I) due to Riemann’s integrability criterion of Th. 10.12.
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(b): Suppose f : [a, b] −→ R is increasing. Then f is bounded, as f(a) ≤ f(x) ≤ f(b)
for each x ∈ [a, b]. If f(a) = f(b), then f is constant. Thus, assume f(a) < f(b).
Moreover, if ∆ = (x0, . . . , xN) is a partition of I as in Def. 10.3, then

R(∆, f)− r(∆, f) =
N∑

j=1

(Mj −mj)|Ij| =
N∑

j=1

(
f(xj)− f(xj−1)

)
|Ij| ≤ |∆|

(
f(b)− f(a)

)
.

(10.43)
Thus, given ǫ > 0, we have R(∆, f) − r(∆, f) < ǫ for each partition ∆ of I satisfying
|∆| < ǫ/(f(b)− f(a)). In consequence, f ∈ R(I), once again due to Riemann’s integra-
bility criterion of Th. 10.12. If f is decreasing, then −f is increasing, and Th. 10.11(a)
establishes the case. �

Definition and Remark 10.16. Let M ⊆ C. A function f : M −→ C f is called
Lipschitz continuous in M with Lipschitz constant L if, and only if,

∃
L∈R+

0

∀
x,y∈M

|f(x)− f(y)| ≤ L |x− y|. (10.44)

Every Lipschitz continuous function is, indeed, continuous, since, if ξ ∈M and (yn)n∈N
is a sequence in M with limn→∞ yn = ξ, then (10.44) implies

∀
n∈N

|f(ξ)− f(yn)| ≤ L |ξ − yn|, (10.45)

proving limn→∞ f(yn) = f(ξ). Moreover, it is not too much harder to prove Lipschitz
continuous functions are even uniformly continuous, but we will not pursue this right
now. On the other hand, f : R+

0 −→ R, f(x) :=
√
x, is an example of a continuous

function (actually, even uniformly continuous) that is not Lipschitz continuous.

Theorem 10.17. Let a, b ∈ R, a ≤ b, I := [a, b].

(a) If f ∈ R(I,C) and φ : f(I) −→ K is Lipschitz continuous 2, then φ ◦ f ∈ R(I,K).

(b) If f ∈ R(I), then |f |, f 2, f+, f− ∈ R(I). In particular, we, indeed, have (10.2)
from the introduction (with M replaced by I). If, in addition, there exists δ > 0
such that f(x) ≥ δ for each x ∈ I, then 1/f ∈ R(I). Moreover, |f | ∈ R(I) also
holds for f ∈ R(I,C).

(c) If f, g ∈ R(I), then max(f, g),min(f, g) ∈ R(I). If f, g ∈ R(I,K), then f̄ , fg ∈
R(I,K). If, in addition, there exists δ > 0 such that |g(x)| ≥ δ for each x ∈ I, then
f/g ∈ R(I,K).

2It is a somewhat deeper result that φ ◦ f ∈ R(I,K) still remains true if φ is merely continuous,
see [Phi17, Th. D.12(a)]. However, if φ has just one point of discontinuity, then φ ◦ f is no longer
necessarily Riemann integrable, see [Phi17, Ex. D.14].



10 THE RIEMANN INTEGRAL ON INTERVALS IN R 168

Proof. (a): First, we carry out the proof for the case f ∈ R(I,C), φ : f(I) −→ R: As-
sume φ : f(I) −→ R to be L-Lipschitz, L ≥ 0. If f ∈ R(I,C), then Re f, Im f ∈
R(I,R), and, given ǫ > 0, Riemann’s integrability criterion of Th. 10.12 provides
partitions ∆1,∆2 of I such that R(∆1,Re f) − r(∆1,Re f) < ǫ/2L, R(∆2, Im f) −
r(∆2, Im f) < ǫ/2L, where R and r denote upper and lower Riemann sums, respec-
tively (cf. (10.7)). Letting ∆ be a joint refinement of ∆1 and ∆2, we have (cf. Def.
10.8(a),(b) and Th. 10.10(a))

R(∆,Re f)− r(∆,Re f) < ǫ/2L, R(∆, Im f)− r(∆, Im f) < ǫ/2L. (10.46)

Recalling that, for each g : I −→ R and ∆ = (x0, . . . , xN ) ∈ RN+1, N ∈ N, a = x0 <
x1 < · · · < xN = b, Ij := [xj−1, xj ], it is

r(∆, g) =
N∑

j=1

mj |Ij| =
N∑

j=1

mj(g)(xj − xj−1), (10.47a)

R(∆, g) =
N∑

j=1

Mj |Ij| =
N∑

j=1

Mj(g)(xj − xj−1), (10.47b)

where

mj(g) := inf{g(x) : x ∈ Ij}, Mj(g) := sup{g(x) : x ∈ Ij}, (10.47c)

we obtain, for each ξj, ηj ∈ Ij,

∣
∣(φ ◦ f)(ξj)− (φ ◦ f)(ηj)

∣
∣

≤ L
∣
∣f(ξj)− f(ηj)

∣
∣
Th. 5.11(d)

≤ L
∣
∣Re f(ξj)− Re f(ηj)

∣
∣+ L

∣
∣ Im f(ξj)− Im f(ηj)

∣
∣

≤ L
(
Mj(Re f)−mj(Re f)

)
+ L

(
Mj(Im f)−mj(Im f)

)
, (10.48)

and, thus,

R(∆, φ ◦ f)− r(∆, φ ◦ f) =
N∑

j=1

(
Mj(φ ◦ f)−mj(φ ◦ f)

)
|Ij|

(10.48)

≤
N∑

j=1

L
(
Mj(Re f)−mj(Re f)

)
|Ij|+

N∑

j=1

L
(
Mj(Im f)−mj(Im f)

)
|Ij|

= L
(
R(∆,Re f)− r(∆,Re f)

)
+ L

(
R(∆, Im f)− r(∆, Im f)

) (10.46)
< ǫ. (10.49)
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Thus, φ ◦ f ∈ R(I,R) by Th. 10.12. We now prove (a) as stated, i.e. with φ C-valued:
Assume φ to be L-Lipschitz, L ≥ 0. For each x, y ∈ f(I), one has

|Reφ(x)− Reφ(y)|
Th. 5.11(d)

≤ |φ(x)− φ(y)| ≤ L|x− y|, (10.50a)

| Imφ(x)− Imφ(y)|
Th. 5.11(d)

≤ |φ(x)− φ(y)| ≤ L|x− y|, (10.50b)

showing Reφ and Imφ are L-Lipschitz, such that Re(φ ◦ f) and Im(φ ◦ f) are Riemann
integrable by the real-valued case treated above.

(b): |f |, f 2, f+, f− ∈ R(I) follows from (a) (for |f | also for f ∈ R(I,C)), since each of
the maps x 7→ |x|, x 7→ x2, x 7→ max{x, 0}, x 7→ −min{x, 0} is Lipschitz continuous
on the bounded set f(I) (recall that f ∈ R(I) implies that f is bounded). Since
f = f+ − f−, (10.2) is implied by (10.28). Finally, if f(x) ≥ δ > 0, then x 7→ x−1 is
Lipschitz continuous on the bounded set f(I), and f−1 ∈ R(I) follows from (a).

(c): For f, g ∈ R(I), we note that, due to

fg =
1

4
(f + g)2 − (f − g)2, (10.51a)

max(f, g) = f + (g − f)+, (10.51b)

min(f, g) = g − (f − g)−, (10.51c)

everything is a consequence of (b). For f, g ∈ R(I,C), due to

f̄ = (Re f, − Im f), (10.51d)

fg = (Re f Re g − Im f Im g, Re f Im g + Im f Re g), (10.51e)

1/g = (Re g/|g|2, − Im g/|g|2), (10.51f)

everything follows from the real-valued case together with (b) and Th. 10.11(a), where
|g| ≥ δ > 0 guarantees |g|2 ≥ δ2 > 0). �

10.2 Important Theorems

This section compiles a number of important theorems on Riemann integrals, which, in
particular, provide powerful tools to actually evaluate such integrals.

10.2.1 Fundamental Theorem of Calculus

We provide two variants of the fundamental theorem with slightly different flavors: In
the first variant, Th. 10.19(a), we start with a function f , obtain another function F
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by means of integrating f , and recover f by taking the derivative of F . In the second
variant, Th. 10.19(b), one first differentiates the given function F , obtaining f := F ′,
followed by integrating f , recovering F up to an additive constant.

Notation 10.18. If a, b ∈ R, a ≤ b, I := [a, b], f : I −→ C, then denote

∫ b

a

f :=

∫

I

f,

∫ a

b

f := −
∫ b

a

f, (10.52a)

[f(t)]ba := [f ]ba := f(b)− f(a), [f(t)]ab := [f ]ab := f(a)− f(b), (10.52b)

where f ∈ R(I,C) for (10.52a).

Theorem 10.19. Let a, b ∈ R, a < b, I := [a, b].

(a) If f ∈ R(I,K) is continuous in ξ ∈ I, then, for each c ∈ I, the function

Fc : I −→ K, Fc(x) :=

∫ x

c

f(t) dt , (10.53)

is differentiable in ξ with F ′
c(ξ) = f(ξ). In particular, if f ∈ C(I,K), then Fc ∈

C1(I,K) and F ′
c(x) = f(x) for each x ∈ I.

(b) If F ∈ C1(I,K) or, alternatively, F : I −→ K is differentiable with integrable
derivative F ′ ∈ R(I,K), then

F (b)− F (a) = [F (t)]ba =

∫ b

a

F ′(t) dt , (10.54a)

and

F (x) = F (c) +

∫ x

c

F ′(t) dt for each c, x ∈ I. (10.54b)

Proof. It suffices to prove the case K = R, since the case K = C then follows by applying
the case K = R to ReFc and ImFc (for (a)) and to ReF and ImF (for (b)). Thus, for
the rest of the proof, we assume K = R.

(a): We need to show that

lim
h→0

A(h) = 0, where A(h) :=
Fc(ξ + h)− Fc(ξ)

h
− f(ξ). (10.55)

One computes

A(h) =
1

h

∫ ξ+h

ξ

f(t) dt − 1

h
f(ξ)

∫ ξ+h

ξ

dt =
1

h

∫ ξ+h

ξ

(
f(t)− f(ξ)

)
dt . (10.56)
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Now, given ǫ > 0, the continuity of f in ξ allows us to find δ > 0 such that |(f(t)−f(ξ)| <
ǫ/2 for each t ∈ I with |t− ξ| < δ. Thus, for each h with |h| < δ, we obtain

|A(h)| ≤ 1

h

∫ ξ+h

ξ

∣
∣f(t)− f(ξ)

∣
∣ dt ≤ ǫh

2h
< ǫ, (10.57)

thereby proving limh→0A(h) = 0, i.e. f(ξ) = F ′
c(ξ).

(b): First assume F ∈ C1(I). Then F ′ is continuous on I, and we can apply (a) to the
function

G : I −→ R, G(x) :=

∫ x

a

F ′(t) dt , (10.58)

to obtain G′ = F ′. Thus, for H := F −G, we obtain H ′ ≡ 0, showing that H must be
constant on I, i.e. H(x) = H(a) = F (a) − G(a) = F (a) for each x ∈ I. Evaluating at
x = b yields

F (a) = H(b) = F (b)−
∫ b

a

F ′(t) dt , (10.59)

thereby establishing the case.

Now we consider the remaining case of a differentiable F with integrable derivative
F ′ ∈ R(I). Consider a partition ∆ = (x0, . . . , xN) of I as in Def. 10.3. Then, for
each j ∈ {1, . . . , N}, the mean value theorem provides ξj ∈]xj−1, xj [ such that F (xj)−
F (xj−1) = (xj − xj−1)F

′(ξj). Thus,

F (b)− F (a) =
N∑

j=1

(
F (xj)− F (xj−1)

)
=

N∑

j=1

(xj − xj−1)F
′(ξj) = ρ(∆, F ′). (10.60)

If we choose a sequence of partitions ∆ of I such that |∆| → 0, then the integrability of

f implies that the right-hand side of (10.60) converges to
∫ b

a
F ′, once again establishing

the case. �

Definition 10.20. If I ⊆ R, f : I −→ K, and F : I −→ K is a differentiable function
with F ′ = f , then F is called a primitive or antiderivative of f .

Example 10.21. Due to the fundamental theorem, if we know a function’s antideriva-
tive, we can easily compute its integral over a given interval. Here are three simple
examples:

∫ 1

0

(x5 − 3x) dx =

[
x6

6
− 3x2

2

]1

0

=
1

6
− 3

2
= −4

3
, (10.61a)

∫ e

1

1

x
dx = [ln x]e1 = ln e− ln 1 = 1, (10.61b)

∫ π

0

sin x dx = [− cos x]π0 = 2. (10.61c)
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10.2.2 Integration by Parts Formula

Theorem 10.22. Let a, b ∈ R, a < b, I := [a, b]. If f, g ∈ C1(I,C), then the following
integration by parts formula holds:

∫ b

a

fg′ = [fg]ba −
∫ b

a

f ′g. (10.62)

Proof. If f, g ∈ C1(I,C), then, according to the product rule, fg ∈ C1(I,C) with
(fg)′ = f ′g + fg′. Applying (10.54a), we obtain

[fg]ba =

∫ b

a

(fg)′ =

∫ b

a

f ′g +

∫ b

a

fg′, (10.63)

which is precisely (10.62). �

Example 10.23. We compute the integral
∫ 2π

0
sin2 t dt :

∫ 2π

0

sin2 t dt = [− sin t cos t]2π0 +

∫ 2π

0

cos2 t dt =

∫ 2π

0

cos2 t dt . (10.64)

Adding
∫ 2π

0
sin2 t dt on both sides of (10.64) and using sin2 +cos2 ≡ 1 yields

2

∫ 2π

0

sin2 t dt =

∫ 2π

0

1 dt = 2π, (10.65)

i.e.
∫ 2π

0
sin2 t dt = π.

10.2.3 Change of Variables

Theorem 10.24. Let I, J ⊆ R be intervals, φ ∈ C1(I) and f ∈ C(J,C). If φ(I) ⊆ J ,
then the following change of variables formula holds for each a, b ∈ I:

∫ φ(b)

φ(a)

f =

∫ φ(b)

φ(a)

f(x) dx =

∫ b

a

f(φ(t))φ′(t) dt =

∫ b

a

(f ◦ φ)φ′. (10.66)

Proof. Let

F : J −→ C, F (x) :=

∫ x

φ(a)

f(t) dt . (10.67)
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According to Th. 10.19(a) and the chain rule of Th. 9.10, we obtain

(F ◦ φ)′ : I −→ C, (F ◦ φ)′(x) = φ′(x)f(φ(x)). (10.68)

Thus, we can apply (10.54a), which yields
∫ φ(b)

φ(a)

f = F (φ(b))− F (φ(a)) =

∫ b

a

(f ◦ φ)φ′, (10.69)

proving (10.66). �

Example 10.25. We compute the integral
∫ 1

0
t2
√
1− t dt using the change of variables

x := φ(t) := 1− t, φ′(t) = −1:
∫ 1

0

t2
√
1− t dt = −

∫ 0

1

(1− x)2
√
x dx =

∫ 1

0

(
√
x− 2x

√
x+ x2

√
x) dx

=

[

2x
3

2

3
− 4x

5

2

5
+

2x
7

2

7

]1

0

=
16

105
. (10.70)

10.3 Improper Integrals

For our definition of the Riemann integral in Def. 10.5, it was important that we con-
sidered bounded functions on compact intervals (where the boundedness of the intervals
was more important than the closedness) – for unbounded functions and/or unbounded
intervals, even Def. 10.4 of lower and upper Riemann sums no longer makes sense.

Still, for sufficiently benign functions, it is possible to extend the notion of a definite
Riemann integral to both unbounded intervals and unbounded functions, and in such
situations we will speak of improper integrals (cf. Def. 10.29 below).

Definition 10.26. Let ∅ 6= I ⊆ R be an interval. We call f : I −→ R to be locally
Riemmann integrable if, and only if, f ∈ R(J) for each compact interval J ⊆ I. Let
Rloc(I) denote the set of all locally Riemmann integrable functions on I.

Remark 10.27. In particular, locally Riemmann integrable functions are bounded on
every compact interval. Moreover, Rloc(I) = R(I) if, and only if, I is a compact interval.
For example, for each a, b ∈ R with a < b, the function given by the assignment rule

f(x) :=
1

(x− a)(x− b)

is clearly locally Riemmann integrable, but not bounded on each of the intervals ]−∞, a[,
]a, b[, and ]b,∞[.

—
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Before we can define improper Riemann integrals, we define, in partial extension of Def.
8.17:

Definition 10.28. Let M ⊆ R. If M is unbounded from above (resp. below, then
f : M −→ K is said to tend to η ∈ K (or to have the limit η ∈ K) for x→ ∞ (resp., for
x→ −∞) (denoted by limx→±∞ f(x) = η) if, and only if, for each sequence (ξk)k∈N inM
with limk→∞ ξk = ∞ (resp. with limk→∞ ξk = −∞), the sequence (f(ξk))k∈N converges
to η ∈ K, i.e.

lim
x→±∞

f(x) = η ⇔ ∀
(ξk)k∈N in M

(

lim
k→∞

ξk = ±∞ ⇒ lim
k→∞

f(ξk) = η
)

. (10.71)

Definition 10.29. Let a < c < b (a = −∞, b = ∞ is admissible).

(a) Let I := [c, b[, f ∈ Rloc(I), and assume b = ∞ or f is unbounded. Consider the
function

F : I −→ R, F (x) :=

∫ x

c

f.

If the limit

lim
x→b

F (x) = lim
x→b

∫ x

c

f (10.72)

exists in R, then we define

∫

I

f :=

∫ b

c

f(t) dt :=

∫ b

c

f := lim
x→b

∫ x

c

f.

(b) Let I :=]a, c], f ∈ Rloc(I), and assume a = −∞ or f is unbounded. Consider the
function

F : I −→ R, F (x) :=

∫ c

x

f.

If the limit

lim
x→a

F (x) = lim
x→a

∫ c

x

f (10.73)

exists in R, then we define

∫

I

f :=

∫ c

a

f(t) dt :=

∫ c

a

f := lim
x→a

∫ c

x

f.

(c) Let I =]a, b[ , f ∈ Rloc(I). If the conditions of both (a) and (b) hold, i.e. (i) – (iv),
where

(i) b = ∞ or f is unbounded on [c, b[,
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(ii) limx→b

∫ x

c
f exists in R,

(iii) a = −∞ or f is unbounded on ]a, c],

(iv) limx→a

∫ c

x
f exists in R,

then we define ∫

I

f :=

∫ b

a

f(t) dt :=

∫ b

a

f :=

∫ c

a

f +

∫ b

c

f.

All the above limits of Riemann integrals (if they exist) are called improper Riemann
integrals. In each case, if the limit exists, we call f improperly Riemann integrable and
write f ∈ R(I).

Remark 10.30. (a) The definitions in Def. 10.29 are consistent with what occurs if
the limits are proper Riemann integrals: Let a, c, b ∈ R, a < c < b, and f ∈ R[a, b].
Then

lim
x→b

∫ x

c

f =

∫ b

c

f and lim
x→a

∫ c

x

f =

∫ c

a

f. (10.74)

Indeed, since f ∈ R[a, b], |f | is bounded by some M ∈ R+; and if (xk)k∈N is a
sequence in [a, b[ such that limk→∞ xk = b, then

∣
∣
∣
∣

∫ b

xk

f

∣
∣
∣
∣
≤
∫ b

xk

|f | ≤M (b− xk) → 0 for k → ∞,

implying

lim
k→∞

∫ xk

c

f
Th. 10.11(b)

= lim
k→∞

(∫ b

c

f −
∫ b

xk

f

)

=

∫ b

c

f − 0 =

∫ b

c

f.

An analogous argument shows the remaining equality in (10.74).

(b) In Def. 10.29(c), it can occur that
∫∞
−∞ f does not exist, even though the limit

limx→∞
∫ x

−x f exists: For example, if f : R −→ R, f(x) = x, then f ∈ Rloc(R), and,
for each sequence (xk)k∈N in R such that limk→∞ xk = ∞ and each c ∈ R, one has

lim
k→∞

∫ xk

−xk
t dt = lim

k→∞

[
t2

2

]xk

−xk
= lim

k→∞

x2k − x2k
2

= 0,

lim
k→∞

∫ xk

c

t dt = lim
k→∞

[
t2

2

]xk

c

= lim
k→∞

x2k − c2

2
= ∞,

lim
k→∞

∫ c

−xk
t dt = lim

k→∞

[
t2

2

]c

−xk
= lim

k→∞

c2 − x2k
2

= −∞,

i.e. limx→∞
∫ x

−x t dt = 0, but neither limx→∞
∫ x

c
t dt nor limx→−∞

∫ c

x
t dt exists in

R.
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(c) Let a < c1 < c2 < b (a = −∞, b = ∞ is admissible). If I := [c1, b[, f ∈ Rloc(I), and

b = ∞ or f is unbounded, then
∫ b

c1
f exists if, and only if,

∫ b

c2
f exists. Moreover, if

the integrals exist, then
∫ b

c1

f =

∫ c2

c1

f +

∫ b

c2

f. (10.75a)

Indeed, if (xk)k→∞ is a sequence in [c1, b[ such that limk→∞ xk = b and if
∫ b

c1
f exists,

then

lim
k→∞

∫ xk

c2

f
Th. 10.11(b)

= lim
k→∞

(∫ xk

c1

f −
∫ c2

c1

f

)

=

∫ b

c1

f −
∫ c2

c1

f,

proving
∫ b

c2
f exists and (10.75a) holds. Conversely, if

∫ b

c2
f exists, then

lim
k→∞

∫ xk

c1

f
Th. 10.11(b)

= lim
k→∞

(∫ xk

c2

f +

∫ c2

c1

f

)

=

∫ b

c2

f +

∫ c2

c1

f,

proving
∫ b

c1
f exists and (10.75a) holds. Analogously, one shows that if I :=]a, c2],

f ∈ Rloc(I), and a = −∞ or f is unbounded, then
∫ c1
a
f exists if, and only if,

∫ c2
a
f

exists, where, if the integrals exist, then
∫ c2

a

f =

∫ c2

c1

f +

∫ c1

a

f. (10.75b)

In particular, we see that neither the existence nor the value of the improper integral
in Def. 10.29(c) depends on the choice of c.

Example 10.31. (a) Let 0 < α < 1. We claim that
∫ 1

0

1

tα
dt =

1

1− α

(

α =
1

2
yields

∫ 1

0

1√
t
dt = 2

)

. (10.76)

Indeed, if (xk)k∈N is a sequence in ]0, 1] such that limk→∞ xk = 0, then

lim
k→∞

∫ 1

xk

1

tα
dt = lim

k→∞

[
t1−α

1− α

]1

xk

= lim
k→∞

1− x1−αk

1− α
=

1

1− α
.

(b) If (xk)k∈N is a sequence in ]0, 1] such that limk→∞ xk = 0, then

lim
k→∞

∫ 1

xk

1

t
dt = lim

k→∞

[

ln t
]1

xk
= lim

k→∞

(

0− ln xk

)

= ∞,

showing the limit does not exist in R, but diverges to ∞. Sometimes, this is stated
in the form ∫ 1

0

1

t
dt = ∞. (10.77)
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(c) We claim that
∫ 0

−∞
et dt = 1. (10.78)

Indeed, if (xk)k∈N is a sequence in R−
0 such that limk→∞ xk = −∞, then

lim
k→∞

∫ 0

xk

et dt = lim
k→∞

[

et
]0

xk
= lim

k→∞
(1− exk) = 1.

(d) Consider the function

f : R+
0 −→ R, f(t) :=

{

n for n ≤ t ≤ n+ 1
n2n

, n ∈ N,

0 otherwise.

Then limt→∞ f(t) does not exist and f is not even bounded. However f ∈ R(R+
0 )

and
∫ ∞

0

f =
∞∑

n=1

∫ n+1/(n2n)

n

n dt =
∞∑

n=1

2−n =
1

1− 1
2

− 1 = 1.

Lemma 10.32. Let a < c < b (a = −∞, b = ∞ is admissible). Let I ⊆]a, b[ be one of
the three kinds of intervals occurring in Def. 10.29 (i.e. I = [c, b[, I =]a, c], or I =]a, b[),
and assume f, g : I −→ R to be improperly Riemann integrable over I.

(a) Linearity: For each λ, µ ∈ R, λf +µg is improperly Riemann integrable over I and

∫

I

(λf + µg) = λ

∫

I

f + µ

∫

I

g.

(b) Monotonicity: If f ≤ g, then ∫

I

f ≤
∫

I

g.

Proof. We conduct the proof for the case I = [c, b[ – the case I =]a, b] can be shown
analogously, and the case I =]a, b[ then also follows. Let (xk)k∈N be a sequence in I
such that limk→∞ xk = b.

(a): One computes

lim
k→∞

∫ xk

c

(
λf + µg)

Th. 10.11(a)
= lim

k→∞

(

λ

∫ xk

c

f + µ

∫ xk

c

g

)

= λ

∫ b

c

f + µ

∫ b

c

g,

showing (λf + µg) ∈ R(I) and proving (a).
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(b): One estimates

∫ b

c

f = lim
k→∞

∫ xk

c

f
Th. 10.11(c)

≤ lim
k→∞

∫ xk

c

g =

∫ b

c

g,

proving (b). �

Definition 10.33. Let a < c < b (a = −∞, b = ∞ is admissible). Let I ⊆]a, b[ be
one of the three kinds of intervals occurring in Def. 10.29 (i.e. I = [c, b[, I =]a, c], or
I =]a, b[), and assume f ∈ Rloc(I). Then, by Th. 10.17(b), |f | ∈ Rloc(I). If

∫

I
|f | exists

as an improper integral, then we call the improper integral
∫

I
f absolutely convergent.

—

Before we can proceed to Prop. 10.35 about convergence criteria for improper integrals,
we need to prove the analogon of Th. 7.19 for limits of functions.

Proposition 10.34. Let ∅ 6=M ⊆ R, a ∈ R ∪ {−∞}, b ∈ R ∪ {∞}, and assume

a =

{

inf(M \ {a}) if M is bounded from below,

−∞ if M is unbounded from below,
(10.79a)

b =

{

sup(M \ {a}) if M is bounded from above,

∞ if M is unbounded from above.
(10.79b)

Let f : M −→ R be monotone (increasing or decreasing). Defining A := f(M) =
{f(x) : x ∈M}, the following holds:

lim
x→b

f(x) =







supA if f is increasing and A is bounded from above,

∞ if f is increasing and A is not bounded from above,

inf A if f is decreasing and A is bounded from below,

−∞ if f is decreasing and A is not bounded from below,

(10.80a)

lim
x→a

f(x) =







supA if f is decreasing and A is bounded from above,

∞ if f is decreasing and A is not bounded from above,

inf A if f is increasing and A is bounded from below,

−∞ if f is increasing and A is not bounded from below.

(10.80b)

Proof. We prove (10.80a) for the case, where f is increasing – the remaining case of
(10.80a) as well as (10.80b) can be proved completely analogous. Let (xk)k∈N be a
sequence in M \ {b} such that limk→∞ xk = b. We have to show that limk→∞ f(xk) = η,



10 THE RIEMANN INTEGRAL ON INTERVALS IN R 179

where η := supA for A bounded from above and η := ∞ for A not bounded from above.
Seeking a contradiction, assume limk→∞ f(xk) = η does not hold. Due to the choice of
b, there then must be ǫ > 0 and a subsequence (yk)k∈N of (xk)k∈N such that (yk)k∈N is
strictly increasing and

∀
k∈N

f(yk) ≤
{

η − ǫ if η = supA,

ǫ if η = ∞.

Since limk→∞ yk = b and f is increasing, this means supA ≤ η − ǫ or supA = ǫ, which
means a contradiction in each case. Thus, limk→∞ f(xk) = η must hold and the proof
is complete. �

Proposition 10.35. Let a < c < b (a = −∞, b = ∞ is admissible). Let I ⊆]a, b[ be
one of the three kinds of intervals occurring in Def. 10.29 (i.e. I = [c, b[, I =]a, c], or
I =]a, b[), and assume f ∈ Rloc(I).

(a) If g ∈ Rloc(I), 0 ≤ f ≤ g, and
∫

I
g exists, then

∫

I
f exists as well. Conversely, if

0 ≤ g ≤ f and
∫

I
g diverges, then

∫

I
f diverges as well.

(b) If
∫

I
f is an improper integral that is absolutely convergent, then it is also conver-

gent.

Proof. (a): We consider the case I = [c, b[ – the proof for the case I =]a, c] is completely
analogous, and the case I =]a, b[ then also follows. First, suppose 0 ≤ f ≤ g, and

∫

I
g

exists. Since 0 ≤ f , the function

F : [c, b[−→ R+
0 , F (x) :=

∫ x

c

f,

is increasing. Due to

∀
x∈[c,b[

F (x) =

∫ x

c

f ≤
∫ x

c

g ≤
∫ b

c

g ∈ R+
0 ,

F is also bounded from above (in the sense that {F (x) : x ∈ [c, b[} is bounded from
above), i.e. Prop. 10.34 yields that limx→b F (x) = limx→b

∫ x

c
f exists in R as claimed.

Now suppose 0 ≤ g ≤ f and
∫

I
g diverges. As the function F above, the function

G : [c, b[−→ R+
0 , G(x) :=

∫ x

c

g,
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is increasing. Since we assume that limx→bG(x) does not exist in R, Prop. 10.34 im-
plies limx→bG(x) = ∞. As a consequence, if (xk)k∈N is a sequence in [c, b[ such that
limk→∞ xk = b, then

lim
k→∞

F (xk) = lim
k→∞

∫ xk

c

f = lim
k→∞

∫ xk

c

g = ∞,

showing that
∫

I
f diverges as well.

(b): We assume
∫

I
f to converge absolutely, i.e.

∫

I
|f |must exist in R. Since 0 ≤ f+ ≤ |f |

and 0 ≤ f− ≤ |f |, (a) then implies the existence of
∫

I
f+ and of

∫

I
f−. Thus, according

to Lem. 10.32(a),
∫

I
f =

∫

I
f+ −

∫

I
f− must also exist. �

Example 10.36. (a) We will use Prop. 10.35(a) to show that the improper integral

∫ ∞

0

e−t
2

dt

exists. Indeed,

∀
t∈R

(

(t− 1)2 = t2 − 2t+ 1 ≥ 0 ⇒ −t2 ≤ −2t+ 1 ⇒ 0 ≤ e−t
2 ≤ e−2t+1

)

,

and, since

∫ ∞

0

e−2t+1 dt = lim
x→∞

∫ x

0

e−2t+1 dt = lim
x→∞

[

−e
−2t+1

2

]x

0

= lim
x→∞

e− e−2x+1

2
=
e

2
,

Prop. 10.35(a) implies that
∫∞
0
e−t

2

dt exists in R.

(b) We will use Prop. 10.35(a) to show that

∫ ∞

0

et
2

dt

diverges. Indeed,

∀
t∈R

(

t2 ≥ 0 ⇒ et
2 ≥ 1

)

,

and, since

lim
x→∞

∫ x

0

1 dt = lim
x→∞

x = ∞,

Prop. 10.35(a) implies that
∫∞
0
et

2

dt = ∞.
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(c) We provide an example that shows an improper integral can converge without
converging absolutely: Consider the function

f : [0,∞[−→ R, f(t) :=

{

(−1)n+1 for n ≤ t ≤ n+ 1
n
, n ∈ N,

0 otherwise.
(10.81)

Then
∫ ∞

0

|f | = lim
k→∞

n∑

k=1

∫ k+ 1

k

k

1 dt = lim
k→∞

n∑

k=1

1

k

(7.72)
= ∞, (10.82)

showing
∫∞
0
f does not converge absolutely. However, we will show

∫ ∞

0

f =
∞∑

j=1

(−1)j+1

j
=: α > 0. (10.83)

We know α > 0 from Ex. 7.86(a) and Th. 7.85. Let (xk)k∈N be a sequence in R+
0

such that limk→∞ xk = ∞. Given ǫ > 0, choose K ∈ N such that 1
K
< ǫ

2
and N ∈ N

such that
∀

k>N
xk > K. (10.84)

Then, for each k > N , there exists K1 ∈ N such that K < K1 ≤ xk < K1+1. Thus

∫ xk

0

f(t) dt = min

{

xk −K1,
1

K1

}

+

K1−1∑

j=1

(−1)j+1

j
(10.85)

and

∣
∣
∣
∣
α−

∫ xk

0

f(t) dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

j=K1

(−1)j+1

j
−min

{

xk −K1,
1

K1

}
∣
∣
∣
∣
∣

(7.79)
<

1

K1

+
1

K1

<
2

K
< 2 · ǫ

2
= ǫ, (10.86)

thereby proving (10.83).
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