Analysis II für Studierende der Statistik

Dr. Peter Philip

Vorlesungsskript zur zweistündigen Vorlesung im Rahmen des Studienganges $Statistik\ und\ Data\ Science$

an der LMU nach der Prüfungsordnung von 2021

19. März 2024

Inhaltsverzeichnis

1	rmierte Vektorräume	4		
	1.1	Der Raum \mathbb{K}^n	4	
	1.2	Normen	9	
	1.3	Offene & abgeschl. Mengen und verwandte Begriffe	11	
	1.4	Konvergenz	14	
	1.5	Grenzwerte und Stetigkeit von Funktionen	17	
	1.6	Skalarprodukt und Hilbertraum	23	
	1.7	Äquivalenz von Normen	26	
2	2 Differential rechnung im \mathbb{R}^n			
	2.1	Partielle Ableitungen und Gradienten	28	
	2.2	Jacobimatrix & Jacobideterminante	30	
	2.3	Partielle Ableitungen höherer Ordnung und die Räume C^k	31	
	2.4	Die totale Ableitung und der Begriff der Differenzierbarkeit	32	
	2.5	Die Kettenregel	37	
	2.6	Richtungsableitungen	38	

3	3 Extremwerte & stationäre Punkte					
	3.1	Definition von Extremwerten	41			
	3.2	Extremwerte von stetigen Fkt auf kompakten Mengen	42			
	3.3	Satz von Taylor	43			
	3.4	Quadratische Formen	48			
	3.5	Extremwerte und stationäre Punkte von dif.baren Fkt	53			
4	Das Riemann-Integral auf Intervallen im \mathbb{R}^n		56			
	4.1	Definition und einfache Eigenschaften	56			
	4.2	Satz von Fubini	60			
5 Gewöhnliche Differentialgleichungen (ODE) erster Ordnung		vöhnliche Differentialgleichungen (ODE) erster Ordnung	61			
	5.1	Definition und geometrische Interpretation	61			
	5.2	Trennung der Variablen	64			
	5.3	Lineare ODE, Variation der Konstanten	67			
	5.4	Substitution	69			
Li	Literatur					

Themenübersicht

- Normierte Vektorräume
 - -der Raum \mathbb{K}^n : Arithmetik & Konvergenz
 - Normierte Räume: Offene & abgeschlossene Mengen, Konvergenz, Vollständigkeit
 - Grenzwerte und Stetigkeit von Funktionen
 - Räume mit Skalarprodukt
- Differential rechnung im \mathbb{K}^n
 - partielle Ableitung, Gradient
 - Jacobimatrix & -determinante
 - partielle Ableitung höherer Ordnung, die Räume \mathbb{C}^k
 - totale Ableitung, Differenzierbarkeit
 - Kettenregel
 - Richtungsableitungen
- Extemwertaufgaben
 - stetige Funktionen auf kompakten Mengen
 - Taylorentwicklung
 - quadratische Formen
 - notwendige Bedingungen für lokale Extrema und stationäre Punkte
- Integration
 - Riemannintegral im \mathbb{R}^n
 - Satz von Fubini
- Gewöhnliche Differentialgleichungen (ODE)
 - Definition, geometr. Interpretation
 - Trennung der Variablen
 - lineare ODE, Variation der Konstanten

1 Normierte Vektorräume

Dies sind K-VR mit abstraktem Längen- und Abstandsbegriff

Wichtigstes Bsp.: \mathbb{K}^n

Erinnerung: Wir schreiben \mathbb{K} , wenn $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ stehen darf.

1.1 Der Raum \mathbb{K}^n

Def. 1.1. Sei $n \in \mathbb{N} = \{1, 2, \dots\}$.

 \mathbb{K}^n : Menge der n-Tupel (z_1, \ldots, z_n) mit Koordinaten $z_1 \in \mathbb{K}, \ldots, z_n \in \mathbb{K}$ (also $\mathbb{K}^n = \mathcal{F}(\{1, \ldots, n\}, \mathbb{K}) = \text{Menge der Fkt. auf } \{1, \ldots, n\} \text{ mit Werten in } \mathbb{K}).$

Elemente aus \mathbb{K}^n heißen Punkte oder Vektoren.

Sei
$$z = (z_1, ..., z_n), w = (w_1, ..., w_n), \lambda \in \mathbb{K}.$$

Addition:

$$z + w := (z_1 + w_1, \dots, z_n + w_n),$$
 (1.1a)

Skalarmultiplikation:

$$\lambda z := (\lambda z_1, \dots, \lambda z_n), \tag{1.1b}$$

Inneres Produkt / Skalarprodukt:

$$z \cdot w := \langle z, w \rangle := z_1 \bar{w}_1 + \dots + z_n \bar{w}_n = \sum_{j=1}^n z_j \bar{w}_j^{\text{komplex konjugiert}},$$
 (1.1c)

(euklidische für $\mathbb{K} = \mathbb{R}$) Norm / Länge / Absolutwert:

$$|z| := ||z|| := \sqrt{z \cdot z} = \sqrt{|z_1|^2 + \dots + |z_n|^2},$$
 (1.1d)

(euklidischer für $\mathbb{K} = \mathbb{R}$) Abstand:

$$|z - w| = \sqrt{|z_1 - w_1|^2 + \dots + |z_n - w_n|^2}.$$
 (1.1e)

Bem. 1.2. \mathbb{K}^n mit Add. (1.1a) und Sk. mult. (1.1b) ist ein \mathbb{K} -Vektorraum (VR) mit Nullelement $0 := (0, \dots, 0)$ (siehe [Phi22, Bsp. A.2(d)] in [Phi22, Anhang A]).

[Phi22, Anhang A]: Lineare Algebra.

Lem. 1.3. Eigenschaften der Norm $|\cdot|$ auf \mathbb{K}^n :

(a) $|\cdot|$ ist positiv-definit, d.h.

$$\underset{z \in \mathbb{K}^n}{\forall} \quad |z| \ge 0 \text{ und } \Big(|z| = 0 \iff z = 0\Big).$$

(b) $|\cdot|$ ist homogen vom Grad 1, d.h.

$$\bigvee_{z \in \mathbb{K}^n} \quad \forall \quad |\lambda z| = |\lambda||z|.$$

(c) Dreiecksungl.:

$$\forall z, w \in \mathbb{K}^n \quad |z + w| \le |z| + |w|.$$

Bew.: (a): Klar, wegen $|z| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$.

(b):

$$|\lambda z| = \sqrt{\sum_{j=1}^{n} |\lambda z_j|^2} = \sqrt{|\lambda|^2 \sum_{j=1}^{n} |z_j|^2} = |\lambda| \sqrt{\sum_{j=1}^{n} |z_j|^2} = |\lambda| |z|.$$

(c) wird auf später verschoben.

Bem. 1.4. Nach Lem. 1.3 ist $|\cdot|$ eine Norm (Def. 1.17).

Def. 1.5. Einheitsvektoren: $e \in \mathbb{K}^n$ mit |e| = 1.

Die Standardeinheitsvektoren

$$e_1 := (1, 0, \dots, 0), \quad e_2 := (0, 1, \dots, 0), \quad \dots, \quad e_n := (0, \dots, 0, 1)$$

bilden eine Basis des \mathbb{K} -VR \mathbb{K}^n .

Bem. 1.6.

$$\forall z = (z_1, \dots, z_n) \in \mathbb{K}^n \quad z = \sum_{j=1}^n z_j e_j = \sum_{j=1}^n (z \cdot e_j) e_j.$$

Not. 1.7. Für $x, y \in \mathbb{R}^n$ sei x < y (bzw. $x \le y$) g.d.w. $\forall x_j < y_j$ (bzw. $x_j \le y_j$).

Bem. 1.8. Für $n \ge 2$ brauchen $x, y \in \mathbb{R}^n$ nicht vergleichbar sein! Bsp.: x = (1, 0), y = (0, 1), z = (2, 2). Dann ist x < z, y < z, aber weder x < y noch y < x.

Not. 1.9. $I \subseteq \mathbb{R}^n$ heißt n-dim. <u>Intervall</u> g.d.w. $I = I_1 \times \cdots \times I_n$ mit reellen Intervallen $I_1 \subseteq \mathbb{R}, \ldots, I_n \subseteq \mathbb{R}$. Die Längen $|I_1|, \ldots, |I_n|$ heißen Kantenlängen von I. Für $x, y \in \mathbb{R}^n$ mit x < y def.:

$$]x, y[:= \{z \in \mathbb{R}^n : x < z < y\} =]x_1, y_1[\times \cdots \times]x_n, y_n[$$
 (off. Int.),

$$[x, y] := \{z \in \mathbb{R}^n : x \le z \le y\} = [x_1, y_1] \times \cdots \times [x_n, y_n]$$
 (abg. Int.),

$$[x, y[:= \dots \}]$$
 entsprechend (halboffene Int.)

Konvergenz in \mathbb{K}^n : Def. für Konv. in \mathbb{K} überträgt sich, wenn wir $|\cdot|$ in \mathbb{K} durch $|\cdot|$ in \mathbb{K}^n ersetzen:

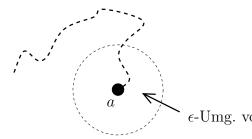
Def. 1.10. Sei $(z^k) = (z^k)_{k \in \mathbb{N}} = (z^1, z^2, \dots)$ Folge in \mathbb{K}^n . Dann heißt (z^k) konvergent mit Grenzwert/Limes $a \in \mathbb{K}^n$ (schreibe: $\lim_{k \to \infty} z^k = a$ oder $z^k \to a$ für $k \to \infty$) g.d.w.

$$\forall \quad \exists_{\epsilon>0} \quad \forall \quad |z^k - a| < \epsilon.$$

 (z^k) heißt Cauchyfolge g.d.w.

$$\forall \quad \exists \quad \forall \quad |z^k - z^l| < \epsilon.$$

In \mathbb{R}^2 oder \mathbb{C} :



Bem. 1.11. Für alle $z = (z_1, \ldots, z_n) \in \mathbb{K}^n$ gilt:

$$\forall |z_j| \le |z_j| \le |z_1| + \dots + |z_n|.$$
(1.2)

Th. 1.12. Sei $(z^k) = (z^k)_{k \in \mathbb{N}}$ Folge in \mathbb{K}^n mit $z^k = (z_1^k, \dots, z_n^k)$. Dann gilt:

$$\lim_{k \to \infty} z^k = a = (a_1, \dots, a_n) \in \mathbb{K}^n \qquad \Leftrightarrow \qquad \bigvee_{j=1,\dots,n} \lim_{k \to \infty} z_j^k = a_j.$$

$$(z^k) \text{ ist Cauchy} \qquad \Leftrightarrow \qquad \bigvee_{j=1,\dots,n} (z_j^k)_{k \in \mathbb{N}} \text{ ist Cauchy}.$$

Bew.: Sei $\lim_{k\to\infty} z^k = a$. Dann:

$$\forall \quad \exists \quad \forall \quad |z^k - a| < \epsilon.$$

Mit (1.2) folgt für k > N:

$$\forall |z_j| |z_j| - |z_j| \le |z^k - a| < \epsilon.$$

Also
$$\forall \lim_{j=1,\dots,n} \lim_{k\to\infty} z_j^k = a_j.$$

Umgekehrt gelte $\forall \lim_{j=1,\dots,n} \lim_{k\to\infty} z_j^k = a_j$. Dann:

$$\forall_{\epsilon>0} \quad \exists_{N\in\mathbb{N}} \quad \forall_{k>N} \quad |z_j^k - a_j| < \frac{\epsilon}{n}.$$

Mit (1.2) folgt für k > N:

$$|z^k - a| \le \sum_{j=1}^n |z_j^k - a_j| < n \frac{\epsilon}{n} = \epsilon.$$

Also $\lim_{k\to\infty} z^k = a$.

Bew. bezüglich der Cauchyfolgen: Analog.

Def. 1.13. Folge (z^k) in \mathbb{K}^n heißt beschränkt g.d.w. die Menge $\{|z^k|: k \in \mathbb{N}\}$ beschränkt ist, d.h., g.d.w.

$$\exists_{M \in \mathbb{R}_0^+} \quad \forall 0 \le |z^k| \le M. \tag{1.3}$$

Umordnungen, Teilfolgen (TF): Siehe z.B. Def. I.7.21.

∧ bezieht sich auf mein Analysis I Skript

Lem. 1.14. (z^k) sei Folge in \mathbb{K}^n mit $\lim_{k\to\infty} z^k = a \in \mathbb{K}^n$. Dann gelten:

- (a) (z^k) ist beschränkt.
- (b) $\lim_{l\to\infty} z^{k_l} = a$ für jede TF $(z^{k_l})_{l\in\mathbb{N}}$ von $(z^k)_{k\in\mathbb{N}}$.
- (c) $\lim_{k\to\infty} z^{\phi(k)} = a$ für jede Umordnung $(z^{\phi(k)})_{k\in\mathbb{N}}$ von $(z^k)_{k\in\mathbb{N}}$.
- (d) Gilt auch $\lim_{k\to\infty} z^k = b \in \mathbb{K}^n$, so ist a = b (Limes ist eindeutig).

Bew.: Th. 1.12 liefert

$$\forall \lim_{j=1,\dots,n} z_j^k = a_j.$$
(1.4)

(a): Konv. Folgen in K sind beschränkt, also mit (1.4)

$$\underset{M_1,\dots,M_n\geq 0}{\exists} \quad \forall \quad 0 \leq |z_j^k| \leq M_j.$$

Wegen $|z^k| \stackrel{(1.2)}{\leq} |z_1^k| + \dots + |z_n^k|$ folgt

$$\forall \quad 0 \le |z^k| \le \sum_{j=1}^n M_j \in \mathbb{R}_0^+, \tag{1.5}$$

d.h., (z^k) ist beschränkt.

(b):
$$(z^{k_l})$$
 TF von $(z^k) \Rightarrow (z_j^{k_l})$ TF von (z_j^k) .

Wegen (1.4) folgt $\lim_{l\to\infty} z_j^{k_l} = a_j$ aus Prop. I.7.23.

Ana I Skript

Mit Th. 1.12 folgt nun $\lim_{l\to\infty} z^{k_l} = a$.

- (c): Genau wie in (b).
- (d): Sei $\lim_{k\to\infty} z^k = b \in \mathbb{K}^n$.

Th. 1.12
$$\Rightarrow \bigvee_{j=1,\dots,n} \lim_{k \to \infty} z_j^k = b_j.$$
 (1.6)

$$(1.6)$$
 & (1.4) $\Rightarrow \bigvee_{j=1,\dots,n} a_j = b_j$, da Limiten von Folgen in \mathbb{K} eind. Sind. Also $a = b$.

Lem. 1.15. Seien (z^k) , (w^k) Folgen in \mathbb{K}^n , $\lim_{k\to\infty} z^k = a$, $\lim_{k\to\infty} w^k = b$, sowie $\lambda, \mu \in \mathbb{K}$. Dann:

- (a) $\lim_{k\to\infty} (\lambda z^k + \mu w^k) = \lambda a + \mu b$.
- **(b)** $\lim_{k\to\infty} (z^k \cdot w^k) = a \cdot b$.
- (c) $\lim_{k\to\infty} |z^k| = |a|$.

Bew.:

Th. 1.12
$$\Rightarrow \bigvee_{j=1,\dots,n} \bigvee_{k\to\infty} \lim_{j\to\infty} z_j^k = a_j,$$
 (1.7a)
 $\bigvee_{j=1,\dots,n} \bigvee_{k\to\infty} w_j^k = b_j.$ (1.7b)

$$\forall \lim_{j=1,\dots,n} w_j^k = b_j.$$
(1.7b)

(a): Grenzwertsätze (GWS) für Folgen in K und (1.7)

$$\Rightarrow \bigvee_{j=1,\dots,n} \lim_{k\to\infty} (\lambda z_j^k + \mu w_j^k) = \lambda a_j + \mu b_j.$$

Th. $1.12 \Rightarrow (a)$.

(b): Wieder GWS für Folgen in K und (1.7)

$$\Rightarrow a \cdot b = \sum_{j=1}^{n} a_j \, \overline{b}_j = \sum_{j=1}^{n} \lim_{k \to \infty} z_j^k \, \overline{\lim_{k \to \infty} w_j^k}$$
$$= \lim_{k \to \infty} \sum_{j=1}^{n} z_j^k \, \overline{w_j^k} = \lim_{k \to \infty} (z^k \cdot w^k).$$

(c):

$$\lim_{k \to \infty} |z^k| = \lim_{k \to \infty} \sqrt{z^k \cdot z^k} \stackrel{\downarrow}{=} \sqrt{\lim_{k \to \infty} (z^k \cdot z^k)} \stackrel{\text{(b)}}{=} \sqrt{a \cdot a} = |a|.$$

Th. 1.16. (a) Folge in \mathbb{K}^n ist konvergent g.d.w. sie eine Cauchyfolge ist.

(b) (Satz v. Bolzano-Weierstraß): Jede beschr. Folge in \mathbb{K}^n hat eine konvergente TF.

Bew.: (a) (z^k) konv. in \mathbb{K}^n

(b) Bew. skizze (exakter Bew. via Induktion):

 (z^k) beschr. $\Rightarrow (|z^k|)$ beschr. $\overset{(1.2)}{\Rightarrow} (|z_j^k|)$ beschr.

Bolzano-W. für Folgen in $\mathbb K$

liefert TF 1 so, dass $(z_1^{k_l})$ konv. || TF 2 so, dass $(z_1^{k_{l_m}})$, $(z_2^{k_{l_m}})$ konv. u.s.w.

1.2 Normen

Def. 1.17. Sei X ein \mathbb{K} -VR. Eine Fkt. $\|\cdot\|: X \longrightarrow \mathbb{R}_0^+$ heißt Norm auf X g.d.w. (i) – (iii) gelten:

(i) $\|\cdot\|$ ist pos. def., d.h.

$$\bigvee_{x \in X} \quad \Big(\|x\| = 0 \quad \Leftrightarrow \quad x = 0 \Big).$$

- (ii) $\|\cdot\|$ ist homogen vom Grad 1, d.h. $\bigvee_{x\in X} \quad \forall \quad \|\lambda x\| = |\lambda| \|x\|$.
- (iii) $\|\cdot\|$ erfüllt die Dreiecksungl., d.h.

$$\forall ||x + y|| \le ||x|| + ||y||.$$

Ist $\|\cdot\|$ Norm auf X, so heißt $(X,\|\cdot\|)$ ein normierter VR oder auch norm. Raum.

Lem. 1.18. Ist $(X, \|\cdot\|)$ norm. VR, so gilt die umgekehrte Dreiecksungl.:

$$\forall ||x|| - ||y|| \le ||x - y||.$$
(1.8)

Bew.: Wie in Ana I:

$$||x|| = ||x - y + y|| \stackrel{\Delta\text{-Ungl.}}{\leq} ||x - y|| + ||y|| \implies ||x|| - ||y|| \leq ||x - y||,$$

$$||y|| = ||y - x + x|| \stackrel{\Delta\text{-Ungl.}}{\leq} ||x - y|| + ||x|| \implies -(||x|| - ||y||) \leq ||x - y||,$$

$$\Big\} \Rightarrow \Big| ||x|| - ||y|| \Big| \leq ||x - y||.$$

Bsp. 1.19. (a) Norm (1.1d) ist Norm auf \mathbb{K}^n (Lem. 1.3 & Bem. 1.4).

(b) S sei Menge. $f: S \longrightarrow \mathbb{K}$ heißt <u>beschränkt</u> g.d.w. die Menge

 $\{|f(s)|: s \in S\} \subseteq \mathbb{R}_0^+ \text{ beschr. ist.}$

 $B(S, \mathbb{K}) := \{ (f : S \to \mathbb{K}) : f \text{ beschr.} \}.$

Definiere

$$\forall ||f||_{\sup} := \sup\{|f(s)| : s \in S\} \in \mathbb{R}_0^+.$$
(1.9a)

Sei $f, g \in B(S, \mathbb{K}), \lambda \in \mathbb{K}$.

$$\forall_{s \in S} |f(s) + g(s)| \le |f(s)| + |g(s)| \le ||f||_{\sup} + ||g||_{\sup} \in \mathbb{R}_0^+, \tag{1.9b}$$

 $\Rightarrow f + g \in B(S, \mathbb{K})$ und

$$\forall ||f + g||_{\sup} \le ||f||_{\sup} + ||g||_{\sup}, \tag{1.9c}$$

d.h., $\|\cdot\|_{\text{sup}}$ erf. Δ -Ungl.

Auch

 $\Rightarrow \lambda f \in B(S, \mathbb{K})$. Wegen $f + g \in B(S, \mathbb{K})$ und $\lambda f \in B(S, \mathbb{K})$ ist $B(S, \mathbb{K})$ Untervektorraum des \mathbb{K} -VR $\mathcal{F}(S, \mathbb{K})$.

$$\|\lambda f\|_{\sup} = \sup\{|\lambda||f(s)| : s \in S\}$$

$$\stackrel{\text{I.(4.9c)}}{=} |\lambda| \sup\{|f(s)| : s \in S\} = |\lambda| \|f\|_{\sup}. \quad (1.10b)$$

 $\|\cdot\|_{\sup}$ ist Norm auf $B(S,\mathbb{K})$ (die Supremumsnorm):

 $||f||_{\sup} \ge 0$, da $|f(s)| \ge 0$.

 $f = 0 \in B(S, \mathbb{K}) \Leftrightarrow f(s) = 0$ für alle $s \in S$

 $\Leftrightarrow ||f||_{\sup} = 0$. Also ist $||\cdot||_{\sup}$ pos. def.,

 $(1.10b) \Rightarrow \|\cdot\|_{\text{sup}}$ ist hom. v. Grad 1,

 $(1.9c) \Rightarrow \|\cdot\|_{\text{sup}} \text{ erf. } \Delta\text{-Ungl.}$

Also ist $(B(S, \mathbb{K}), \|\cdot\|_{\sup})$ norm. \mathbb{K} -VR.

1.3 Offene & abgeschl. Mengen und verwandte Begriffe

Def. 1.20. $(X, \|\cdot\|)$ sei norm. VR. Für $x \in X$, $r \in \mathbb{R}^+$ def.

$$B_r(x) := \{ y \in X : ||x - y|| < r \},$$

$$\overline{B}_r(x) := \{ y \in X : ||x - y|| \le r \},$$

$$S_r(x) := \{ y \in X : ||x - y|| = r \}.$$

 $B_r(x)$: Offene Kugel mit Mittelpunkt x, Radius r. $\overline{B}_r(x)$: Abgeschl. || || ||, || ||. $S_r(x)$: Sphäre/Kugeloberfl. || || ||, || ||.

 $U \subseteq X$ heißt <u>Umgebung</u> von $x \in X$ g.d.w. $\exists_{\epsilon>0} B_{\epsilon}(x) \subseteq U$.

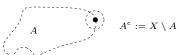
Def. 1.21. Sei $(X, \|\cdot\|)$ norm. VR, $A \subseteq X$, $x \in X$.

(a) x heißt <u>innerer Pkt</u> von A g.d.w. $\exists_{\epsilon>0}$ $B_{\epsilon}(x) \subseteq A$ $(x \text{ inn. Pkt. v. } A \Rightarrow x \in A).$

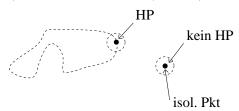
(b) x heißt Randpkt von A g.d.w.

$$\bigvee_{\epsilon>0} \quad \left(A \cap B_{\epsilon}(x) \neq \emptyset \quad \text{und} \quad A^{c} \cap B_{\epsilon}(x) \neq \emptyset\right)$$

 $(x \text{ Randpkt. v. } A \not\Rightarrow x \in A).$



(c) x heißt Häufungspkt (HP) von A g.d.w. $\forall B_{\epsilon}(x) \cap A$ enthält unendl. viele Punkte $(x \text{ HP v. } A \Rightarrow x \in A)$ (vgl. Def. I.7.33(a)).



(d) x heißt <u>isolierter Pkt</u> v. A g.d.w. $\exists_{\epsilon>0} B_{\epsilon}(x) \cap A = \{x\}$ (x isol. Pkt. v. $A \Rightarrow x \in A$) (vgl. Def. I.7.33(b)).

- (e) Die Menge aller inneren Pkte von A heißt das <u>Innere</u> von A. Bez.: A° oder int A.
- (f) $\partial A := \text{Menge der Randpkte v. } A \text{ (der } \underline{\text{Rand von }} A \text{).}$
- (g) $\overline{A} := \operatorname{cl} A := A \cup \partial A$ heißt der Abschluss von A.
- (h) A heißt <u>offen</u> g.d.w. $A = A^{\circ}$, d.h., g.d.w. jeder Pkt. aus A ist innerer Pkt. von A.
- (i) A heißt abg. g.d.w. A^c offen.

Bem. 1.22. A offen $\Leftrightarrow A^c$ abg.:

Es gilt
$$(A^{c})^{c} = X \setminus A^{c} = X \setminus (X \setminus A) = A$$
, also A^{c} abg. $\overset{\text{Def. 1.21(i)}}{\Leftrightarrow} (A^{c})^{c}$ offen $\Leftrightarrow A$ offen.

Lem. 1.23. $(X, ||\cdot||)$ sei norm. VR.

- (a) Für jedes $x \in X$, $r \in \mathbb{R}^+$ ist $B_r(x)$ offen im Sinn von Def. 1.21(h) und $\overline{B}_r(x)$ ist abg. im Sinn von Def. 1.21(i).
- (b) \emptyset und X sind sowohl offen als auch abg.
- (c) Punkte sind immer abg. Genauer: $\bigvee_{x \in X} \{x\}$ ist abg.

Bew.: (a): Übung.

(b) Jeder Pkt in \emptyset ist innerer Pkt (da es gar keinen Pkt in \emptyset gibt), d.h., \emptyset ist offen, X ist abg.

Sei nun $x \in X$. Dann: $\forall B_{\epsilon}(x) \subseteq X$. Also ist x inn. Pkt von X, X ist offen, \emptyset ist abg.

(c) Zeige: $X \setminus \{x\}$ ist offen. Sei $y \in X \setminus \{x\}$. Dann ist $\epsilon := \|x - y\| > 0$. Wir zeigen $B_{\epsilon}(y) \subseteq X \setminus \{x\}$: Sei $z \in B_{\epsilon}(y)$. Dann ist $\|z - y\| < \epsilon$. Also ist $x \notin B_{\epsilon}(y)$, d.h. $B_{\epsilon}(y) \subseteq X \setminus \{x\}$, d.h. y ist inn. Pkt von $X \setminus \{x\}$. Da $y \in X \setminus \{x\}$ beliebig war, folgt $X \setminus \{x\}$ offen.

Bsp. 1.24. Sei $X = \mathbb{K}, ||z|| := |z|$. Dann ist $(X, ||\cdot||)$ norm. VR.

(a) Sei r > 0.

$$\mathbb{K} = \mathbb{C}: \quad \forall \quad \frac{B_r(z) = \{w \in \mathbb{C} : |z - w| < r\},}{\overline{B}_r(z) = \{w \in \mathbb{C} : |z - w| \le r\},}$$

$$\mathbb{K} = \mathbb{R}: \quad \forall \quad \frac{B_r(x) =]x - r, x + r[,}{x \in \mathbb{R}} \quad \overline{B}_r(z) = [x - r, x + r].$$

- **(b)** $\mathbb{K} = \mathbb{R}$: Für A :=]0,1] ist $A^{\circ} =]0,1[, \partial A = \{0,1\}, \overline{A} = [0,1].$
- (c) $\mathbb{K} = \mathbb{C}$: Für A :=]0, 1] ist $A^{\circ} = \emptyset$, $\partial A = \overline{A} = [0, 1]$.
- (d) Für $\mathbb{K} = \mathbb{R}$ und auch für $\mathbb{K} = \mathbb{C}$: Für $A := \mathbb{Q}$ ist $A^{\circ} = \emptyset$, $\partial A = \overline{A} = \mathbb{R}$.
- (e) Für $\mathbb{K} = \mathbb{R}$ und auch für $\mathbb{K} = \mathbb{C}$: Für $A := \{\frac{1}{n} : n \in \mathbb{N}\}$ ist jedes $x \in A$ ein isol. Pkt v. A.

 Insbesondere: $A^{\circ} = \emptyset$. Der einzige HP v. A ist 0.
- Bem. 1.25. (a) Beliebige Vereinigungen (endl. & unendl.) von offenen Mengen sind offen. Endl. Durchschnitte offener Mengen sind offen.
- (b) Beliebige Durchschnitte abg. Mengen sind abg. Endl. Vereinigungen abg. Mengen sind abg.

Bsp. 1.26. Betrachte $(\mathbb{R}, |\cdot|)$. Es ist

$$\bigcap_{k=1}^{\infty}] - \frac{1}{k}, \frac{1}{k} [= \{0\},$$

 $\bigcup_{k=1}^{\infty} [\frac{1}{k}, 1] =]0, 1]$, d.h., i.A. sind unendl. Schnitte offener Mengen <u>nicht</u> offen und unendl. Vereinig. abg. Mengen <u>nicht</u> abg.

Def. 1.27. Sei $(X, \|\cdot\|)$ norm. VR. Dann heißt $A \subseteq X$ beschr. g.d.w. $A = \emptyset$ oder $(A \neq \emptyset \text{ und } \{\|x - y\| : x, y \in A\} \subseteq \mathbb{R}_0^+ \text{ ist beschr.})$, sonst heißt A unbeschr. Nenne

$$\operatorname{diam} A := \begin{cases} 0 & \text{für } A = \emptyset, \\ \sup \left\{ \|x - y\| : x, y \in A \right\} & \text{für } \emptyset \neq A \text{ beschr.,} \\ \infty & \text{für } A \text{ unbeschr.,} \end{cases}$$

den <u>Durchmesser</u> von A. Also diam $A \in [0, \infty] := \mathbb{R}_0^+ \cup \{\infty\}$ und A beschr. g.d.w. diam $A < \infty$.

Lem. 1.28.
$$A \subseteq X$$
 beschr. $\Leftrightarrow \exists R > 0, x \in X$ $A \subseteq B_r(x)$.

"\(\infty\)": Sei
$$r > 0$$
, $x \in X$ mit $A \subseteq B_r(x)$. Dann:
$$\forall ||x - y|| < r,$$

$$\forall ||x - y|| \le ||z - x|| + ||x - y|| < 2r, also$$

$$diam $A \le 2r < \infty.$$$

Lem. 1.29. (a) Ist $A \subseteq X$ endl., so ist A beschr.

(b) $A, B \subseteq X$ mit A, B beschr. $\Rightarrow A \cup B$ beschr.

Bew.: (a) Sei A endl. Wähle $a \in A$; setze $r := 1 + \max\{\|a - x\| : x \in A\}$. Dann ist $1 \le r < \infty$, da A endl.

Da $A \subseteq B_r(a)$, folgt A beschr. nach Lem. 1.28.

(b) $A, B \subseteq X$ seien beschr. Nach Lem. 1.28 ex.

 $x, y \in X$ und r > 0 mit $A \subseteq B_r(x), B \subseteq B_r(y)$.

Setze $\alpha := ||x - y||, \ \epsilon := r + \alpha.$

Dann ist $A \subseteq B_r(x) \subseteq B_{\epsilon}(x)$.

also $B \subseteq B_{\epsilon}(x)$ und dann $A \cup B \subseteq B_{\epsilon}(x)$, d.h. $A \cup B$ beschr.

1.4 Konvergenz

Def. 1.30. $(x^k)_{k\in\mathbb{N}}$ sei Folge in X, $(X, \|\cdot\|)$ norm. VR.

- (a) (x^k) heißt beschr. g.d.w. $\{x^k: k \in \mathbb{N}\}$ beschr. nach Def. 1.27.
- (b) (x^k) heißt konvergent mit Limes $y \in X$ $(\lim_{k \to \infty} x^k = y \text{ oder } x^k \to y \text{ für } k \to \infty) \text{ g.d.w. } \lim_{k \to \infty} \|x^k y\| = 0. \text{ Also}$ $\lim_{k \to \infty} x^k = y \iff \lim_{k \to \infty} \|x^k y\| = 0.$
- (c) (x^k) divergent $\Leftrightarrow (x^k)$ nicht konvergent.
- (d) (x^k) <u>Cauchyfolge</u> $\Leftrightarrow \forall \exists_{\epsilon>0} \exists \forall \|x^k x^l\| < \epsilon$.
- (e) $y \in X$ heißt <u>Häufungspkt</u> (HP) von (x^k) g.d.w. $\forall B_{\epsilon}(y)$ enthält unendl. viele x^k , d.h., g.d.w. $\forall \{k \in \mathbb{N} : x^k \in B_{\epsilon}(y)\} = \infty$.

Lem. 1.31. Für Folge (x^k) in X sind äquivalent:

- (i) (x^k) ist konvergent mit Limes $y \in X$.
- (ii) $\forall \exists_{\epsilon>0} \forall x^k \in B_{\epsilon}(y)$.

Bew.: (i)
$$\Leftrightarrow \lim_{k \to \infty} ||x^k - y|| = 0$$

 $\Leftrightarrow \forall \exists \forall ||x^k - y|| < \epsilon$
 $\Leftrightarrow (ii)$

$$||x^k - y|| < \epsilon$$

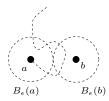
$$x^k \in B_{\epsilon}(y)$$

Prop. 1.32. Sei (x^k) Folge in norm. VR X.

- (a) Grenzwerte sind eindeutig: $\lim_{k\to\infty} x^k = a$, $\lim_{k\to\infty} x^k = b \Rightarrow a = b$.
- **(b)** (x^k) konvergent $\Rightarrow (x^k)$ beschr.
- (c) Gilt $\lim x^k = a$, so gilt das selbe für jede Teilfolge (TF) und jede Umord. von (x^k) .
- (d) $y \in X$ ist HP von $(x^k) \Leftrightarrow (x^k)$ hat gegen y konvergierende TF.
- (e) (x^k) konv. $\Rightarrow (x^k)$ Cauchy.

Bew.: \rightarrow alle Bew. analog zu entsprechenden Bew. in Ana. I. Nur (a), (b) und (e) seien noch einmal ausgeführt.

(a) Kontraposition: Sei $a \neq b$, $\lim_{k \to \infty} x^k = a$. Dann: $\epsilon := \|a - b\|/2 > 0$.



Sei $x \in B_{\epsilon}(a)$. Dann

$$||a-b|| \leq ||a-x|| + ||x-b|| \quad \Rightarrow \quad ||x-b|| \geq ||a-b|| - ||a-x|| > 2\epsilon - \epsilon = \epsilon,$$

da $||x - a|| < \epsilon$. Also $x \notin B_{\epsilon}(b)$. Da fast alle x^k in $B_{\epsilon}(a)$ liegen, liegen <u>nicht</u> fast alle x^k in $B_{\epsilon}(b)$, d.h. $x^k \not\to b$.

(b) Sei $\lim_{k\to\infty} x^k = a \in X$. Dann

$$\exists_{N \in \mathbb{N}} \quad \forall \quad x^k \in B_1(a).$$

Also ist $B_1 := \{x^k : k > N\}$ beschr.

 $B_2 := \{x^k : k \leq N\}$ ist endl., also auch beschr.

Also ist auch $\{x^k : k \in \mathbb{N}\} = B_1 \cup B_2$ beschr.

(e)
$$\lim x^k = a \quad \Rightarrow \quad \bigvee_{\epsilon > 0} \quad \underset{N \in \mathbb{N}}{\exists} \quad \bigvee_{k > N} \quad x^k \in B_{\frac{\epsilon}{2}}(a).$$

Also

$$\forall \|x^k - x^l\| \le \|x^k - a\| + \|a - x^l\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

d.h., (x^k) ist Cauchy.

$$((0,1),(1,\frac{1}{2}),(0,\frac{1}{3}),(1,\frac{1}{4}),\dots)$$
 in \mathbb{K}^2 ist nicht

Cauchy und konvergiert also auch nicht. Ihre HP sind (0,0) und (1,0).

Die TF $((0, \frac{1}{2k-1}))_{k \in \mathbb{N}}$ konv. gegen (0, 0);

die TF $((1, \frac{1}{2k}))_{k \in \mathbb{N}}$ konv. gegen (1, 0).

(b) Sei X der \mathbb{K} -VR der Folgen in \mathbb{K} , die schließlich konstant Null sind, d.h. $z = (z_n)_{n \in \mathbb{N}}, z_n \in \mathbb{K}$, ist in X g.d.w.

$$\exists_{N \in \mathbb{N}} \quad \forall z_n = 0 \qquad \left(z.B. \quad (1, 1, 1, 0, 0, \dots) \in X \right) \\
\left(z.B. \quad (1, \frac{1}{2}, \frac{1}{3}, \dots) \notin X \right)$$

Mit $||z||_{\sup} = ||(z_n)_{n \in \mathbb{N}}||_{\sup} = \sup\{|z_n| : n \in \mathbb{N}\}$

ist X ein norm. \mathbb{K} -VR (ein Unter-VR von $B(\mathbb{N}, \mathbb{K})$, dem Raum der beschr. Abb.

 $f: \mathbb{N} \longrightarrow \mathbb{K}$, vgl. Bsp. 1.19(b)).

Betrachte die Folge $(z^k)_{k\in\mathbb{N}}$ in X mit

$$z_n^k := \begin{cases} 1/n & \text{für } 1 \le n \le k, \\ 0 & \text{für } n > k \end{cases}$$
$$z^1 = (1, 0, 0, \dots)$$
$$z^2 = (1, \frac{1}{2}, 0, 0, \dots)$$

Dann ist (z^k) Cauchy in X (bez. $\|\cdot\|_{\sup}$), aber <u>nicht</u> konvergent in X (Übung) (der Limes bez. $\|\cdot\|_{\sup}$ ist $(\frac{1}{n})_{n\in\mathbb{N}} \notin X$).

Lem. 1.34. Jede Norm $\|\cdot\|$ ist stetig, d.h.

$$\lim x^k = x \quad \Rightarrow \quad \lim \|x^k\| = \|x\|.$$

Bew.: $\lim x^k = x \Rightarrow \lim ||x^k - x|| = 0$. Also, we en

$$0 \le \left| \|x^k\| - \|x\| \right| \le \|x^k - x\|$$

folgt $\lim |||x^k|| - ||x||| = 0$ nach Einschachtelungsatz.

Def. 1.35. $(X, \|\cdot\|)$ heißt vollständig g.d.w. jede Cauchyfolge in X konvergiert. Ein vollst. norm. VR heißt Banachraum.

 $[\]rightarrow$ \mathbb{K}^n mit der euklidischen Norm (gemäß (1.1d)) ist vollst. (also Banachr.)

 \rightarrow Bsp. 1.33(b) zeigt, dass der Raum der Folgen in \mathbb{K} , die schließlich konst. Null sind mit der $\|\cdot\|_{\sup}$ -Norm ein norm. VR ist, der <u>kein</u> Banachraum ist.

Th. 1.36. Sei $(X, \|\cdot\|)$ norm. VR, $A \subseteq X$. Dann sind äq.:

- (i) A ist abg.
- (ii) Der Grenzwert jeder Folge in A, die in X konvergiert, liegt in A (vgl. Def. Ana I.7.42(b)).

Bew.: (i) \Rightarrow (ii): A abg. \Rightarrow A^{c} offen

$$x \in A^{c} \quad \Rightarrow \quad \underset{\epsilon > 0}{\exists} B_{\epsilon}(x) \subseteq A^{c}$$

 \Rightarrow keine Folge in A konv. gegen x

 \Rightarrow (ii).

 $(ii) \Rightarrow (i)$ via Kontrapos.:

 $\neg(i) \Rightarrow \neg(ii)$: A nicht abg. $\Rightarrow A^c$ nicht offen

$$\underset{x \in A^{c}}{\exists} \quad \forall \quad \underset{x^{k} \in B_{\frac{1}{L}}(x)}{\exists} \quad x^{k} \in A.$$

Dann ist (x^k) Folge in A mit $\lim x^k = x$ (da $||x^k - x|| < \frac{1}{k} \to 0$). Also gilt \neg (ii).

1.5 Grenzwerte und Stetigkeit von Funktionen

Def. 1.37. Seien $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ norm. VR, $M \subseteq X$.

Ist $\xi \in X$ HP von M, so hat $f: M \longrightarrow Y$ den Grenzwert/Limes $\eta \in Y$ für $x \to \xi$ (Bezeichnung: $\lim_{x \to \xi} f(x) = \eta$) g.d.w.

$$\forall \exists_{\epsilon>0} \exists_{\delta>0} \forall_{x\in(M\cap B_{\delta}(\xi)), \atop x\neq \xi} \|f(x) - \eta\| < \epsilon. \tag{1.11}$$

Bem. 1.38. Der Grund für $\xi \neq x$ in (1.11) ist, dass man $f(\xi) \neq \lim_{x \to \xi} f(x)$ zulassen möchte.

Für $\xi \in M$ mit ξ HP von M gibt es also genau 3 Möglichkeiten:

- (i) $\lim_{x\to\xi} f(x)$ existiert nicht,
- (ii) $f(\xi) \neq \lim_{x \to \xi} f(x)$,
- (iii) $f(\xi) = \lim_{x \to \xi} f(x)$.

Def. 1.39. Sind $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ norm. VR, $M \subseteq X$, $\xi \in M$, so heißt $f: M \longrightarrow Y$ stetig in ξ g.d.w.

$$\forall \exists_{\epsilon>0} \quad \exists_{\delta>0} \quad \forall \exists_{f(x)-f(\xi)} = \underbrace{\|f(x)-f(\xi)\| < \epsilon}_{f(x)\in B_{\epsilon}(f(\xi))}.$$

 $f \text{ heißt } \underline{\text{stetig}} \text{ in } M \text{ g.d.w. } \underset{\xi \in M}{\forall} \quad f \text{ stetig in } \xi.$

C(M,Y) bezeichne die Menge aller stetigen Fkt. von M nach Y.

Th. 1.40 (Folgenkriterium für Grenzwert und für Stetigkeit). X, Y seien norm. VR, $M \subseteq X, f: M \longrightarrow Y$.

(a) Ist ξ HP von M, so existient $\lim_{x\to\xi} f(x) = \eta \in Y$ g.d.w.

$$\forall \begin{cases}
(x^k) \text{ Folge in } M \setminus \{\xi\}
\end{cases} \quad \left(\lim_{k \to \infty} x^k = \xi \quad \Rightarrow \quad \lim_{k \to \infty} f(x^k) = \eta\right). \tag{1.12a}$$

(b) Ist $\xi \in M$, so ist f stetig in ξ g.d.w.

$$\forall \atop (x^k) \text{ Folge in } M \quad \left(\lim_{k \to \infty} x^k = \xi \quad \Rightarrow \quad \lim_{k \to \infty} f(x^k) = f(\xi)\right).$$
(1.12b)

Bew.: (a) Ang., es ex. $\lim_{x\to\xi} f(x) = \eta \in Y$ und (x^k) ist Folge in $M\setminus\{\xi\}$ mit $\lim x^k = \xi$. Dann gilt

$$\forall_{\epsilon>0} \quad \left(\begin{array}{ccc} \exists & \forall & \|x-\xi\| < \delta \ \Rightarrow \ \|f(x)-\eta\| < \epsilon \\ \text{und} & \exists & \forall & \|x^k-\xi\| < \delta \end{array} \right).$$

Also $\forall \|f(x^k) - \eta\| < \epsilon$, also $\lim f(x^k) = \eta$.

Sei umgekehrt $\lim_{x\to\xi} f(x) = \eta$ falsch. Wir konstruieren

 (x^k) in $M \setminus \{\xi\}$ mit $\lim x^k = \xi$, jedoch $(f(x^k))$ konv. <u>nicht</u> gegen η : Da $\lim_{x \to \xi} f(x) = \eta$ falsch ist

$$\underset{\epsilon_0>0}{\exists} \quad \forall \quad \underset{x^k \in M \setminus \{\xi\}}{\exists} \quad \|x^k - \xi\| < \frac{1}{k} \quad \text{und} \quad \|f(x^k) - \eta\| \ge \epsilon_0.$$

Dann ist (x^k) Folge in $M \setminus \{\xi\}$, $\lim x^k = \xi$ und $f(x^k) \not\to \eta$.

(b) Ist ξ HP von M, so geht man analog zu (a) vor.

Ist ξ kein HP von M, so $\exists_{\delta>0} M \cap B_{\delta}(\xi) = \{\xi\}.$

Dann ist jedes $f: M \longrightarrow Y$ stetig in ξ . Andererseits gilt dann für jede Folge (x^k) in $M: \lim x^k = \xi \Rightarrow \underset{N \in \mathbb{N}}{\exists} \quad \forall \quad x^k = \xi$, woraus

$$\lim f(x^k) = f(\xi)$$
 für jedes $f: M \longrightarrow Y$ folgt.

Bsp. 1.41. (a) Konstante Fkt. sind stetig.

(b) Ist (z^k) Folge in \mathbb{K}^n mit $\lim z^k = z \in \mathbb{K}^n$, so ist $\lim z_j^k = z_j$ für alle $j \in \{1, \dots, n\}$ nach Th. 1.12. Daher sind alle Projektionen $\pi_i: \mathbb{K}^n \longrightarrow \mathbb{K}, \, \pi_i(z_1, \ldots, z_n) := z_i, \, \text{stetig nach Th. } 1.40(b).$

Def. 1.42. Ist X norm. VR, $M \subseteq X$, $f: M \longrightarrow \mathbb{K}^n$, so heißen die Fkt. $f_1: M \longrightarrow \mathbb{K}, \ldots, f_n: M \longrightarrow \mathbb{K} \text{ mit } f(x) = (f_1(x), \ldots, f_n(x))$ (d.h. mit $f_j = \pi_j \circ f$) die <u>Koordinatenfunktionen</u> von f.

Th. 1.43. Sei X norm. VR, $M \subseteq X$, $\xi \in M$, $f: M \longrightarrow \mathbb{K}^n$. Dann sind äquivalent:

- (i) f ist stetig in ξ ,
- (ii) alle Koordinatenfkt. $f_j = \pi_j \circ f$ sind stetig in ξ (j = 1, ..., n),
- (iii) alle Fkt. Re f_1 , Im f_1 , ..., Re f_n , Im f_n sind stetig in ξ .

Bew.:

Bem. 1.44. Ist X Menge, Y \mathbb{K} -VR und $f, g: X \longrightarrow Y$, so def.

$$(f+g): X \longrightarrow Y, \qquad (f+g)(x) := f(x) + g(x), \qquad (1.13a)$$

$$(f+g): X \longrightarrow Y, \qquad (f+g)(x) := f(x) + g(x), \qquad (1.13a)$$

$$\bigvee_{\lambda \in \mathbb{K}} (\lambda f): X \longrightarrow Y, \qquad (\lambda f)(x) := \lambda f(x). \qquad (1.13b)$$

Damit wird die Menge $\mathcal{F}(X,Y)$ der Fkt. von X nach Y ein K-VR mit Nullelement $f \equiv 0$.

Def. man für $f: X \longrightarrow \mathbb{C}^n$, $f(x) = (f_1(x), \dots, f_n(x))$, noch

$$\operatorname{Re} f: X \longrightarrow \mathbb{R}^n, \qquad \operatorname{Re} f(x) := (\operatorname{Re} f_1(x), \dots, \operatorname{Re} f_n(x)), \qquad (1.14a)$$

$$\operatorname{Im} f: X \longrightarrow \mathbb{R}^n, \qquad \operatorname{Im} f(x) := (\operatorname{Im} f_1(x), \dots, \operatorname{Im} f_n(x)), \qquad (1.14b)$$

$$\bar{f}: X \longrightarrow \mathbb{C}^n, \qquad \bar{f}(x) := (\overline{f_1(x)}, \dots, \overline{f_n(x)}), \qquad (1.14c)$$

so gelten

$$f = \operatorname{Re} f + i \operatorname{Im} f, \tag{1.15a}$$

$$\bar{f} = \operatorname{Re} f - i \operatorname{Im} f. \tag{1.15b}$$

Lem. 1.45. (x^k) , (y^k) seien Folgen im norm. VR $(X, \|\cdot\|)$ mit $\lim x^k = x$, $\lim y^k = y$. Dann gelten

$$\lim_{k \to \infty} (x^k + y^k) = x + y,$$

$$\forall \lim_{\lambda \in \mathbb{K}} \lim_{k \to \infty} (\lambda x^k) = \lambda x.$$

$$\begin{aligned} \mathbf{Bew.:} & \underset{k \in \mathbb{N}}{\forall} & \|x^k + y^k - x - y\| \leq \underbrace{\|x^k - x\|}_{\rightarrow 0} + \underbrace{\|y^k - y\|}_{\rightarrow 0}, \\ & \text{also } \lim \|x^k + y^k - x - y\| = 0. \\ & \underset{\lambda \in \mathbb{K}}{\forall} & \lim \|\lambda x^k - \lambda x\| = \lim(|\lambda| \|x^k - x\|) = |\lambda| \lim \|x^k - x\| = 0. \end{aligned}$$

Th. 1.46. Sind X, Y norm. VR, $M \subseteq X$ sowie $f, g : M \longrightarrow Y$ stetig in $\xi \in M$. Dann sind f + g und λf st. in ξ für alle $\lambda \in \mathbb{K}$ (d.h., C(X,Y) ist Unter-VR von $\mathcal{F}(X,Y)$). Für $Y = \mathbb{C}^n$ sind auch Re f, Im f, \bar{f} st. in ξ . Ist $Y = \mathbb{K}$, so sind auch fg, f/g für $g \neq 0$ und |f| st. in ξ ; für $Y = \mathbb{R}$ auch $\max(f,g)$, $\min(f,g)$, $f^+ := \max(f,0)$, $f^- := -\min(f,0)$ st. in ξ .

Bew.: Sei (x^k) Folge in M mit $\lim x^k = \xi$. f,g st. in $\xi \Rightarrow \lim f(x^k) = f(\xi)$, $\lim g(x^k) = g(\xi)$. Lem. $1.45 \Rightarrow \lim (f+g)(x^k) = \lim \left(f(x^k) + g(x^k)\right) = f(\xi) + g(\xi) = (f+g)(\xi)$ $\Rightarrow f+g$ st. in ξ . $\lim(\lambda f)(x^k) = \lim \lambda f(x^k) \xrightarrow{\text{Lem. } 1.45} \lambda \lim f(x^k) = \lambda f(\xi) = (\lambda f)(\xi) \Rightarrow \lambda f$ st. in ξ . Grenzwertsätze für $Y = \mathbb{K}$ (Th. Ana. I.7.13(a)): $\lim (fg)(x^k) = \lim f(x^k) \lim g(x^k) = f(\xi)g(\xi) = (fg)(\xi) \Rightarrow fg$ st. in ξ . $\lim \frac{f(x^k)}{g(x^k)} = \frac{\lim f(x^k)}{\lim g(x^k)} = \frac{f(\xi)}{g(\xi)} \Rightarrow \frac{f}{g}$ st. in ξ . $\lim |f|(x^k) = |f|(\xi) \Rightarrow |f|$ st. in ξ . $\lim \max(f,g)(x^k) = \max(f,g)(\xi) \Rightarrow \max(f,g)$ st. in ξ (min(f,g) analog) f^+, f^- st. in ξ . $Y = \mathbb{C}^n$: $\lim \operatorname{Re} f(x^k) = \operatorname{Re} f(\xi)$, $\lim \operatorname{Im} f(x^k) = \operatorname{Im} f(\xi)$, $\lim \bar{f}(x^k) = \bar{f}(\xi)$ nach

I.(7.2), I.(7.11f), d.h., Re f, Im f, \bar{f} st. in ξ .

Bsp. 1.47. Jede lineare Fkt $A: \mathbb{K}^n \longrightarrow \mathbb{K}^m$ ist stetig: \swarrow Stelle j Es ist $A(z) = A(\sum_{j=1}^n z_j e_j) = \sum_{j=1}^n z_j A(e_j)$. $e_j = (0, \dots, 1, \dots, 0)$ Mit $A_j: \mathbb{K}^n \longrightarrow \mathbb{K}^m$, $A_j(z) := z_j A(e_j)$ also $A = \sum_{j=1}^n A_j$. Da $\lim_{k \to \infty} z^k = z \Rightarrow \lim_{k \to \infty} z^k_j = z_j \Rightarrow \lim_{k \to \infty} z^k_j A(e_j) = z_j A(e_j)$, folgt A_j st. für jedes $j = 1, \dots, n$, also A stetig.

Th. 1.48. Seien X, Y, Z norm. VR, $D_f \subseteq X$, $f : D_f \longrightarrow Y$, $D_g \subseteq Y$, $g : D_g \longrightarrow Z$, $f(D_f) \subseteq D_g$. Ist f st. in $\xi \in D_f$ und g st. in $f(\xi) \in D_g$, so ist $(g \circ f) : D_f \longrightarrow Z$ st. in ξ (insbesondere f, g stetig $\Rightarrow g \circ f$ stetig).

Bew.: Sei (x^k) Folge in D_f mit $\lim x^k = \xi \in D_f$. f st. in $\xi \Rightarrow \lim f(x^k) = f(\xi)$. g st. in $f(\xi) \Rightarrow g(f(\xi)) = \lim g(f(x^k)) = \lim (g \circ f)(x^k)$. Also ist $g \circ f$ st. in ξ .

Bsp. 1.49. $f: \mathbb{R}^+ \times \mathbb{C} \longrightarrow \mathbb{C}$, $f(x,z) := x^z = \exp(z \ln x)$ ist stetig: Mit $\pi_1, \pi_2 : \mathbb{C}^2 \longrightarrow \mathbb{C}$, $\pi_1(w,z) = w$, $\pi_2(w,z) = z$ ist $f(x,z) = \exp(\pi_2(x,z)\ln(\pi_1(x,z)))$, also $f = \exp(\pi_2(\ln \circ \pi_1))$. π_1, π_2 sind st. nach Bsp. 1.41(b), also f st. nach Th. 1.48.

Def. 1.50. Sei $n \in \mathbb{N}$. $p = (p_1, \dots, p_n) \in (\mathbb{N}_0)^n$ heißt Multiindex, $|p| := p_1 + \dots + p_n$ heißt Grad von p. Für $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ setze

$$x^p := x_1^{p_1} x_2^{p_2} \cdots x_n^{p_n}.$$

Fkt. $x \mapsto x^p$ heißt Monom vom Grad |p|. Linearkomb. von Monomen heißt Polynom P, d.h.

$$P: \mathbb{K}^n \longrightarrow \mathbb{K}, \quad P(x) = \sum_{|p| \le k} a_p x^p, \quad k \in \mathbb{N}_0, \quad a_p \in \mathbb{K}.$$

$$\deg(P) := \max \left\{ d \in \{0, \dots, k\} : \underset{p \in (\mathbb{N}_0)^n}{\exists} |p| = d \land a_p \neq 0 \right\}$$
 für $P \not\equiv 0$;

 $\deg(P) := -1 \text{ für } P \equiv 0.$

 $\nwarrow n$ -dim. Nullpolynom

P/Q mit Pol. P,Q heißt rationale Fkt.

Bsp. 1.51.

		Grad
Monome:	xy^3z	5
	x^2y^2	4
	x^2y	3
	x^2	2
	y	1
	1	0
Polynome:	$P(x,y) = 5x^2y - 3x^2 + y - 1$	3
	$Q(x, y, z) = xy^3z - 2x^2y^2 + 1$	5

P(x,y)/Q(x,y,z) ist rat. Fkt. def. auf $\{(x,y,z)\in\mathbb{K}^3:\,Q(x,y,z)\neq 0\}.$

Th. 1.52. Jedes Polynom ist stetig; jede rationale Fkt P/Q ist stetig in $z \in \mathbb{K}^n$, wenn $Q(z) \neq 0$.

Bew.: Bsp. 1.41(b)
$$\Rightarrow \bigvee_{j=1,\dots,n}$$
 Proj. $\pi_j : \mathbb{K}^n \longrightarrow \mathbb{K}, \ \pi_j(z) := z_j, \ \text{stetig.}$

Th. 1.46 $\Rightarrow \bigvee_{p \text{ mit } |p| \leq k} z \mapsto a_p z^p \ \text{st.} \stackrel{\text{Th. 1.46}}{\Rightarrow} P \ \text{st.}$
 $\stackrel{\text{Th. 1.46}}{\Rightarrow} P/Q \ \text{st. in jedem} \ z \ \text{mit} \ Q(z) \neq 0.$

Bsp. 1.53. Menge $\mathcal{M}(n,\mathbb{K})\cong\mathbb{K}^{n^2}$ der $(n\times n)$ -Matrizen über \mathbb{K} ist norm. VR.

- (a) Da die Determinante det : $\mathcal{M}(n, \mathbb{K}) \longrightarrow \mathbb{K}$ ein Polynom ist, ist sie nach Th. 1.52 stetig.
- (b) Lineare Algebra: $A \in \mathcal{M}(n, \mathbb{K})$ invertierbar $\Leftrightarrow \det(A) \neq 0$. Mit $GL(n, \mathbb{K}) := \det^{-1}(\mathbb{K} \setminus \{0\}) \subseteq \mathcal{M}(n, \mathbb{K})$ ist die Abb.

inv:
$$GL(n, \mathbb{K}) \longrightarrow GL(n, \mathbb{K})$$
, inv $(A) := A^{-1}$,

stetig, da die Koordinatenfkt. nach Lin. Alg. rationale Fkt. sind.

Bsp. 1.54. (a) Sei X der Raum der Folgen in \mathbb{K} mit der sup-Norm, die schließlich konstant Null sind (vgl. Bsp. 1.33(b)). Die Abb.

$$A: X \longrightarrow \mathbb{K}, \quad A((z_n)_{n \in \mathbb{N}}) := \sum_{n=1}^{\infty} z_n$$

ist linear, aber nicht stetig: Mit

$$z_n^k := \begin{cases} 1/k & \text{für } 1 \le n \le k, \\ 0 & \text{für } n > k, \end{cases}$$

konvergiert $z^k \to 0$ in der sup-Norm, aber $A(z^k) = 1$ für alle $k \in \mathbb{N}$ (und A(0) = 0).

(b) $X := \{(f : \mathbb{R} \to \mathbb{R}) : f \text{ beschr., dif.bar} \}$ mit sup-Norm. $d : X \to \mathbb{R}, d(f) := f'(0), \text{ ist linear, aber nicht stetig (Übung).}$

Def. 1.55. Ist Y norm. VR, $\zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{K}^n$, so heißt $f : \mathbb{K}^n \longrightarrow Y$ in ζ bez. der j.ten Komponente stetig g.d.w.

$$\phi: \mathbb{K} \longrightarrow Y, \quad \phi(\alpha) := f(\zeta_1, \dots, \zeta_{j-1}, \alpha, \zeta_{j+1}, \dots, \zeta_n), \tag{1.16}$$

in $\alpha = \zeta_i$ stetig ist.

Lem. 1.56. Sei Y norm. VR, $\zeta = (\zeta_1, ..., \zeta_n) \in \mathbb{K}^n$. Ist $f : \mathbb{K}^n \longrightarrow Y$ stetig in ζ , so ist f in ζ bez. aller Komp. stetig.

Bew.: Sei (α_k) Folge in \mathbb{K} mit $\lim \alpha_k = \zeta_j$. Setzt man $z^k := (\zeta_1, \dots, \zeta_{j-1}, \alpha_k, \zeta_{j+1}, \dots, \zeta_n)$, so ist (z^k) Folge in \mathbb{K}^n mit $\lim z^k = \zeta$. Da f st., also $\lim f(z^k) = f(\zeta)$. Mit ϕ aus (1.16) ist $\phi(\alpha_k) = f(z^k)$, also $\lim \phi(\alpha_k) = f(\zeta) = \phi(\zeta_j)$, also ist ϕ st. in ζ_j .

Bsp. 1.57. f kann in ζ in allen Komp. stetig sein, ohne in ζ stetig zu sein: Betrachte

$$f: \mathbb{K}^2 \longrightarrow \mathbb{K}, \quad f(z, w) := \begin{cases} 0 & \text{für } zw = 0, \\ 1 & \text{für } zw \neq 0. \end{cases}$$

Für $\phi_1, \phi_2 : \mathbb{K} \longrightarrow \mathbb{K}$, $\phi_1(\alpha) := f(\alpha, 0)$, $\phi_2(\alpha) := f(0, \alpha)$ gilt $\phi_1 \equiv 0$ und $\phi_2 \equiv 0$, d.h., ϕ_1, ϕ_2 sind in 0 stetig, d.h., f ist in (0, 0) in beiden Komp. stetig.

f ist in (0,0) nicht stetig: Setze

f ist in (0,0) ment sterig. Setze

$$(z^k, w^k) := \begin{cases} (\frac{1}{k}, 0) & \text{für } k \text{ gerade,} \\ (\frac{1}{k}, \frac{1}{k}) & \text{für } k \text{ ungerade.} \end{cases}$$

Dann gilt $\lim(z^k, w^k) = (0, 0)$, jedoch $f(z^k, w^k) = 1$ für alle ungeraden k, d.h., $(f(z^k, w^k))$ konvergiert nicht.

1.6 Skalarprodukt und Hilbertraum

Def. 1.58. Sei X ein \mathbb{K} -VR. $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{K}$ heißt inneres Produkt oder Skalarprodukt auf X g.d.w. (i) – (iii) gelten:

(i) $\langle x, x \rangle \in \mathbb{R}^+$ für alle $0 \neq x \in X$.

(ii)
$$\forall \forall \forall x,y,z \in X \quad \forall \forall x \in \mathbb{K} \quad \langle \lambda x + \mu y, z \rangle = \lambda \langle x,z \rangle + \mu \langle y,z \rangle.$$

(iii)
$$\forall x,y \in X \quad \langle x,y \rangle = \overline{\langle y,x \rangle}.$$

Lem. 1.59. Ist $\langle \cdot, \cdot \rangle$ Skalarprodukt auf X, so gelten:

(a) $\forall \forall x,y,z \in X \quad \forall x, \lambda y + \mu z \rangle = \bar{\lambda} \langle x, y \rangle + \bar{\mu} \langle x, z \rangle$ (d.h. $\langle \cdot, \cdot \rangle$ ist eine Bilinearform für $\mathbb{K} = \mathbb{R}$, Sesquilinearform für $\mathbb{K} = \mathbb{C}$ (konjugiertlinear im 2. Argument)).

(b)
$$\bigvee_{x \in X} \langle 0, x \rangle = \langle x, 0 \rangle = 0.$$

Bew.: (a)

$$\begin{split} \langle x, \lambda y + \mu z \rangle &\stackrel{\text{(iii)}}{=} \overline{\langle \lambda y + \mu z, x \rangle} \stackrel{\text{(ii)}}{=} \overline{\lambda \langle y, x \rangle + \mu \langle z, x \rangle} \\ &= \bar{\lambda} \, \overline{\langle y, x \rangle} + \bar{\mu} \, \overline{\langle z, x \rangle} \stackrel{\text{(iii)}}{=} \bar{\lambda} \langle x, y \rangle + \bar{\mu} \langle x, z \rangle. \end{split}$$

(b)
$$\overline{\langle x,0\rangle} \stackrel{\text{(iii)}}{=} \langle 0,x\rangle = \langle 0x,x\rangle \stackrel{\text{(ii)}}{=} 0\langle x,x\rangle = 0.$$

Th. 1.60. Ist X \mathbb{K} -VR mit Skalarpr. $\langle \cdot, \cdot \rangle$, so gilt die Cauchy-Schwarzsche-Ungl., d.h.

$$\forall |\langle x, y \rangle| \le ||x|| \, ||y||, \tag{1.17}$$

wobei

$$||x|| := \sqrt{\langle x, x \rangle}, ||y|| := \sqrt{\langle y, y \rangle}. \tag{1.18}$$

Gleichheit in (1.17) gilt g.d.w. x, y lin. abhängig sind (d.h., g.d.w. y=0 oder $x=\lambda y$ für $\lambda\in\mathbb{K}$).

Bew.: Der Fall y = 0 ist klar. Gilt $x = \lambda y$, $\lambda \in \mathbb{K}$, so ist

$$|\langle x, y \rangle| = |\lambda \langle y, y \rangle| = |\lambda| ||y||^2 = \sqrt{\lambda \bar{\lambda} \langle y, y \rangle} ||y|| = ||x|| \, ||y||,$$

d.h., (1.17) gilt mit Gleichheit.

Nun sei $y \neq 0$ und $x - \lambda y \neq 0$ für alle $\lambda \in \mathbb{K}$, d.h.

$$0 < \langle x - \lambda y, x - \lambda y \rangle = \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle$$

= $\langle x, x \rangle - \bar{\lambda} \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda \bar{\lambda} \langle y, y \rangle = ||x||^2 - \bar{\lambda} \langle x, y \rangle - \lambda \overline{\langle x, y \rangle} + |\lambda|^2 ||y||^2.$

Setze nun $\lambda := \frac{\langle x, y \rangle}{\|y\|^2}$. Dann ist

$$0 < \|x\|^2 - \frac{2\langle x, y \rangle \overline{\langle x, y \rangle}}{\|y\|^2} + \frac{\langle x, y \rangle \overline{\langle x, y \rangle}}{\|y\|^2} = \frac{\|x\|^2 \|y\|^2 - \langle x, y \rangle \overline{\langle x, y \rangle}}{\|y\|^2},$$

also
$$|\langle x, y \rangle| < ||x|| ||y||$$
.

Prop. 1.61. Ist $X \mathbb{K}$ -VR mit Sk.pr. $\langle \cdot, \cdot \rangle$, so def.

$$\|\cdot\|: X \longrightarrow \mathbb{R}_0^+, \quad \|x\| := \sqrt{\langle x, x \rangle},$$

eine Norm auf X (sie heißt die vom Sk.pr. induzierte Norm).

Bew.: $x = 0 \Rightarrow \langle x, x \rangle = 0 \Rightarrow ||x|| = 0.$ $x \neq 0 \Rightarrow \langle x, x \rangle > 0 \Rightarrow ||x|| > 0$, d.h., $|| \cdot ||$ ist pos. def. Für $\lambda \in \mathbb{K}$, $x \in X$ ist $||\lambda x|| = \sqrt{\lambda \lambda} \langle x, x \rangle = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| ||x||$, d.h., $|| \cdot ||$ ist hom. v. Grad 1. Für $x, y \in X$ ist

$$||x + y||^{2} = \langle x + y, x + y \rangle = ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2}$$

$$\stackrel{(1.17)}{\leq} ||x||^{2} + 2||x|| ||y|| + ||y||^{2} = (||x|| + ||y||)^{2},$$

d.h., $\|\cdot\|$ erfüllt auch die Δ -Ungl.

Def. 1.62. Ist X K-VR mit Sk.pr. $\langle \cdot, \cdot \rangle$, so heißt $(X, \langle \cdot, \cdot \rangle)$ ein <u>Prähilbertraum</u> oder <u>Innenproduktraum</u>. Ein Prähilbertraum heißt <u>Hilbertraum</u> g.d.w. $(X, \|\cdot\|)$ ein Banachraum ist mit $\|x\| := \sqrt{\langle x, x \rangle}$ (d.h., g.d.w. die ind. Norm vollständig ist).

Bsp. 1.63. Wir überprüfen, dass das Sk.pr. aus (1.1c) tatsächlich ein Sk.pr. auf \mathbb{K}^n darstellt:

$$z \neq 0 \Rightarrow \underset{j_0 \in \{1,\dots,n\}}{\exists} z_{j_0} \neq 0$$
. Also $z \cdot z = \sum_{j=1}^n |z_j|^2 \geq |z_{j_0}|^2 > 0$, d.h. Def. 1.58(i) gilt. Für $z, w, u \in \mathbb{K}^n$; $\lambda, \mu \in \mathbb{K}$ ist

$$(\lambda z + \mu w) \cdot u = \sum_{j=1}^{n} (\lambda z_j + \mu w_j) \bar{u}_j = \sum_{j=1}^{n} \lambda z_j \bar{u}_j + \sum_{j=1}^{n} \mu w_j \bar{u}_j = \lambda (z \cdot u) + \mu (w \cdot u),$$

d.h. Def. 1.58(ii) gilt. Wegen

$$z \cdot w = \sum_{j=1}^{n} z_j \overline{w}_j = \overline{\sum_{j=1}^{n} w_j \overline{z}_j} = \overline{w \cdot z}$$

gilt auch Def. 1.58(iii), und (1.1c) def. tatsächlich ein Sk.pr.

Die Länge aus (1.1d) ist gerade die ind. Norm des Sk.pr. und erfüllt insbesondere die Δ -Ungl. (dies ist endlich der Bew. zu Lem. 1.3(c)).

Wegen Th. 1.16(a) ist die Norm aus (1.1d) vollständig, d.h., \mathbb{K}^n ist ein Banachraum und ein Hilbertraum.

Äquivalenz von Normen 1.7

Bsp. 1.64. Beispiele verschiedener Normen auf \mathbb{K}^n :

(a) Jede Abb. von $\{1,\ldots,n\}$ nach \mathbb{K} ist beschränkt, d.h., $\mathbb{K}^n=B(\{1,\ldots,n\},\mathbb{K})$ und die sup-Norm aus Bsp. 1.19(b) liefert Norm auf \mathbb{K}^n (auch genannt ∞ -Norm):

$$\forall z = (z_1, ..., z_n) \in \mathbb{K}^n \quad ||z||_{\infty} := ||z||_{\sup} = \max\{|z_1|, ..., |z_n|\}.$$

(b) Für $p \in [1, \infty]$ heißt

$$\|\cdot\|_p: \mathbb{K}^n \longrightarrow \mathbb{R}_0^+, \quad \|z\|_p:=\left(\sum_{j=1}^n |z_j|^p\right)^{1/p},$$
 (1.19)

die p-Norm auf \mathbb{K}^n .

Für p=2 ist dies gerade die vom Sk.pr. aus (1.1c) ind. Norm.

Jede *p*-Norm ist Norm auf \mathbb{K}^n :

$$z = 0 \Rightarrow ||z||_p = 0$$
 ist klar.

$$z \neq 0 \Rightarrow \exists_{j \in \{1,\dots,n\}} |z_j| > 0 \Rightarrow ||z||_p \ge |z_j| > 0.$$

$$\forall \forall \forall z \in \mathbb{K}^n \\
\Delta \text{ Ungl} : \lambda = \left(\sum_{j=1}^n |\lambda z_j|^p\right)^{\frac{1}{p}} = |\lambda| \|z\|_p.$$

 Δ -Ungl.:

Für p = 2 schon gezeigt (s. Bsp. 1.63).

Für p=1:

$$||z+w||_1 = \sum_{j=1}^n |z_j+w_j| \le \sum_{j=1}^n (|z_j|+|w_j|) = \sum_{j=1}^n |z_j| + \sum_{j=1}^n |w_j| = ||z||_1 + ||w||_1.$$

Bew. für $p \neq 1, 2$ ist aufwändiger und wird hier nicht geführt (siehe z.B. [Phi22, Th. 1.85]).

Def. 1.65. Sind $\|\cdot\|$, $\|\cdot\|$ Normen auf einem K-VR X, so heißen $\|\cdot\|$, $\|\cdot\|$ äquivalent g.d.w.

$$\exists_{\alpha,\beta\in\mathbb{R}^+} \quad \forall_{x\in X} \quad \alpha \|x\| \le \|\|x\|\| \le \beta \|x\|.$$

Prop. 1.66. Für Normen $\|\cdot\|$, $\|\cdot\|$ auf X sind gleichwertig:

- (i) $\|\cdot\|$, $\|\cdot\|$ sind äquivalent.
- (ii) Für alle Folgen (x^k) in X gilt $\lim x^k = x$ bez. $\|\cdot\|$ g.d.w. $\lim x^k = x$ bez. $\|\cdot\|$.

Th. 1.67. Alle Normen auf \mathbb{K}^n sind äquivalent, d.h. (nach Prop. 1.66) alle Normen auf \mathbb{K}^n erzeugen genau die selben konvergenten Folgen.

Bew.: Es genügt zu zeigen, dass jede Norm auf \mathbb{K}^n zur 2-Norm $\|\cdot\|_2$ äquivalent ist. Sei also $\|\cdot\|$ bel. Norm auf \mathbb{K}^n . Erinnerung: $z = \sum_{j=1}^n z_j e_j$ mit $e_j = (0, \dots, 1, \dots, 0)$ für alle $z \in \mathbb{K}^n$. \nwarrow Stelle j

Dann folgt:

$$||z|| = \left\| \sum_{j=1}^{n} z_{j} e_{j} \right\| \leq \sum_{j=1}^{n} |z_{j}| ||e_{j}|| = (|z_{1}|, \dots, |z_{n}|) \cdot \underbrace{(||e_{1}||, \dots, ||e_{n}||)}^{=:\vec{e}}$$
Cauchy-Schwarz (1.17)
$$\leq ||z||_{2} ||||\vec{e}||_{2}. \tag{1.20}$$

Setzt man $\beta := \sqrt{\sum_{j=1}^{n} \|e_j\|^2} = \|\vec{e}\|_2 > 0$, so folgt

$$\bigvee_{z \in \mathbb{K}^n} \|z\| \le \beta \|z\|_2. \tag{1.21}$$

Beh.: Es gibt auch $\alpha > 0$ so, dass

$$\forall \quad \alpha \|z\|_2 \le \|z\|. \tag{1.22}$$

Ang. die Beh. ist falsch. Dann gilt:

$$\forall_{k\in\mathbb{N}} \quad \underset{z^k\in\mathbb{K}^n}{\exists} \quad \frac{1}{k} \|z^k\|_2 > \|z^k\|.$$

Setze $w^k := \frac{z^k}{\|z^k\|_2}$. Dann ist $\frac{1}{k} \|w^k\|_2 > \|w^k\|$ und $\|w^k\|_2 = 1$.

Bolzano-Weierstraß-Th. 1.16(b) liefert Teilfolge (u^k) von (w^k) mit

 $\lim_{k\to\infty} \|u-u^k\|_2 = 0$ für ein $u\in\mathbb{K}^n$, d.h. $\lim_{k\to\infty} u^k = u$ bez. $\|\cdot\|_2$.

Lem. 1.34 (Stetigkeit der Norm), liefert $||u||_2 = \lim_{k \to \infty} ||u^k||_2 = 1$, also $u \neq 0$.

Außerdem $\|u^k-u\| \overset{(1.21)}{\leq} \beta \|u^k-u\|_2 \to 0$, also auch $\lim_{k\to\infty} u^k = u$ bez. $\|\cdot\|$. Stetigkeit von $\|\cdot\|$ liefert nun

 $||u|| = \lim_{k \to \infty} ||u^k|| \le \lim_{k \to \infty} \frac{1}{k} ||u^k||_2 = \lim_{k \to \infty} \frac{1}{k} = 0$, also u = 0 im Widerspruch zu $u \ne 0$. Also muss die Beh. doch richtig sein.

$$(1.21) \& (1.22)$$
 bedeuten aber gerade die Äqu. von $\|\cdot\|_2$ und $\|\cdot\|$.

Bsp. 1.68. Sei X der \mathbb{K} -VR der Folgen (z_n) in \mathbb{K} mit $\exists_{N \in \mathbb{N}} \quad \forall_{n \geq N} \quad z_n = 0$ (wie in Bsp. 1.33(b) und Bsp. 1.54(a)). Dann sind

$$\left\| (z_n)_{n \in \mathbb{N}} \right\|_1 := \sum_{n=1}^{\infty} |z_n| \quad \text{und}$$
$$\left\| (z_n)_{n \in \mathbb{N}} \right\|_{\max} := \max \left\{ |z_n| : n \in \mathbb{N} \right\}$$

Normen auf X und die Folge (z^k) in X mit

$$z_n^k := \begin{cases} 1/k & \text{für } 1 \le n \le k, \\ 0 & \text{für } n > k, \end{cases}$$

konvergiert gegen $(0,0,\dots) \in X$ bez. $\|\cdot\|_{\max}$, jedoch nicht bez. $\|\cdot\|_1$ (Übung). Nach Prop. 1.66 sind also $\|\cdot\|_1$ und $\|\cdot\|_{\max}$ nicht äquivalent.

2 Differential rechnung im \mathbb{R}^n

2.1 Partielle Ableitungen und Gradienten

Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$, $\xi \in G$. Idee: Variiere nur die j. Komponente von ξ und def. die part. Abl. $\partial_j f(\xi)$ als die Abl. der 1-dim. Fkt. ϕ mit

$$x_j \mapsto \phi(x_j) := f(\xi_1, \dots, \xi_{j-1}, x_j, \xi_{j+1}, \dots, \xi_n)$$

an der Stelle $x_j = \xi_j$, falls diese existiert.

Def. 2.1. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$, $\xi \in G$, $j \in \{1, ..., n\}$. Gibt es $\epsilon > 0$ so, dass $\xi + he_j \in G$ für alle $h \in]-\epsilon, \epsilon[$ (gilt z.B. für innere Pkte ξ), so ist f in ξ partiell nach x_j dif.bar g.d.w.

$$\lim_{h \to 0} \frac{f(\xi + he_j) - f(\xi)}{h} \qquad \left(0 \neq h \in] - \epsilon, \epsilon[\right)$$
 (2.1)

existiert. Der Grenzwert wird dann j. part. Abl. von f genannt oder part. Abl. von f nach x_i . Bezeichnungen:

$$\partial_j f(\xi), \ \partial_{x_j} f(\xi), \ \frac{\partial f(\xi)}{\partial x_j}, \ f_{x_j}(\xi), \ D_j f(\xi).$$

Ist $\xi \in \partial G$, und gibt es $\epsilon > 0$ so, dass $\xi + he_j \in G$ für alle $h \in]0, \epsilon[$ und $\xi - he_j \notin G$

$$\xi \xrightarrow{\xi - he_1} \xi + he_1 \in G$$

(bzw. so, dass
$$\xi - he_j \in G$$
 für alle $h \in]0, \epsilon[$ und $\xi + he_j \notin G$
$$||),$$

$$G$$

$$\xi - he_1 \in G$$

$$\xi + he_1 \notin G$$

dann ersetzt man in der obigen Def. der part. Abl. in (2.1) den Grenzwert durch den einseitigen Grenzwert

$$\lim_{h\downarrow 0} \frac{f(\xi + he_j) - f(\xi)}{h} \qquad \left(\text{bwz. } \lim_{h\uparrow 0} \frac{f(\xi + he_j) - f(\xi)}{h} \right). \tag{2.2}$$

Ex. alle part. Abl. von f in ξ , so heißt der Zeilenvektor

$$\nabla f(\xi) := (\partial_1 f(\xi), \dots, \partial_n f(\xi)) \tag{2.3}$$

der <u>Gradient</u> von f in ξ (∇ heißt auch 'Nabla', engl. auch 'del').

Ex. $\partial_j f(\xi)$ für alle $\xi \in G$, so heißt auch die Fkt.

$$\partial_i f: G \longrightarrow \mathbb{K}, \quad \xi \mapsto \partial_i f(\xi),$$
 (2.4)

j. part. Abl. von f.

Bsp. 2.2. Die Existenz aller part. Abl. von f impliziert i.A. <u>nicht</u> die Stetigkeit von f: Betrachte

$$f:\,\mathbb{R}^2\longrightarrow\mathbb{R},\quad f(x,y):=\begin{cases} \frac{xy}{x^2+y^2} & \text{für } (x,y)\neq (0,0),\\ 0 & \text{für } (x,y)=(0,0). \end{cases}$$

Es folgt:

$$\nabla f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \nabla f(x,y) = \underbrace{\left(\underbrace{\frac{y(y^{2} + y^{2}) - 2x^{2}y}{(x^{2} + y^{2})^{2}}, \frac{x(x^{2} + y^{2}) - 2xy^{2}}{(x^{2} + y^{2})^{2}} \right)}_{\text{Quotientenregel}} \quad \text{für } (x,y) \neq (0,0),$$

$$\underbrace{\left((0,0) - \frac{y}{(x^{2} + y^{2})^{2}}, \frac{x(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}} \right)}_{\text{Quotientenregel}} \quad \text{für } (x,y) = (0,0).$$

Hier ex. also $\partial_x f$, $\partial_y f$ auf ganz \mathbb{R}^2 .

f ist jedoch nicht stetig in (0,0): Für $k \in \mathbb{N}$ setze $x_k := \frac{1}{k}, y_k := \frac{1}{k}$. Dann ist $\lim_{k \to 0} (x_k, y_k) = (0,0)$, aber

$$\forall f(x_k, y_k) = \frac{\frac{1}{k^2}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2}.$$

Also $\lim f(x_k, y_k) = \frac{1}{2} \neq 0 = f(0, 0)$, d.h. f ist nicht st. in (0, 0).

Bem. 2.3. Sind alle part. Abl. in einer Umgebung von ξ stetig, so ist auch f in ξ stetig (siehe Th. 2.19 unten).

2.2 Jacobimatrix & Jacobideterminante

Def. 2.4. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}^m$, $\xi \in G$. Erinnerung: $f = (f_1, \dots, f_m)$ mit Koord. fkt. $f_l = \pi_l \circ f$. Ang. es ex. alle part. Abl. $\partial_k f_l(\xi)$ für $k \in \{1, \dots, n\}$, $l \in \{1, \dots, m\}$, so lassen sie sich als $(m \times n)$ -Matrix schreiben:

$$J_f(\xi) := \frac{\partial(f_1, \dots, f_m)}{\partial(x_1, \dots, x_n)}(\xi) := \begin{pmatrix} \partial_1 f_1(\xi) & \dots & \partial_n f_1(\xi) \\ \vdots & & \vdots \\ \partial_1 f_m(\xi) & \dots & \partial_n f_m(\xi) \end{pmatrix} = \begin{pmatrix} \nabla f_1(\xi) \\ \vdots \\ \nabla f_m(\xi) \end{pmatrix}.$$

 $J_f(\xi)$ heißt die <u>Jacobimatrix</u> von f in ξ . Für m = n ist $J_f(\xi)$ quadratisch und man kann det $J_f(\xi)$ bilden, die <u>Jacobideterminante</u> von f in ξ .

Bem. 2.5. Treten Matrixmultiplikationen auf, so sind $x \in \mathbb{R}^n$ und $f(x) \in \mathbb{K}^m$ als Spaltenvektoren zu betrachten, $\nabla g(x)$ hingegen als <u>Zeilenvektor</u>.

Bsp. 2.6. (a) Sei
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
 eine $(m \times n)$ -Matrix über \mathbb{K} .

Dann ist $x \mapsto Ax$ eine \mathbb{R} -lin. Abb. von \mathbb{R}^n nach \mathbb{R}^m für $\mathbb{K} = \mathbb{R}$ und die Einschränkung der \mathbb{C} -lin. Abb. $A: \mathbb{C}^n \longrightarrow \mathbb{C}^m$ auf \mathbb{R}^n für $\mathbb{K} = \mathbb{C}$.

Also
$$A_l(x) = \sum_{k=1}^n a_{lk} x_k$$
.
Also $\partial_k A_l(x) = \frac{\partial A_l(x)}{\partial x_k} = a_{lk}$.
Also $J_A(x) = A$ für alle $x \in \mathbb{R}^n$.

(b) Sei $(f,g): \mathbb{R}^3 \longrightarrow \mathbb{C}^2$, $(f(x,y,z),g(x,y,z)):=(ixyz^2,ix+yz)$.

Dann ist $J_{(f,g)}(x,y,z) = \begin{pmatrix} \nabla f(x,y,z) \\ \nabla g(x,y,z) \end{pmatrix} = \begin{pmatrix} iyz^2 & ixz^2 & 2ixyz \\ i & z & y \end{pmatrix}.$

(c) Sei
$$(f,g): \mathbb{R}^2 \longrightarrow \mathbb{C}^2$$
, $(f(x,y),g(x,y)):=(e^{ixy},x+2y)$.

Dann ist
$$\det J_{(f,g)}(x,y)=\begin{vmatrix} iye^{ixy} & ixe^{ixy} \\ 1 & 2 \end{vmatrix}=i\,e^{ixy}\,(2y-x).$$

Bem. 2.7. Da das Bilden der Abl. von 1-dim. Fkt. linear ist, folgt, dass das Bilden von part. Abl., Gradienten und Jacobimatrizen auch linear ist: Ist $G \subseteq \mathbb{R}^n$; $f, g: G \longrightarrow \mathbb{K}^m$, $\xi \in G$, $\lambda \in \mathbb{K}$, so gilt für $l \in \{1, ..., m\}$, $k \in \{1, ..., n\}$:

$$\partial_k(f+g)_l(\xi) = \partial_k f_l(\xi) + \partial_k g_l(\xi), \qquad \partial_k(\lambda f)_l(\xi) = \lambda \partial_k f_l(\xi),$$

$$\nabla (f+g)_l(\xi) = \nabla f_l(\xi) + \nabla g_l(\xi), \qquad \nabla (\lambda f)_l(\xi) = \lambda \nabla f_l(\xi),$$

$$J_{f+g}(\xi) = J_f(\xi) + J_g(\xi), \qquad J_{\lambda f}(\xi) = \lambda J_f(\xi),$$

wobei immer die Existenz aller Objekte auf der rechten Seite der jeweiligen Gleichung die Existenz des Objektes auf der linken Seite impliziert.

2.3 Partielle Ableitungen höherer Ordnung und die Räume C^k

Partielle Ableitungen (als Funktionen) können selbst wieder partielle Abl. haben u.s.w. Z.B. könnte eine Fkt $f: \mathbb{R}^3 \longrightarrow \mathbb{K}$ die folgende part. Abl. 6. Ord. haben: $\partial_1 \partial_3 \partial_2 \partial_1 \partial_2 \partial_2 f$.

- \rightarrow Im Allgemeinen ist dabei die Reihenfolge wichtig (Bsp. 2.9).
- \rightarrow Sind alle part. Abl. stetig, so ist die Reihenfolge egal (Th. 2.10).

Def. 2.8. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$, $\xi \in G$, $k \in \mathbb{N}$. Für jedes $p = (p_1, \dots, p_k) \in \{1, \dots, n\}^k$ def. die folgende part. Abl. k. Ordnung (falls sie existiert):

$$\partial_p f(\xi) := \frac{\partial^k f(\xi)}{\partial x_{p_1} \dots \partial x_{p_k}} := \partial_{p_1} \dots \partial_{p_k} f(\xi). \tag{2.5}$$

f selbst wird als part. Abl. 0. Ord. von f definiert.

Ist $f: G \longrightarrow \mathbb{K}^m$, so werden die part. Abl. höherer Ord. gemäß (2.5) mit f_l statt f definiert, $l = 1, \ldots, m$.

Bsp. 2.9. Im Allg. darf man part. Abl. nicht vertauschen: Sei

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x,y) := \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Es ist

$$\nabla f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad \nabla f(x,y) = \left(\partial_1 f(x,y), \partial_2 f(x,y)\right) = \left(\partial_x f(x,y), \partial_y f(x,y)\right)$$
Quotientenregel
$$\longrightarrow \left\{ \underbrace{\left(\underbrace{y^3(x^2 + y^2) - 2x^2y^3}_{y^3(y^2 - x^2)}, \underbrace{xy^2(3x^2 + y^2) - 2xy^4}_{(x^2 + y^2)^2}\right) \right. \text{ für } (x,y) \neq (0,0),$$

$$(0,0) \qquad \qquad \text{für } (x,y) = (0,0).$$

Da f(x,0) = f(0,y) = 0 für alle $x, y \in \mathbb{R}$.

Insbesondere ist $\partial_x f(0,y) = y$ für alle $y \in \mathbb{R}$,

 $\partial_y f(x,0) = 0$ für alle $x \in \mathbb{R}$.

Also $\partial_y \partial_x f(0,y) = 1$ für alle $y \in \mathbb{R}$ und

und $\partial_x \partial_y f(x,0) = 0$ für alle $x \in \mathbb{R}$.

Also $\partial_2 \tilde{\partial}_1 f(0,0) = \partial_y \partial_x f(0,0) = 1 \neq 0 = \partial_x \partial_y f(0,0) = \partial_1 \partial_2 f(0,0)$.

Th. 2.10 (Schwarz). Sei $G \subseteq \mathbb{R}^2$ offen, und $f: G \longrightarrow \mathbb{K}$, $(x,y) \mapsto f(x,y)$ habe überall in G die part. Abl. $\partial_x f$, $\partial_y f$, $\partial_y \partial_x f$. Ist $\partial_y \partial_x f$ stetig in $(a,b) \in G$, so ex. $\partial_x \partial_y f(a,b)$ und es gilt

$$\partial_x \partial_y f(a, b) = \partial_y \partial_x f(a, b)$$

(speziell gilt $\partial_y \partial_x f = \partial_x \partial_y f$ auf G, falls f, $\partial_x f$, $\partial_y f$, $\partial_y f$ auf G stetig sind).

Bew.: Siehe z.B. [Phi22, Th. 2.11].

Def. 2.11. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$, $k \in \mathbb{N}_0$. Wir nennen f eine C^k -Funktion g.d.w. alle part. Abl. der Ord. $\leq k$ von f in G existieren und stetig sind.

Die Menge aller K-wertigen C^k -Funktionen auf G heißt $C^k(G, \mathbb{K})$. Hat f stetige part. Abl. beliebiger Ordnung, so heißt f C^{∞} -Fkt., also

 $C^{\infty}(G,\mathbb{K}):=\bigcap_{k=0}^{\infty}C^{k}(G,\mathbb{K})$

(beachte auch $C^0(G, \mathbb{K}) = C(G, \mathbb{K})$). Setze noch $C^k(G) := C^k(G, \mathbb{R})$. Ist $f: G \longrightarrow \mathbb{K}^m$, so heißt $f \ C^k$ -Fkt. g.d.w. alle $f_j \ C^k$ -Fkt. sind, $j = 1, \ldots, m$. Man schreibt dann $C^k(G, \mathbb{K}^m)$ für die Menge dieser Fkt.

2.4 Die totale Ableitung und der Begriff der Differenzierbarkeit

 Def. 2.12. Sei $G \subseteq \mathbb{R}^n$ offen, $f: G \longrightarrow \mathbb{R}^m$, $\xi \in G$. Dann heißt f dif.bar in ξ g.d.w. es eine lineare Abb.

 $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ so gibt, dass

$$\lim_{h \to 0} \frac{f(\xi + h) - f(\xi) - L(h)}{\|h\|_2} = 0.$$
 (2.6)

Dabei hängt L i.A. von ξ ab!

Ist f dif.bar in ξ , so heißt L die totale Ableitung oder das totale Differential von f in ξ . Man schreibt dann $Df(\xi)$ statt L.

Weiter heißt $f: G \longrightarrow \mathbb{C}^m$ dif.bar in ξ g.d.w.

 $\operatorname{Re} f: G \longrightarrow \mathbb{R}^m$ und $\operatorname{Im} f: G \longrightarrow \mathbb{R}^m$ dif.bar in ξ . Dann

heißt $Df(\xi) := D \operatorname{Re} f(\xi) + iD \operatorname{Im} f(\xi)$

die totale Abl. oder das totale Differential von f in ξ . Dann gilt

$$\lim_{h \to 0} \frac{f(\xi + h) - f(\xi) - Df(\xi)(h)}{\|h\|_2} = 0.$$
 (2.7)

Bem. 2.13. (a) Da G in Def. 2.12 offen ist, ist sichergestellt, dass $\xi + h \in G$ für $||h||_2$ klein genug: Es gibt $\epsilon > 0$ so, dass für $||h||_2 < \epsilon$ gilt: $\xi + h \in G$.

(b) Da alle Normen auf \mathbb{R}^n äquivalent sind, kann man in (2.6) auch eine beliebige andere Norm statt $\|\cdot\|_2$ benutzen.

Lem. 2.14. Ist $G \subseteq \mathbb{R}^n$ offen, $f: G \longrightarrow \mathbb{R}^m$, $\xi \in G$, so ist f dif.bar in ξ g.d.w. es eine lin. Abb. $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ und eine Abb. $r: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ so gibt, dass

$$f(\xi + h) - f(\xi) = L(h) + r(h)$$
 (2.8a)

für alle $h \in \mathbb{R}^n$ mit $||h||_2$ genügend klein, und

$$\lim_{h \to 0} \frac{r(h)}{\|h\|_2} = 0. \tag{2.8b}$$

Bew.: Seien L, r wie oben und so, dass (2.8) erfüllt ist. Dann gilt für $h \neq 0$

$$\frac{f(\xi+h) - f(\xi) - L(h)}{\|h\|_2} = \frac{r(h)}{\|h\|_2}.$$
 (2.9)

Also folgt (2.6) aus (2.8b) und f ist dif.bar in ξ . Let upgelehrt f dif har in ξ so ov $I: \mathbb{R}^n \longrightarrow \mathbb{R}^r$

Ist umgekehrt f dif.bar in ξ , so ex. $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ lin. so, dass

(2.6) gilt. Wähle $\epsilon > 0$ mit $B_{\epsilon, \|\cdot\|_2}(\xi) \subseteq G$ und def.

$$r: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \quad r(h) := \begin{cases} f(\xi+h) - f(\xi) - L(h) & \text{für } \xi+h \in B_{\epsilon, \|\cdot\|_2}(\xi), \\ 0 & \text{sonst.} \end{cases}$$
 (2.10)

Dann ist
$$(2.8a)$$
 klar, und da wieder (2.9) gilt, folgt $(2.8b)$ aus (2.6) .

Th. 2.15. Sei $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$, und $f : G \longrightarrow \mathbb{K}$ dif.bar in ξ . Dann ist f stetig in ξ , alle $\partial_j f(\xi)$ existieren, und es gilt $Df(\xi) = \nabla f(\xi)$, d.h.,

$$\bigvee_{h=(h_1,\dots,h_n)\in\mathbb{R}^n} Df(\xi)(h) = \nabla f(\xi)h = \sum_{j=1}^n \partial_j f(\xi)h_j.$$

Insbesondere ist $Df(\xi)$ eindeutig und damit wohldefiniert.

Bew.: f sei dif.bar in ξ und zunächst sei $\mathbb{K} = \mathbb{R}$.

Wähle $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ linear und $r: \mathbb{R}^n \longrightarrow \mathbb{R}$

gemäß Lem. 2.14. Nach Bsp. 1.47 ist L stetig. Ist (x^k) eine

Folge in G mit $\lim x^k = \xi$, so ist $\lim ||x^k - \xi||_2 = 0$.

Setze $h^k := x^k - \xi$. Dann ist (h^k) Folge in \mathbb{R}^n mit $\lim \|h^k\|_2 = 0$.

 $(2.8b) \Rightarrow 0 \le |r(h)| < ||h||_2 \text{ für } ||h||_2 \text{ klein genug.}$

Also $\lim ||h^k||_2 = 0 \Rightarrow \lim |r(h^k)| = 0.$

 $L \text{ stetig} \Rightarrow \lim |L(h^k)| = 0. \text{ Also wegen (2.8a):}$

$$\lim |f(x^k) - f(\xi)| = \lim |f(\xi + h^k) - f(\xi)|$$

= $\lim |L(h^k)| + \lim |r(h^k)| = 0$,

was die Stetigkeit von f in ξ beweist.

Setze nun $l_j := L(e_j)$ für $j = 1, \ldots, n$.

Ist $h = te_j$ mit $t \in \mathbb{R}$ nahe bei Null, so liefert (2.8a)

$$f(\xi + te_i) - f(\xi) = t l_i + r(te_i).$$
 (2.11)

Teilt man in (2.11) durch $t \neq 0$, so folgt mit (2.8b),

dass die rechte Seite für $t \to 0$ gegen l_j konvergiert. Dann muss aber auch die linke Seite konvergieren, und ein Vergleich mit (2.1) ergibt, dass der Grenzwert gerade $\partial_j f(\xi)$ ist. Also $\partial_j f(\xi) = l_j$ wie behauptet.

Sei nun $\mathbb{K} = \mathbb{C}$. f dif.bar \Rightarrow Re f, Im f dif.bar $\overset{\text{Fall}}{\Rightarrow}^{\mathbb{K}} = \mathbb{R}$ Re f, Im f stetig in ξ \Rightarrow f stetig in ξ .

$$f \text{ dif.bar} \stackrel{\mathbb{K}}{\Rightarrow} \mathbb{R} \text{ alle } \partial_j \operatorname{Re} f(\xi), \, \partial_j \operatorname{Im} f(\xi) \text{ ex.}$$

$$\Rightarrow \partial_j f(\xi) = \partial_j \operatorname{Re} f(\xi) + i \, \partial_j \operatorname{Im} f(\xi) \text{ ex. auch.}$$

Anwendung von Th. 2.15 auf Koordinatenfkt. ergibt:

d.h., für alle $h = (h_1, \dots, h_n) \in \mathbb{R}^n$ gilt:

Kor. 2.16. Ist $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$, und $f : G \longrightarrow \mathbb{K}^m$ dif.bar in ξ , so ist f stetig in ξ , alle $\partial_k f_l(\xi)$ für $k = 1, \ldots, n$ und $l = 1, \ldots, m$ existieren und $Df(\xi) = J_f(\xi)$,

$$Df(\xi)(h) = J_f(\xi) \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = \begin{pmatrix} \nabla f_1(\xi)(h) \\ \vdots \\ \nabla f_m(\xi)(h) \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n \partial_k f_1(\xi)h_k \\ \vdots \\ \sum_{k=1}^n \partial_k f_m(\xi)h_k \end{pmatrix}.$$

Insbesondere ist $Df(\xi)$ eindeutig und damit wohldefiniert.

Bsp. 2.17. (a) Sei $G \subseteq \mathbb{R}^n$ offen und $f: G \longrightarrow \mathbb{K}^m$ konstant (d.h. $\exists \forall f(x) = c$). Dann ist f dif.bar mit $Df \equiv 0$: Mit $L \equiv 0$ ist $f(\xi + h) - f(\xi) - L(h) = c - c - 0 = 0$, d.h., der Zähler in (2.6) verschwindet identisch.

- (b) Ist $A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ linear, so ist A dif.bar, und es gilt $\bigvee_{\xi \in \mathbb{R}^n} DA(\xi) = A$: Sind $\xi, h \in \mathbb{R}^n$, so ist $A(\xi + h) A(\xi) A(h) = 0$, so dass der Zähler in (2.6) (mit f = L = A) wieder identisch verschwindet. Ist $A: \mathbb{R}^n \longrightarrow \mathbb{C}^m$ Einschränkung einer \mathbb{C} -lin. Abb., so sind Re A und Im A beide \mathbb{R} -lin., d.h. A dif.bar mit $DA(\xi) = A$ wie zuvor.
- (c) Vergleich von Def. 2.12 mit der 1-dim. Dif.barkeit: Sei $G \subseteq \mathbb{R}$ offen, $\xi \in G$, $f: G \longrightarrow \mathbb{K}$. Beh.: f ist dif.bar in ξ als 1-dim. Fkt. g.d.w. f dif.bar in ξ nach Def. 2.12, wobei

$$Df(\xi): \mathbb{R} \longrightarrow \mathbb{K}, \quad Df(\xi)(h) := f'(\xi)h.$$
 (2.12)

Bew.: In beiden Situationen ist f dif.bar in ξ g.d.w. Re f und Im f dif.bar in ξ , d.h., es genügt $\mathbb{K} = \mathbb{R}$ zu betrachten. Sei f dif.bar in ξ als 1-dim. Fkt. Wir wählen $Df(\xi)$ aus (2.12) als Ansatz für die lin. Abb. L aus Def. 2.12. Für $0 \neq h \in \mathbb{R}$ nahe bei 0 gilt dann

$$\frac{f(\xi+h) - f(\xi) - L(h)}{\|h\|_{2}} = \frac{f(\xi+h) - f(\xi) - f'(\xi)h}{|h|}$$

$$= \begin{cases} \frac{f(\xi+h) - f(\xi)}{h} - f'(\xi) & \text{für } h > 0, \\ f'(\xi) - \frac{f(\xi+h) - f(\xi)}{h} & \text{für } h < 0. \end{cases} (2.13a)$$

Weiterhin ist nach Definition $f'(\xi) = \lim_{h\to 0} \frac{f(\xi+h)-f(\xi)}{h}$, also

$$\lim_{h \to 0} \left| \frac{f(\xi + h) - f(\xi)}{h} - f'(\xi) \right| = 0. \tag{2.13b}$$

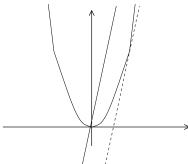
Kombination von (2.13a) und (2.13b) liefert

$$\lim_{h \to 0} \frac{f(\xi + h) - f(\xi) - L(h)}{\|h\|_2} = 0,$$

also ist f dif.bar in ξ nach Def. 2.12.

Ist f umgekehrt dif.bar in ξ nach Def. 2.12, so ex. nach Th. 2.15 die part. Abl. $\partial_1 f(\xi)$, und es ist $Df(\xi)(h) = \partial_1 f(\xi)h$. Da aber nach Def. gerade $\partial_1 f(\xi) = f'(\xi)$, ist f dif.bar als 1-dim. Fkt., und es gilt (2.12).

(d)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x^2$, $f'(x) = 2x$, $f'(2) = 4$, $Df(2): \mathbb{R} \longrightarrow \mathbb{R}$, $Df(2)(h) = 4h$.



Prop. 2.18. Das Bilden der totalen Ableitung ist linear: Sei $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$.

- (a) Sind $f, g: G \longrightarrow \mathbb{K}^m$ beide dif.bar in ξ , so ist f + g dif.bar in ξ und $D(f + g)(\xi) = Df(\xi) + Dg(\xi)$.
- (b) Ist $f: G \longrightarrow \mathbb{K}^m$ dif.bar in ξ und $\lambda \in \mathbb{K}$, so ist λf dif.bar in ξ mit $D(\lambda f)(\xi) = \lambda Df(\xi)$.

Bew.: (a) Sei zunächst $\mathbb{K} = \mathbb{R}$. Für $0 \neq ||h||_2$ klein genug gilt:

$$\frac{(f+g)(\xi+h) - (f+g)(\xi) - Df(\xi)(h) - Dg(\xi)(h)}{\|h\|_2}$$

$$= \frac{f(\xi+h) - f(\xi) - Df(\xi)(h)}{\|h\|_2} + \frac{g(\xi+h) - g(\xi) - Dg(\xi)(h)}{\|h\|_2}.$$

Da $\lim_{h\to 0}=0$ für beide Terme auf der rechten Seite, muss $\lim_{h\to 0}=0$ auch links gelten.

Wegen $\operatorname{Re}(f+g) = \operatorname{Re} f + \operatorname{Re} g$, $\operatorname{Im}(f+g) = \operatorname{Im} f + \operatorname{Im} g$, folgt der Fall $\mathbb{K} = \mathbb{C}$ aus Fall $\mathbb{K} = \mathbb{R}$.

(b) Wieder erst $\mathbb{K} = \mathbb{R}$. Für $\lambda \in \mathbb{R}$ ist

$$\lim_{h \to 0} \frac{(\lambda f)(\xi + h) - (\lambda f)(\xi) - \lambda D f(\xi)(h)}{\|h\|_2}$$

$$= \lambda \lim_{h \to 0} \frac{f(\xi + h) - f(\xi) - D f(\xi)(h)}{\|h\|_2} = 0.$$

Der Fall $\mathbb{K} = \mathbb{C}$ folgt nun wegen $\operatorname{Re}(\lambda f) = \operatorname{Re} \lambda \operatorname{Re} f - \operatorname{Im} \lambda \operatorname{Im} f$, $\operatorname{Im}(\lambda f) = \operatorname{Re} \lambda \operatorname{Im} f + \operatorname{Im} \lambda \operatorname{Re} f$ aus Fall $\mathbb{K} = \mathbb{R}$ und (a):

$$D(\lambda f)(\xi) = D(\operatorname{Re}(\lambda f))(\xi) + i D(\operatorname{Im}(\lambda f))(\xi)$$

$$= \operatorname{Re} \lambda D \operatorname{Re} f(\xi) - \operatorname{Im} \lambda D \operatorname{Im} f(\xi) + i \left(\operatorname{Re} \lambda D \operatorname{Im} f(\xi) + \operatorname{Im} \lambda D \operatorname{Re} f(\xi) \right)$$

$$= \left(\operatorname{Re} \lambda + i \operatorname{Im} \lambda \right) \left(D \operatorname{Re} f(\xi) + i D \operatorname{Im} f(\xi) \right)$$

$$= \lambda D f(\xi)$$

Erinnerung: Existenz der part. Abl. impliziert <u>nicht</u> Stetigkeit (Bsp. 2.2), also schon gar nicht Differenzierbarkeit. Anders sieht es aus, wenn die part. Abl. ex. und stetig sind:

Th. 2.19. Sei $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$, $f : G \longrightarrow \mathbb{K}$. Existieren alle $\partial_j f$, $j = 1, \ldots, n$ in ganz G und sind stetig in ξ , so ist f dif.bar und insbesondere stetig in ξ .

Bew.: Siehe z.B. [Phi22, Th. 2.26].

Kor. 2.20. Sei $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$, $f : G \longrightarrow \mathbb{K}^m$. Ex. alle part. Abl. $\partial_k f_l$ (k = 1, ..., n; l = 1, ..., m) in ganz G und sind stetig in ξ , so ist f dif.bar in ξ (insbesondere stetig in ξ).

Bew.: Th. $2.19 \Rightarrow f_l$ dif.bar in ξ für alle l = 1, ..., m. Da eine \mathbb{K}^m -wertige Fkt. genau dann konvergiert, wenn alle Koordinatenfkt. konvergieren, ist dann auch f dif.bar in ξ .

2.5 Die Kettenregel

Th. 2.21. Sei $G_f \subseteq \mathbb{R}^n$ offen, $f: G_f \longrightarrow \mathbb{R}^m$, $G_g \subseteq \mathbb{R}^m$ offen, $g: G_g \longrightarrow \mathbb{K}^p$, $f(G_f) \subseteq G_g$. Ist f dif.bar in $\xi \in G_f$ und g dif.bar in $f(\xi) \in G_g$, so ist $g \circ f: G_f \longrightarrow \mathbb{K}^p$ dif.bar in ξ , und für die Ableitungen $D(g \circ f)(\xi): \mathbb{R}^n \longrightarrow \mathbb{K}^p$, $Df(\xi): \mathbb{R}^n \longrightarrow \mathbb{R}^m$, und $Dg(f(\xi)): \mathbb{R}^m \longrightarrow \mathbb{K}^p$, gilt die Kettenregel:

$$D(g \circ f)(\xi) = Dg(f(\xi)) \circ Df(\xi). \tag{2.14}$$

Insbesondere: Sind f und g dif.bar, so ist auch $g \circ f$ dif.bar.

Bew.: Siehe z.B. [Phi22, Appendix C.1].

Bsp. 2.22. Betrachte n = p = 1 in Th. 2.21, also $G_f \subseteq \mathbb{R}$ offen, $f: G_f \longrightarrow \mathbb{R}^m, g: G_g \longrightarrow \mathbb{K}, h:= g \circ f: G_f \longrightarrow \mathbb{K},$ $h(t) = g(f_1(t), \ldots, f_m(t))$. Also ist h 1-dim., wird aber über einen Umweg durch den \mathbb{R}^m berechnet. Ist f dif.bar in $\xi \in G_f$ und g dif.bar in $f(\xi) \in G_g$, so ergibt die Kettenregel (2.14):

$$Dh(\xi) = D(g \circ f)(\xi) = Dg(f(\xi)) \circ Df(\xi) = \nabla g(f(\xi)) J_f(\xi)$$
$$= \sum_{j=1}^{m} \partial_j g(f(\xi)) \partial_1 f_j(\xi). \tag{2.15}$$

Nach Bsp. 2.17(c) gilt für die 1-dim. Fkt. h der Zusammenhang (2.12) zwischen der Fkt. $Dh(\xi) : \mathbb{R} \longrightarrow \mathbb{K}$ und der Zahl $h'(\xi) \in \mathbb{K}$. Für die 1-dim. f_j ist außerdem $\partial_1 f_j = f'_j$. Also folgt aus (2.15):

$$h'(\xi) = \sum_{j=1}^{m} \partial_j g(f(\xi)) f'_j(\xi). \tag{2.16}$$

Def. 2.23. Sei $G \subseteq \mathbb{R}^m$. Ein <u>dif.barer Weg</u> ist eine dif.bare Abb. $\phi:]a, b[\longrightarrow G, a, b \in \mathbb{R}, a < b. \overline{G} \text{ heißt } \underline{\text{dif.bar}}$ wegzusammenhängend g.d.w. es für alle $x, y \in G$ einen dif.baren Weg $\phi:]a, b[\longrightarrow G \text{ gibt mit}$ $\phi(s) = x \text{ und } \phi(t) = y \text{ für geeignete } s, t \in]a, b[.$

Prop. 2.24. Ist $G \subseteq \mathbb{R}^m$ offen und dif.bar wegzhd sowie $f: G \longrightarrow \mathbb{K}$ dif.bar mit $\nabla f \equiv 0$, so ist f konstant.

Bew.: Seien $x, y \in G$ und $\phi :]a, b[\longrightarrow G$ ein dif.barer Weg, der x, y verbindet, d.h. mit $\phi(s) = x$ und $\phi(t) = y$ für geeignete $s, t \in]a, b[$. Def. die Hilfsfkt. $h :]a, b[\longrightarrow \mathbb{K}, h = f \circ \phi$. Nach der Kettenregel (Th. 2.21) ist h dif.bar und nach (2.16) folgt

$$\bigvee_{\xi \in]a,b[} h'(\xi) = \sum_{j=1}^{m} \partial_j f(\phi(\xi)) \phi'_j(\xi) = 0,$$

da $\partial_j f \equiv 0$ nach Voraussetzung. Nun ist h eine 1-dim. Fkt. auf einem Intervall, deren Abl. konstant verschwindet, also ist h konstant. Es folgt $f(x) = f(\phi(s)) = h(s) = h(t) = f(\phi(t)) = f(y)$, d.h., f ist konstant.

2.6 Richtungsableitungen

 $\to \partial_j f$ beschreibt die lokale Änderung von \mathbb{R} -wertigem f in Richtung e_j . Ziel: Beschreibe die lokale Änderung von f in einer beliebigen Richtung $e \in \mathbb{R}^n$.

Def. 2.25. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$, $\xi \in G$, $e \in \mathbb{R}^n$. Gibt es $\epsilon > 0$ so, dass $\forall \xi + he \in G$

(gilt z.B. für jeden inneren Pkt ξ von G), dann hat f in ξ eine Richtungsableitung in Richtung e g.d.w.

$$\lim_{h\downarrow 0} \frac{f(\xi + he) - f(\xi)}{h} \tag{2.17}$$

existiert. Wenn der Limes ex., dann nennt man ihn die Richtungsabl. von f in ξ in Richtung e und schreibt dafür

 $\frac{\partial f}{\partial e}(\xi)$ oder auch $\delta f(\xi, e)$. Ex. (2.17) für alle $\xi \in G$, so heißt auch die Fkt.

$$\frac{\partial f}{\partial e}: G \longrightarrow \mathbb{K}, \quad \xi \mapsto \frac{\partial f}{\partial e}(\xi),$$

Richtungsabl. von f in Richtung e.

Bem. 2.26. In der Situation von Def. 2.25 sei $e = e_j$ für ein $j \in \{1, \ldots, n\}$. Ist ξ ein innerer Pkt von G, so ist $\partial_j f(\xi) = \frac{\partial f}{\partial e}(\xi)$ genau dann, wenn $\frac{\partial f}{\partial e}(\xi)$ und $\frac{\partial f}{\partial (-e)}(\xi)$ beide ex. und $\frac{\partial f}{\partial e}(\xi) = -\frac{\partial f}{\partial (-e)}(\xi)$: Wenn $\partial_j f(\xi)$ ex., so ist

$$\partial_{j} f(\xi) = \lim_{h \to 0} \frac{f(\xi + he_{j}) - f(\xi)}{h} = \lim_{h \downarrow 0} \frac{f(\xi + he_{j}) - f(\xi)}{h} = \frac{\partial f}{\partial e}(\xi)$$

$$= \lim_{h \uparrow 0} \frac{f(\xi + he_{j}) - f(\xi)}{h} = \lim_{h \downarrow 0} \frac{f(\xi - he_{j}) - f(\xi)}{-h}$$

$$= -\lim_{h \downarrow 0} \frac{f(\xi + h(-e_{j})) - f(\xi)}{h} = -\frac{\partial f}{\partial (-e)}(\xi). \tag{2.18}$$

Umgekehrt, wenn $\frac{\partial f}{\partial e}(\xi)$ und $\frac{\partial f}{\partial (-e)}(\xi)$ beide ex. und $\frac{\partial f}{\partial e}(\xi) = -\frac{\partial f}{\partial (-e)}(\xi)$ gilt, so zeigen die entsprechenden Gleichungen in (2.18), dass die einseitigen part. Abl. von f in ξ existieren und übereinstimmen, so dass auch $\partial_j f(\xi)$ existiert.

Verallgemeinerung von Th. 2.15:

Th. 2.27. Sei $G \subseteq \mathbb{R}^n$ offen, $\xi \in G$. Ist $f: G \longrightarrow \mathbb{K}$ dif.bar in ξ , so ex. für alle $e = (\epsilon_1, \ldots, \epsilon_n) \in \mathbb{R}^n$ die Richtungsableitung $\frac{\partial f}{\partial e}(\xi)$, und es gilt

$$\frac{\partial f}{\partial e}(\xi) = \nabla f(\xi) \cdot e = \sum_{j=1}^{n} \epsilon_j \partial_j f(\xi). \tag{2.19}$$

Gilt $\mathbb{K} = \mathbb{R}$, $\nabla f(\xi) \neq 0$ und man beschränkt sich auf $e \in \mathbb{R}^n$ mit $||e||_2 = 1$, so gilt $-\alpha \leq \frac{\partial f}{\partial e}(\xi) \leq \alpha$ mit $\alpha := ||\nabla f(\xi)||_2$, sowie $\frac{\partial f}{\partial e_{\max}}(\xi) = \alpha$ mit $e_{\max} := \nabla f(\xi)/\alpha$, $\frac{\partial f}{\partial e_{\min}}(\xi) = -\alpha$ mit $e_{\min} := -e_{\max}$ (also zeigt $\nabla f(\xi)$ in die Richtung des stärksten Anstiegs von f in der Stelle ξ).

Bew.: Da G offen, gibt es zu $e \in \mathbb{R}^n$ ein $\epsilon > 0$ so, dass $\forall \xi + he \in G$. Def. Hilfsfkt.

$$\phi:]-\epsilon, \epsilon[\longrightarrow \mathbb{R}^n, \qquad \qquad \phi(h):=\xi+he,$$

$$g:]-\epsilon, \epsilon[\longrightarrow \mathbb{K}, \qquad \qquad g(h):=(f\circ\phi)(h)=f\big(\xi+he\big).$$

Nach Th. 2.21 (Kettenregel) ist g dif.bar und nach (2.15):

$$\bigvee_{h \in]-\epsilon,\epsilon[} g'(h) = D(f \circ \phi)(h) = Df(\phi(h)) \circ D\phi(h) = \nabla f(\xi + he) \cdot e,$$

$$\frac{\partial f}{\partial e}(\xi) = g'(0) = \nabla f(\xi) \cdot e,$$

was (2.19) beweist.

Anwendung der Cauchy-Schwarz-Ungl. (1.17) auf (2.19) liefert

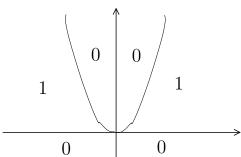
$$\left| \frac{\partial f}{\partial e}(\xi) \right| = \left| \nabla f(\xi) \cdot e \right| \le \left\| \nabla f(\xi) \right\|_2 \left\| e \right\|_2 = \alpha \|e\|_2,$$

also
$$-\alpha \leq \frac{\partial f}{\partial e}(\xi) \leq \alpha$$
 für $\mathbb{K} = \mathbb{R}$ und $||e||_2 = 1$.

Das folgende Bsp. 2.28 zeigt, dass die Ex. aller Richtungsableitungen nicht die Stetigkeit und schon gar nicht die Dif.barkeit impliziert:

Bsp. 2.28. Sei

$$f: \mathbb{R}^2 \longrightarrow \mathbb{K}, \quad f(x,y) := \begin{cases} 1 & \text{für } 0 < y < x^2, \\ 0 & \text{sonst.} \end{cases}$$



f ist in (0,0) nicht stetig: Sei $x_n:=1/n,\ y_n:=1/n^3.$ Dann ist $\lim_{n\to\infty}(x_n,y_n)=(0,0).$ Jedoch gilt wegen $y_n=1/n^3<1/n^2=x_n^2,$ dass

$$\lim_{n \to \infty} f(x_n, y_n) = 1 \neq 0 = f(0, 0).$$

Beh.:
$$\frac{\partial f}{\partial e}(0,0)$$
 ex. für alle $e = (\epsilon_x, \epsilon_y) \in \mathbb{R}^2$ mit $\frac{\partial f}{\partial e}(0,0) = 0$.
Bew.: Fall $\epsilon_y \leq 0$:
 $\forall f((0,0) + h(\epsilon_x, \epsilon_y)) = f(h\epsilon_x, h\epsilon_y) = 0$
 $\Rightarrow \frac{\partial f}{\partial e}(0,0) = 0$.
Fall $\epsilon_y > 0$ & $\epsilon_x = 0$:
 $\forall f(h\epsilon_x, h\epsilon_y) = f(0, h\epsilon_y) = 0$
 $\Rightarrow \frac{\partial f}{\partial e}(0,0) = 0$.
Fall $\epsilon_y > 0$ & $\epsilon_x \neq 0$:
Für alle $0 < h < \frac{\epsilon_y}{\epsilon_x^2}$ gilt dann $h^2\epsilon_x^2 < h\epsilon_y$, also wieder $f(h\epsilon_x, h\epsilon_y) = 0 \Rightarrow \frac{\partial f}{\partial e}(0,0) = 0$.

3 Extremwerte & stationäre Punkte

3.1 Definition von Extremwerten

Def. 3.1. Sei $(X, \|\cdot\|)$ ein norm. VR, $M \subseteq X$, $f: M \longrightarrow \mathbb{R}$, $x \in M$.

- (a) Es hat f in x ein $\frac{\text{(strenges) globales Minimum g.d.w.}}{\forall f(x) \leq f(y) \quad (f(x) < f(y))}.$ Ein (strenges) globales Maximum wird entsprechend definiert, und f hat ein (strenges) globales Extremum in x g.d.w. f dort ein (str.) globales Min. oder ein (str.) globales Max. hat.
- (b) Es hat f in x ein (strenges) lokales Min. g.d.w. $\exists \forall f(x) \leq f(y) \quad (f(x) < f(y)).$ Ein (str.) lokales Max. wird wieder analog definiert. Ein (str.) lok. Extremum ist ein (str.) lok. Min. oder ein (str.) lok. Max.

Bem. 3.2. In der Situation von Def. 3.1 ergibt sich sofort, dass f genau dann in $x \in M$ ein (str.) globales Min. hat, wenn -f in x ein (str.) gl. Max. hat. Das gilt ebenso für 'lokal' statt 'global'. Auch ist jedes (str.) globale Min./Max. ein (str.) lokales Min./Max.

3.2 Extremwerte von stetigen Fkt auf kompakten Mengen

Def. 3.3. Eine Teilmenge C eines norm. VR

X heißt kompakt g.d.w. jede Folge in

C eine konvergente Teilfolge (TF) hat, deren Limes in C liegt.

Prop. 3.4. Sei X ein norm. VR, $C \subseteq X$.

- (a) Ist C kompakt, so ist C abg. & beschränkt.
- (b) Ist C kompakt und $A \subseteq C$ abg., so ist A kompakt.

Bew.: (a) Sei C kompakt und (x^k) Folge in C,

die in X konvergiert, also $\lim x^k = x \in X$.

Da C komp., gibt es eine TF, die gegen $c \in C$ konvergiert.

Nach Prop. 1.32(c) gilt dann x = c.

Nach Th. 1.36 ist C abg.

Wäre C nicht beschr., so gäbe es zu

jedem $x \in C$ eine Folge (x^k) in C mit

 $\lim_{k\to\infty} ||x-x^k|| = \infty$. Für alle $y\in X$ wäre dann

wegen $||x - x^k|| \le ||x - y|| + ||y - x^k||$ und

 $||y - x^{k}|| \ge ||x - x^{k}|| - ||x - y||$ auch

 $\lim \|y - x^k\| = \infty$. Also könnte kein

 $y \in X$ ein Limes einer TF von (x^k) sein,

und C könnte nicht kompakt sein.

(b) Ist (x^k) eine Folge in A, so ist (x^k) auch

Folge in C. Da C komp., gibt es eine TF mit

Limes $c \in C$. Da A abg. ist, muss $c \in A$ gelten,

d.h., A ist kompakt.

Kor. 3.5. Für $C \subseteq \mathbb{K}^n$ gilt:

C kompakt \Leftrightarrow C abg. & beschr.

Bew.: " \Rightarrow ": Prop. 3.4(a).

" \Leftarrow ": Ist C abg. & beschr. und (x^k) eine Folge in C

so liefert der Satz von Bolzano-Weierstraß Th. 1.16(b)

eine TF, die gegen $x \in \mathbb{K}^n$ konvergiert.

Da C abg. ist, folgt $x \in C$, also ist C komp.

Warnung 3.6. Im Allg. braucht eine abg. beschr. Menge nicht kompakt zu sein:

Es gilt: Ein norm. VR ist genau dann

endlichdimensional, wenn $B_1(0)$ kompakt ist

(siehe z.B. [Phi16, Th. 3.24]).

Th. 3.7. Sind X, Y norm. VR Räume, $C \subseteq X$ komp. und $f: C \longrightarrow Y$ stetig, so ist f(C) komp.

Bew.: Sei (y^k) eine Folge in f(C). $\forall \exists f(x^k) = y^k$.

Da C komp., gibt es eine TF (a^k) von (x^k) mit $\lim a^k = a \in C$. Dann ist $(f(a^k))$ eine TF von (y^k) und f stetig $\Rightarrow \lim f(a^k) = f(a) \in f(C)$, was zeigt, dass f(C) komp. ist.

Th. 3.8. Ist X ein norm. VR, $C \subseteq X$ komp. und $f: C \longrightarrow \mathbb{R}$ stetig, so nimmt f auf C sein Max. und sein Min. an, d.h., es gibt $x_m, x_M \in C$ so, dass f in x_m ein globales Min. und in x_M ein globales Max. hat.

Bew.: Da C komp. und f st., ist f(C) komp. nach Th. 3.7. Dann enthält f(C) ein kleinstes Element m und ein größtes Element M (Lem. I.7.53). Also gibt es $x_m, x_M \in C$ mit $f(x_m) = m$ und $f(x_M) = M$.

Zwar garantiert Th. 3.8 die Existenz der Extremstellen x_m, x_M , jedoch gibt es einem leider keinen Hinweis, wie sie im konkreten Fall gefunden werden können. Für dif.bare Fkt. werden wir dafür im Folgenden Methoden kennenlernen.

3.3 Satz von Taylor

Th. 3.9. Seien $a, b \in \mathbb{R}$, $a \neq b$, sowie $f, g \in C^{m+1}[a, b]$ für $m \in \mathbb{N}_0$ (d.h., f, g sind st. auf [a, b] und alle Abl. bis zur Ordnung m+1 von f, g ex. und sind st. auf [a, b[und lassen sich auf [a, b] stetig fortsetzen). Weiterhin sei $g^{(k)}(t) \neq 0$ für alle $t \in]a, b[$ und alle $k = 1, \ldots, m+1$ sowie $f(a) = g(a) = f^{(k)}(a) = g^{(k)}(a) = 0$ für alle $k = 1, \ldots, m$. Dann:

$$\exists_{\theta \in]a,b[} \frac{f(b)}{g(b)} = \frac{f^{(m+1)}(\theta)}{g^{(m+1)}(\theta)}.$$
 (3.1)

Bew.: Der 1-dim. MWS, g(a) = 0 und $g' \neq 0$ liefern $g(b) = g(b) - g(a) \neq 0$. Def. die Hilfsfkt

$$h: [a,b] \longrightarrow \mathbb{R}, \quad h(t) := f(t) - g(t) \frac{f(b)}{g(b)}.$$

Dann ist h st. auf [a, b] und dif.bar auf]a, b[sowie h(a) = f(a) = h(b) = 0. Also gibt es nach dem MWS ein $\theta_1 \in]a, b[$ mit $h'(\theta_1) = 0$, d.h. so, dass

$$\frac{f(b)}{g(b)} = \frac{f'(\theta_1)}{g'(\theta_1)},$$

was (3.1) für m=0 beweist. Der Fall m>0 folgt nun mit Induktion.

Th. 3.10 (Satz von Taylor). Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und $a, x \in I, x \neq a$. Ist $f \in C^{m+1}(I, \mathbb{K})$ für $m \in \mathbb{N}_0$, so gilt

$$f(x) = T_m(x, a) + R_m(x, a), (3.2)$$

wobei

$$T_m(x,a) := \sum_{k=0}^m \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(m)}(a)}{m!} (x-a)^m$$
(3.3)

das m. Taylorpolynom ist und

$$R_m(x,a) := \int_a^x \frac{(x-t)^m}{m!} f^{(m+1)}(t) dt$$
 (3.4)

das Restglied in Integralform (dabei ist für $\mathbb{K} = \mathbb{C}$ $\int_I f := \int_I \operatorname{Re} f + i \int_I \operatorname{Im} f$). Für $\mathbb{K} = \mathbb{R}$ kann man das Restglied zusätzlich in Lagrangeform schreiben:

$$R_m(x,a) = \frac{f^{(m+1)}(\theta)}{(m+1)!} (x-a)^{m+1} \quad \text{mit geeignetem } \theta \in]x,a[. \tag{3.5}$$

Bew.: Bew. der Integralform (3.4) des Restgliedes durch Ind. über m:

$$m = 0$$
: $f(x) = f(a) + \int_{a}^{x} f'(t) dt$

stimmt nach dem Hauptsatz (HS).

Zum Induktionsschritt sei $m \in \mathbb{N}_0$, $f \in C^{m+2}(I, \mathbb{K})$.

Betrachte

$$g: I \longrightarrow \mathbb{K}, \quad g(t) := \frac{(x-t)^{m+1}}{(m+1)!} f^{(m+1)}(t).$$

Produktregel:

$$g': I \longrightarrow \mathbb{K}, \quad g'(t) = \frac{(x-t)^{m+1}}{(m+1)!} f^{(m+2)}(t) - \frac{(x-t)^m}{m!} f^{(m+1)}(t)$$
 (3.6)

$$\Rightarrow -g(a) = g(x) - g(a) \stackrel{\text{HS}}{=} \int_{a}^{x} g'(t) \, dt \stackrel{(3.6),(3.4)}{=} R_{m+1}(x,a) - R_{m}(x,a). \quad (3.7)$$

Also

$$T_{m+1}(x,a) + R_{m+1}(x,a) \stackrel{\text{(3.7)}}{=} T_m(x,a) + \frac{f^{(m+1)}(a)}{(m+1)!} (x-a)^{m+1} + R_m(x,a) - g(a)$$
$$= T_m(x,a) + R_m(x,a) \stackrel{\text{I.V.}}{=} f(x),$$

was (3.4) beweist.

Für $\mathbb{K} = \mathbb{R}$ beweisen wir die Lagrangeform (3.5) mit Th. 3.9:

Def. wieder Hilfsfkt:

$$F: I \longrightarrow \mathbb{R},$$
 $F(t) := f(t) - T_m(t, a),$ $G: I \longrightarrow \mathbb{R},$ $G(t) := (t - a)^{m+1}.$

Es ist
$$\forall T_m^{(k)}(a,a) = f^{(k)}(a)$$
.
Also $\forall F^{(k)}(a) = G^{(k)}(a) = 0$.

Also kann man Th. 3.9 in [a, x] auf

F und G anwenden. Aus (3.1) ergibt sich

$$\frac{f(x) - T_m(x, a)}{(x - a)^{m+1}} = \frac{F(x)}{G(x)} = \frac{F^{(m+1)}(\theta)}{G^{(m+1)}(\theta)} = \frac{f^{(m+1)}(\theta) - 0}{(m+1)!}$$
(3.8)

für ein geeignetes $\theta \in]x, a[$. Wegen (3.8) \Leftrightarrow (3.2) sind wir fertig.

Bem. 3.11. In Th. 3.10 ist es trivial, dass man $f = T_m + R_m$ schreiben kann (def. einfach $R_m := f - T_m$). Worauf es jedoch ankommt, sind die <u>Formeln</u> (3.4) und (3.5) für R_m .

Mit der Kettenregel lässt sich der Satz von Taylor auf \mathbb{R}^n übertragen. Vorher etwas Notation:

Not. 3.12. Wir brauchen Richtungsabl. höherer Ord. Hier bietet sich folgende Notation an: Sei

 $h = (h_1, \ldots, h_n) \in \mathbb{R}^n, G \subseteq \mathbb{R}^n$ offen, $f : G \longrightarrow \mathbb{K}$ dif.bar, $\xi \in G$. Nach (2.19) ist die Richtungsabl.

$$(h\nabla)(f)(\xi) := \frac{\partial f}{\partial h}(\xi) = \sum_{i=1}^{n} h_i \partial_i f(\xi) = h_1 \partial_1 f(\xi) + \dots + h_n \partial_n f(\xi)$$
(3.9)

 $(h \nabla \text{ ist ein Bsp. eines Differential operators}).$ Ist $f \in C^2(G, \mathbb{K})$, so können wir $h \nabla$ erneut auf die Fkt in (3.9) anwenden:

$$(h\nabla)^2(f)(\xi) := (h\nabla)(h\nabla)(f)(\xi) = \sum_{j=1}^n (h\nabla)(h_j\partial_j f)(\xi) = \sum_{j,k=1}^n h_k h_j \partial_k \partial_j f(\xi). \quad (3.10)$$

Für $f \in C^k(G, \mathbb{K})$ ergibt eine Induktion

$$(h \nabla)^k(f)(\xi) = \sum_{j_1, \dots, j_k=1}^n h_{j_k} \cdots h_{j_1} \partial_{j_k} \cdots \partial_{j_1} f(\xi).$$
(3.11)

Schließlich sei noch

$$(h \nabla)^0(f)(\xi) := f(\xi).$$
 (3.12)

Th. 3.13 (Satz von Taylor). Sei $G \subseteq \mathbb{R}^n$ offen, $f \in C^{m+1}(G, \mathbb{K})$ für $m \in \mathbb{N}_0$. Sind $\xi \in G$, $h \in \mathbb{R}^n$ so,

dass die Strecke von ξ nach $\xi + h$ in G liegt: $S_{\xi,\xi+h} \subseteq G$. Dann gilt die folgende Taylor-Formel:

$$f(\xi + h) = \sum_{k=0}^{m} \frac{(h \nabla)^{k}(f)(\xi)}{k!} + R_{m}(\xi)$$

$$= f(\xi) + \frac{(h \nabla)(f)(\xi)}{1!} + \frac{(h \nabla)^{2}(f)(\xi)}{2!} + \dots + \frac{(h \nabla)^{m}(f)(\xi)}{m!} + R_{m}(\xi), \quad (3.13)$$

wobei

$$R_m(\xi) := \int_0^1 \frac{(1-t)^m}{m!} (h \nabla)^{m+1} (f) (\xi + th) dt$$
 (3.14)

das Restglied in Integralform. Für $\mathbb{K} = \mathbb{R}$ wieder zusätzlich Restglied in Lagrangeform:

$$\exists_{\theta \in]0,1[} R_m(\xi) = \frac{(h\nabla)^{m+1}(f)(\xi + \theta h)}{(m+1)!}.$$
 (3.15)

Bew.: Da $S_{\xi,\xi+h} \subseteq G$ und G offen, gibt es $\epsilon > 0$ so, dass wir

$$\phi:]-\epsilon, 1+\epsilon[\longrightarrow \mathbb{K}, \quad \phi(t):=f(\xi+th)$$

betrachten können.

Dann ist $\phi(0) = f(\xi)$ und $\phi(1) = f(\xi + h)$. Die Kettenregel liefert

$$\phi'(t) = \nabla f(\xi + th) \cdot h = (h \nabla)(f)(\xi + th).$$

Da $f \in C^{m+1}(G, \mathbb{K})$ liefert eine Induktion:

$$\forall \phi^{(k)}(t) = (h \nabla)^k (f)(\xi + th).$$
(3.16)

Anwendung des 1-dim. Taylor-Th. 3.10 auf ϕ mit x=1 und a=0 liefert mit (3.16):

$$f(\xi + h) = \phi(1)$$

$$= \phi(0) + \phi'(0)(1 - 0) + \frac{\phi''(0)}{2!}(1 - 0)^2 + \dots + \frac{\phi^{(m)}(0)}{m!}(1 - 0)^m$$

$$+ \int_0^1 \frac{(1 - t)^m}{m!} \phi^{(m+1)}(t) dt$$

$$= f(\xi) + \frac{(h\nabla)(f)(\xi)}{1!} + \frac{(h\nabla)^2(f)(\xi)}{2!} + \dots + \frac{(h\nabla)^m(f)(\xi)}{m!}$$

$$+ \int_0^1 \frac{(1 - t)^m}{m!} (h\nabla)^{m+1}(f)(\xi + th) dt, \qquad (3.17)$$

was gerade (3.13) mit Restglied in Int.form (3.14) ist. Mit Restglied in Lagrangeform (für $\mathbb{K} = \mathbb{R}$) lautet (3.17):

$$f(\xi+h) = \underbrace{\sum_{k=0}^{m} \frac{(h\,\nabla)^{k}(f)(\xi)}{k!}}_{= \frac{(h\,\nabla)^{m+1}(\theta)}{(m+1)!}} + \frac{\phi^{(m+1)}(\theta)}{(m+1)!} (1-0)^{m+1} + \frac{(h\,\nabla)^{m+1}(f)(\xi+\theta h)}{(m+1)!}$$

mit $\theta \in]0,1[$ geeignet, also (3.13) mit Restglied aus (3.15).

Bsp. 3.14. Es sei

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x,y) := \sin(xy)$$

sowie m=1 und $\xi=(0,0)$. Ziel ist es, die Taylor-Formel für diesen Fall aufzuschreiben. Es ist

$$\nabla f(x,y) = \Big(y\cos(xy), \, x\cos(xy)\Big)$$

und die Hessematrix ist

$$H_f(x,y) = \begin{pmatrix} \partial_x \partial_x f(x,y) & \partial_x \partial_y f(x,y) \\ \partial_y \partial_x f(x,y) & \partial_y \partial_y f(x,y) \end{pmatrix}$$
$$= \begin{pmatrix} -y^2 \sin(xy) & \cos(xy) - xy \sin(xy) \\ \cos(xy) - xy \sin(xy) & -x^2 \sin(xy) \end{pmatrix}.$$

Für $h = (h_1, h_2) \in \mathbb{R}^2$ ergibt sich für ein geeignetes $\theta \in]0, 1[$:

$$f(h) = 0 + 0 + \underbrace{\frac{h_1 h_2 + h_2 h_1}{2!}}_{h_1 h_2} + R_2(0, 0)$$

$$= R_1(0, 0) \qquad \qquad \xi + \theta h = (\theta h_1, \theta h_2)$$

$$= \frac{-h_1^2 \theta^2 h_2^2 \sin(\theta^2 h_1 h_2) + 2h_1 h_2 \cos(\theta^2 h_1 h_2) - 2h_1^2 h_2^2 \theta^2 \sin(\theta^2 h_1 h_2) - h_2^2 \theta^2 h_1^2 \sin(\theta^2 h_1 h_2)}{2!}$$

$$= -2h_1^2 h_2^2 \theta^2 \sin(\theta^2 h_1 h_2) + h_1 h_2 \cos(\theta^2 h_1 h_2).$$

3.4 Quadratische Formen

Not. 3.15. Sei $A = (a_{kl})$ eine reelle $(m \times n)$ -Matrix. Setze

$$||A||_{HS} := \sqrt{\sum_{k=1}^{m} \sum_{l=1}^{n} a_{kl}^{2}}.$$
 (3.18)

Hilbert-Schmidt-Norm von A

Dies ist gerade die euklidische Norm von A als Element von \mathbb{R}^{mn} .

Lem. 3.16. Ist $A = (a_{kl})$ eine reelle $(m \times n)$ -Matrix, so gilt:

$$\forall_{x \in \mathbb{R}^n} \|Ax\|_2 \le \|A\|_{HS} \|x\|_2. \tag{3.19}$$

Bew.: Für k = 1, ..., m sei $a_k := (a_{k1}, ..., a_{kn})$ der k-te Zeilenvektor von A. Man rechnet

$$||Ax||_{2} = \sqrt{\sum_{k=1}^{m} \left(\sum_{l=1}^{n} a_{kl} x_{l}\right)^{2}} \leq \sqrt{\sum_{k=1}^{m} ||a_{k}||_{2}^{2} ||x||_{2}^{2}} = ||A||_{HS} ||x||_{2}.$$
Cauchy-Schwarz-Ungl.

Def. 3.17. Eine quadratische Form ist eine Abb.

$$Q_A: \mathbb{R}^n \longrightarrow \mathbb{R}, \quad Q_A(x) := x^t A x = \sum_{k,l=1}^n a_{kl} x_k x_l,$$
 (3.20)

wobei x^t der transponierte Vektor von x ist und $A = (a_{kl})$ eine symmetrische reelle $(n \times n)$ -Matrix ist (also mit $a_{kl} = a_{lk}$).

Bem. 3.18. Quadr. Formen sind Polynome und daher nach Th. 1.52 stetig. Für $\lambda \in \mathbb{R}$ und für sym. reelle $(n \times n)$ -Matrizen A, B sind auch λA und A + B sym. reelle $(n \times n)$ -Matrizen sowie $Q_{\lambda A} = \lambda Q_A$ und $Q_{A+B} = Q_A + Q_B$. Insbesondere bilden die sym. reellen $(n \times n)$ -Matr. und auch die quadr. Formen reelle Vektorräume.

Bsp. 3.19. Ist $G \subseteq \mathbb{R}^n$ offen, $f: G \longrightarrow \mathbb{R}$, $f \in C^2(G)$ und $\xi \in G$, so ist die Hessematrix

$$H_f(\xi) = \left(\partial_k \partial_l f(\xi)\right)_{k l=1}^n \tag{3.21}$$

symmetrisch und $Q_{H_f(\xi)}: \mathbb{R}^n \longrightarrow \mathbb{R}$ ist eine quadr. Form.

Lem. 3.20. Sei $A = (a_{kl})$ eine sym. reelle $(n \times n)$ -Mat. und Q_A die zugehörige quadr. Form.

(a) Q_A ist homogen vom Grad 2, d.h.

$$\bigvee_{x \in \mathbb{R}^n} \quad \bigvee_{\lambda \in \mathbb{R}} \quad Q_A(\lambda x) = \lambda^2 \, Q_A(x).$$

(b) Für jedes $\alpha \in \mathbb{R}$ sind äquivalent:

- (i) $Q_A(x) \ge \alpha ||x||_2^2$ für alle $x \in \mathbb{R}^n$.
- (ii) $Q_A(x) \ge \alpha$ für alle $x \in \mathbb{R}^n$ mit $||x||_2 = 1$.
- (c) $\bigvee_{x \in \mathbb{R}^n} |Q_A(x)| \le ||A||_{HS} ||x||_2^2$.

Bew.: (a) folgt sofort aus (3.20).

- (b) (i) \Rightarrow (ii): klar.
- (ii) \Rightarrow (i): Für x = 0 ist $0 = Q_A(x) = \alpha ||x||_2^2$.

Sei also $x \neq 0$ und gelte (ii). Dann:

$$Q_A(x) = Q_A\left(\|x\|_2 \frac{x}{\|x\|_2}\right) \stackrel{\text{(a)}}{=} \|x\|_2^2 Q_A\left(\frac{x}{\|x\|_2}\right) \ge \alpha \|x\|_2^2,$$

d.h., es gilt (i).

(c) Sei $x \in \mathbb{R}^n$. Wegen $Q_A(x) = x \cdot (Ax)$, folgt aus der Cauchy-Schwarz-Ungl., dass

$$|Q_A(x)| \le ||Ax||_2 ||x||_2 \le ||A||_{HS} ||x||_2^2.$$

Def. 3.21. Sei $A = (a_{kl})$ eine sym. reelle $(n \times n)$ -Mat. und Q_A die zugehörige quadr. Form.

- (a) A und Q_A heißen positiv definit g.d.w. $\forall Q_A(x) > 0$.
- (b) A und Q_A heißen <u>pos. semidefinit</u> g.d.w. $\bigvee_{x \in \mathbb{R}^n} Q_A(x) \geq 0$.
- (c) A und Q_A heißen negativ definit g.d.w. $\forall Q_A(x) < 0$.
- (d) A und Q_A heißen <u>neg. semidefinit</u> g.d.w. $\bigvee_{x \in \mathbb{R}^n} Q_A(x) \leq 0$.
- (e) A und Q_A heißen <u>indefinit</u> g.d.w. sie weder pos. semidef. noch neg. semidef. sind, d.h., g.d.w. $\exists (Q_A(a) > 0 \text{ und } Q_A(b) < 0).$

Bsp. 3.22. Sei n=2. Dann hat eine sym. (2×2) -Mat.

die Form $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, und es ist

$$Q_A: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad Q_A(x,y) = ax^2 + 2bxy + cy^2.$$

Man nennt det $A = ac - b^2$, auch die <u>Diskriminante</u> von Q_A . Die Definitheitseigenschaften von A bzw. Q_A hängen wegen

$$\forall aQ_A(x,y) = a(ax^2 + 2bxy + cy^2) = (ax + by)^2 + (\det A)y^2$$

wie folgt von $\det A$ ab:

Bew.: Siehe [Phi22, Ex. 3.24].

Prop. 3.23. Sei $A = (a_{kl})$ eine sym. $(n \times n)$ -Mat und Q_A die zug. quadr. Form.

(a) A und Q_A sind pos. def. g.d.w.

$$\underset{\alpha>0}{\exists} \quad \forall \quad Q_A(x) \ge \alpha > 0. \tag{3.22a}$$

A und Q_A sind neg. def. g.d.w.

$$\exists_{\alpha<0} \quad \forall \quad Q_A(x) \le \alpha < 0.$$

$$\|x\|_{2}=1$$
(3.22b)

- (b) Sind A und Q_A pos. def. (bzw. neg. def. bzw. indefinit), so gibt es $\epsilon > 0$ so, dass jede sym. reelle $(n \times n)$ -Mat. B mit $||A B||_{HS} < \epsilon$ ebenfalls pos. def. (bzw. neg. def. bzw. indef.) ist.
- (c) Sind A und Q_A indef., so ex. $\epsilon > 0$ und $a, b \in \mathbb{R}^n$ mit $||a||_2 = ||b||_2 = 1$ so, dass für jede sym. reelle $(n \times n)$ -Mat. B mit $||A B||_{HS} < \epsilon$ gilt, dass $\forall Q_B(\lambda a) > 0$ und $Q_B(\lambda b) < 0$.

Bew.: (a) Wir betrachten den pos. def. Fall, der neg. def.

Fall geht analog.

 $(3.22a) \Rightarrow Q_A$ pos. def. wegen Lem. 3.20(b).

Umgekehrt sei Q_A pos. def. Die 1-Sphäre

 $S_1(0) = \{x \in \mathbb{R}^n : ||x||_2 = 1\} \text{ ist abg. \& beschr. in } \mathbb{R}^n,$

also kompakt. Da Q_A stetig ist, gibt es nach

Th. 3.8 $\alpha \in \mathbb{R}$ und $x_{\alpha} \in S_1(0)$ so, dass

$$Q_A(x_\alpha) = \alpha \text{ und } \bigvee_{\substack{x \in \mathbb{R}^n, \\ \|x\|_2 = 1}} Q_A(x) \ge \alpha.$$

 Q_A pos. def. $\Rightarrow \alpha > 0 \Rightarrow (3.22a)$.

(b) & (c): Sind A und Q_A pos. def., so gibt es $\alpha > 0$ so, dass (3.22a)

gilt. Wähle $\epsilon := \frac{\alpha}{2} > 0$. Ist dann B eine

sym. reelle $(n \times n)$ -Mat. mit $||A - B||_{HS} < \epsilon$, so folgt

mit Lem. 3.20(c):
$$\bigvee_{\substack{x \in \mathbb{R}^n, \\ \|x\|_2 = 1}} |Q_A(x) - Q_B(x)| = |Q_{A-B}(x)| \le \|A - B\|_{HS} < \epsilon = \frac{\alpha}{2}. \tag{3.23}$$

Wegen $Q_A(x) \ge \alpha > 0$ folgt dann

$$\forall Q_B(x) \ge \frac{\alpha}{2} > 0.$$

$$\|x\|_{2=1} \|x\|_{2} = 1$$

Nach (a) ist B dann pos. def.

Der Fall, dass A und Q_A neg. def. sind, lässt sich wieder analog behandeln.

Bleibt der Fall A, Q_A indef. Dann:

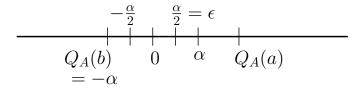
$$\exists_{0 \neq a, b \in \mathbb{R}^n} \quad \Big(Q_A(a) > 0 \text{ und } Q_A(b) < 0\Big).$$

Wegen Lem. 3.20(a) kann man a, b

normalisieren, d.h. zusätzlich annehmen, dass $||a||_2 = ||b||_2 = 1$.

Setze $\alpha := \min\{Q_A(a), |Q_A(b)|\}$. Dann ist $\alpha > 0$.

Wähle wieder $\epsilon := \frac{\alpha}{2}$.



Ist B eine

sym. reelle $(n \times n)$ -Mat. mit $||A - B||_{HS} < \epsilon$, so

gilt wieder (3.23). Es folgt $Q_B(a) \ge \frac{\alpha}{2} > 0$ und

$$Q_B(b) \leq -\frac{\alpha}{2} < 0, \text{ d.h., } Q_B \text{ ist indef., was (b) beweist.}$$
(c) folgt auch, da $\forall Q_B(\lambda a) \geq \lambda^2 \frac{\alpha}{2} > 0 \text{ und } Q_B(\lambda b) \leq -\lambda^2 \frac{\alpha}{2} < 0$.

3.5 Extremwerte und stationäre Punkte von dif.baren Fkt

Def. 3.24. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{K}$ und $\xi \in G$ ein innerer Pkt. Ex. alle $\partial_j f(\xi)$, so heißt ξ ein <u>stationärer</u> oder <u>kritischer Pkt</u> von f g.d.w.

$$\nabla f(\xi) = 0.$$

Th. 3.25. Sei $G \subseteq \mathbb{R}^n$, $f: G \longrightarrow \mathbb{R}$ und $\xi \in G$ ein innerer Pkt. Ex. alle $\partial_j f(\xi)$ und hat f in ξ ein lok. Max. oder Min., so ist ξ ein stationärer Pkt. von f, d.h., $\nabla f(\xi) = 0$.

Bew.: Da ξ ein innerer Pkt von G ist und f in ξ ein lok. Max. oder Min. hat,

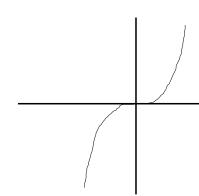
$$\underset{\epsilon>0}{\exists} \quad B_{\epsilon}(\xi) \subseteq G \text{ und } \Big(\underset{x \in B_{\epsilon}(\xi)}{\forall} \quad f(\xi) \ge f(x) \text{ oder } \underset{x \in B_{\epsilon}(\xi)}{\forall} \quad f(\xi) \le f(x) \Big).$$

Sei $j \in \{1, \ldots, n\}$. Dann

$$\exists_{\delta>0} \quad \forall \xi \in [\xi_j - \delta, \xi_j + \delta] \quad \underbrace{(\xi_1, \dots, \xi_{j-1}, t, \xi_{j+1}, \dots, \xi_n)}_{\text{Dann hat die 1-dim. Fkt. } g: \mid - \to \mathbb{R}, \quad g(t) := f(\mid \mid)$$

Dann hat die 1-dim. Fkt. $g: || \longrightarrow \mathbb{R}, \quad g(t) := f(||)$ ein lok. Min. oder Max. in ξ_j . Da $\partial_j f(\xi)$ ex., ist g in ξ_j dif.bar, und es gilt $0 = g'(\xi_j) = \partial_j f(\xi)$.

Da $j \in \{1, ..., n\}$ beliebig war, folgt $\nabla f(\xi) = 0$.



Schon aus dem Eindimensionalen weiß man, dass $\nabla f(\xi) = 0$ nicht hinreichend für ein Extremum in ξ ist, z.B. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) := x^3$ mit $\xi = 0$. Das folgende Th. 3.26 liefert hinreichende Bed. für Extrema:

Th. 3.26. Sei $G \subseteq \mathbb{R}^n$ offen, $f: G \longrightarrow \mathbb{R}$, $f \in C^2(G)$ und $\xi \in G$ sei ein stat. Pkt von f. Dann gilt:

$$H_f(\xi)$$
 pos. def. \Rightarrow f hat ein strenges lok. Min in ξ , (3.24a)

$$H_f(\xi)$$
 neg. def. \Rightarrow $f \mid\mid \mid \mid \mid$ lok. Max in ξ , (3.24b)

$$H_f(\xi)$$
 indef. \Rightarrow f hat in ξ kein lok. Extremum. (3.24c)

 $\mathbf{Bew.:}\ G \ \mathrm{offen} \Rightarrow \underset{\epsilon>0}{\exists} \quad \ \forall \\ \quad h \in \mathbb{R}^n \ \mathrm{mit} \ \|h\|_2 < \epsilon \ } \ \xi + h \in G.$

Für solche h wenden wir den Satz von Taylor Th. 3.13 an mit m=1. Wir erhalten $\theta \in]0,1[$ so, dass

$$f(\xi + h) = f(\xi) + h \cdot \nabla f(\xi) + \frac{1}{2} \sum_{k,l=1}^{n} \partial_k \partial_l f(\xi + \theta h) h_k h_l$$
$$= f(\xi) + \frac{h^t H_f(\xi + \theta h) h}{2} = f(\xi) + \frac{Q_{H_f(\xi + \theta h)}(h)}{2}$$

also

$$f(\xi + h) - f(\xi) = \frac{Q_{H_f(\xi + \theta h)}(h)}{2}.$$
 (3.25)

Beachte, dass die Stetigkeit der $\partial_k \partial_l f: G \longrightarrow \mathbb{R}$ die Stetigkeit von $H_f: G \longrightarrow \mathbb{R}^{n^2}, x \mapsto H_f(x)$

impliziert (die $\partial_k \partial_l f$ sind ja gerade die

Koordinatenfkt. von H_f).

Sei nun $H_f(\xi)$ pos. def. Nach Prop. 3.23(b) gibt es $\delta > 0$ so, dass aus $||h||_2 < \epsilon$ und

 $||H_f(\xi) - H_f(\xi + \theta h)||_{HS} < \delta$ folgt, dass auch $H_f(\xi + \theta h)$ pos. def. ist.

$$H_f \text{ stetig} \quad \Rightarrow \quad \underset{0 < \alpha < \epsilon}{\exists} \quad \Big(\|h\|_2 < \alpha \quad \Rightarrow \quad \underset{\theta \in]0,1[}{\forall} \quad \|H_f(\xi) - H_f(\xi + \theta h)\|_{\mathrm{HS}} < \delta \Big).$$

Also ist für alle h mit $0 < ||h||_2 < \alpha$ die rechte Seite von (3.25) positiv, d.h., f hat ein str. lok. Min. in ξ (wir haben gezeigt, dass

$$\bigvee_{x \in B_{\alpha, \|\cdot\|_2}(\xi) \setminus \{\xi\}} f(\xi) < f(x).$$

Der Bew. von (3.24b) geht völlig analog.

Sei nun $H_f(\xi)$ indef. Nach Prop. 3.23(c)

gibt es $\delta > 0$ und $a, b \in \mathbb{R}^n$ mit $||a||_2 = ||b||_2 = 1$ so,

dass aus $||h||_2 < \epsilon$ und $||H_f(\xi) - H_f(\xi + \theta h)||_{HS} < \delta$

folgt, dass $Q_{H_f(\xi+\theta h)}(\lambda a) > 0$

und $Q_{H_f(\xi+\theta h)}(\lambda b) < 0$ für alle $0 \neq \lambda \in \mathbb{R}$.

$$H_f \text{ stetig} \quad \Rightarrow \quad \underset{0 < \alpha < \epsilon}{\exists} \quad \Big(\|h\|_2 < \alpha \quad \Rightarrow \quad \underset{\theta \in]0,1[}{\forall} \quad \|H_f(\xi) - H_f(\xi + \theta h)\|_{\mathrm{HS}} < \delta \Big).$$

Ist α wie oben, so gilt

$$\bigvee_{0 \le \lambda \le \alpha} \|\lambda a\|_2 < \alpha, \quad \|\lambda b\|_2 < \alpha$$

und wegen (3.25) $f(\xi + \lambda b) < f(\xi) < f(\xi + \lambda a)$, d.h. f hat in ξ weder ein lok. Max. noch ein lok. Min.

Bsp. 3.27. Sei n=2 und $f: G \longrightarrow \mathbb{R}$ eine C^2 -Fkt, $G \subseteq \mathbb{R}^2$ offen, sowie $(x_0, y_0) \in G$ ein stat. Pkt von f. Nach Bsp. 3.22 hängt die Definitheit von $H_f(x_0, y_0)$ vom Vorzeichen von

$$D := \det H_f(x_0, y_0) = \partial_x \partial_x f(x_0, y_0) \partial_y \partial_y f(x_0, y_0) - \left(\partial_x \partial_y f(x_0, y_0)\right)^2$$

ab:

D > 0:

$$\begin{array}{lll} \partial_x\partial_x f(x_0,y_0) > 0 & \overset{\mathrm{Bsp. \, 3.22}}{\Rightarrow} & H_f(x_0,y_0) \; \mathrm{pos. \, def.} \\ & \overset{\mathrm{Th. \, 3.26}}{\Rightarrow} & f \; \mathrm{hat \, str. \, lok. \, Min. \, in \, } (x_0,y_0). \\ \partial_x\partial_x f(x_0,y_0) < 0 & \overset{\mathrm{Bsp. \, 3.22}}{\Rightarrow} & H_f(x_0,y_0) \; \mathrm{neg. \, def.} \\ & \overset{\mathrm{Th. \, 3.26}}{\Rightarrow} & f \; \mathrm{hat \, \, str. \, lok. \, Max. \, in \, } (x_0,y_0). \end{array}$$

- D < 0: Nach Bsp. 3.22 ist $H_f(x_0, y_0)$ indef. und f hat kein lok. Extr. in (x_0, y_0) . In diesem Fall heißt der stat. Pkt (x_0, y_0) ein Sattelpunkt (da der Graph von f in einer Umgebung von (x_0, y_0) der Form eines Sattels ähnelt).
- D=0: Nach Bsp. 3.22 ist $H_f(x_0,y_0)$ pos. oder neg. semidef. und Th. 3.26 liefert keine Information. Ohne weitere Untersuchungen, kann man nicht entscheiden, ob f in (x_0,y_0) ein lok. Extremum hat oder nicht.
- (a) Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x,y) := x^2 + y^2$. Dann ist $\nabla f(x,y) = (2x,2y)$ und $H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Also ist (0,0) der einzige stat. Pkt von f. Wegen $\det H_f(0,0) = 4 > 0$ und $\partial_x \partial_x f(0,0) = 2 > 0$ hat f dort ein str. lok. Min. und dies ist das einzige lok. Extremum von f. Da f(x,y) > 0 für $(x,y) \neq (0,0)$, hat f in (0,0) sogar ein str. globales Min.
- (b) Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x,y) := x^2 y^2$. Dann: $\nabla f(x,y) = (2x,-2y)$ und $H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$. Wieder ist (0,0) der einzige stat. Pkt von f. Wegen det $H_f(0,0) = -4 < 0$ hat f keine lok. Extrema und (0,0) ist ein Sattelpkt.

Zusammenfassung zur Extremwertbestimmung für eine dif.bare Fkt. $f: G \longrightarrow \mathbb{R}$:

- (a) Finde alle stat. Pkte ξ von f, also Pkte mit $\nabla f(\xi) = 0$ (alle lok. Extrema von f, die im Innern von G liegen, müssen darunter sein).
- (b) Man berechne $H_f(\xi)$ und stelle die Definitheitseigenschaften fest. Mit Th. 3.26 lässt sich dann entscheiden, ob f in ξ ein lok. Extr. hat oder nicht, es sei denn $H_f(\xi)$ ist nur semidefinit. Im letzteren Fall, kann die Entscheidung, ob f in ξ ein Extr. hat, schwierig sein. Für gl. Extrema ist noch das Randverhalten von f zu betrachten; auch können weitere lok. Extrema auf ∂G liegen, falls f dort def. ist.

4 Das Riemann-Integral auf Intervallen im \mathbb{R}^n

→ Technische Konstruktionen/Beweise werden in diesem Abschnitt nur skizziert oder ganz weggelassen; man findet sie z.B. in [Phi22, Sec. 4].

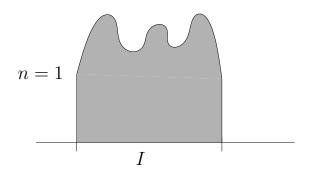
4.1 Definition und einfache Eigenschaften

Sei $a, b \in \mathbb{R}^n$; $a \leq b$, $I = [a, b] = [a_1, b_1] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ ein Intervall.

Ziel: Für $f: I \longrightarrow \mathbb{R}_0^+$ sei

$$\int_{I} f = \text{vol} \{ (x_{1}, \dots, x_{n}, x_{n+1}) \in \mathbb{R}^{n+1} : (x_{1}, \dots, x_{n}) \in I,$$

$$0 \le x_{n+1} \le f(x_{1}, \dots, x_{n}) \}.$$



Für $f: I \longrightarrow \mathbb{R}$: $\int_I f = \int_I f^+ - \int_I f^-.$ $f^+ + \int_I f^-.$ $+ \int_I f^- - \int_I f^-.$ $- \int_I f^- - \int_I f^-.$

Wir betrachten nur f besch
r. (d.h. $\underset{M\geq 0}{\exists} \quad \ \forall \quad |f(x)|\leq M).$

Def. 4.1.

$$|I| := \prod_{j=1}^{n} (b_j - a_j) = \prod_{j=1}^{n} \underbrace{|I_j|}_{\text{Kantenlänge}} \quad (I_j := [a_j, b_j]),$$

heißt $(n\text{-}\dim.)$ Größe, Volumen oder Maß von I.

Idee: Zerlege $I = \bigcup_{p \in P} I_p$ und def. $\int_I f := \lim_{|I_p| \to 0} \sum_{p \in P} f(t_p) |I_p|, \text{ wobei } t_p \in I_p$ (falls der Limes existiert)

Zerlegung von I:

Eine Zerlegung Δ von

I besteht aus Intervallen

$$I_p \subseteq I, p \in P(\Delta)$$
 mit

I_1	I_2	I_3	

$$I=\bigcup_{p\in P(\Delta)}I_p$$
 und
$$\bigvee_{p,q\in P(\Delta)} \quad p\neq q \quad \Rightarrow \quad |I_p\cap I_q|=0.$$

Dann gilt

$$|I| = \sum_{p \in P(\Delta)} |I_p|.$$

Die <u>Feinheit</u> $|\Delta|$ von Δ sei die maximale Kantenlänge eines I_p .

Def. 4.2. Sei $f: I \longrightarrow \mathbb{R}$ beschr., $\Delta = (I_p)_{p \in P(\Delta)}$ Zerlegung von I. Setze

$$m_p := m_p(f) := \inf\{f(x) : x \in I_p\},\$$

 $M_p := M_p(f) := \sup\{f(x) : x \in I_p\}.$

Riemannsche Untersumme:

$$r(\Delta, f) := \sum_{p \in P(\Delta)} m_p |I_p|,$$

|| Obersumme:

$$R(\Delta, f) := \sum_{p \in P(\Delta)} M_p |I_p|.$$

Für $t_p \in I_p$ auch noch

Riemannsche Zwischensumme:

$$\rho(\Delta, f) := \sum_{p \in P(\Delta)} f(t_p) |I_p|.$$

Def. 4.3. (a) Sei $f: I \longrightarrow \mathbb{R}$ beschr.

Unteres Riemann-Integral: $J_*(f, I) := \sup \{r(\Delta, f) : \Delta \text{ Zerlegung von } I\}$, Oberes $|| : J^*(f, I) := \inf \{R(\Delta, f) : \Delta \text{ Zerl. von } I\}$.

(b) $f: I \longrightarrow \mathbb{R}$ beschr. heißt Riemann-integrierbar über $I \Leftrightarrow J_*(f, I) = J^*(f, I)$. $\mathcal{R}(I) := \mathcal{R}(I, \mathbb{R})$ sei die Menge aller über I R.-int.baren Fkt. Für $f \in \mathcal{R}(I)$ heißt

$$\int_{I} f(x) \, \mathrm{d}x \, := \int_{I} f := J_{*}(f, I) = J^{*}(f, I)$$

das Riemann-Integral von f über I.

(c) $g: I \longrightarrow \mathbb{C}$ heißt R.-int.bar über $I \Leftrightarrow \operatorname{Re} g$, Im g beide R.-int.bar über I. $\mathcal{R}(I,\mathbb{C})$: Menge aller über I R.-int.baren $g: I \longrightarrow \mathbb{C}$. Für $g \in \mathcal{R}(I,\mathbb{C})$ sei

$$\int_I g := \left(\int_I \operatorname{Re} g, \, \int_I \operatorname{Im} g \right) = \int_I \operatorname{Re} g + i \int_I \operatorname{Im} g \in \mathbb{C}.$$

Bsp. 4.4. (analog zu Bsp. I.10.7(a)):

(a) Ist $f: I \longrightarrow \mathbb{R}$, $f \equiv c \in \mathbb{R}$, so ist $f \in \mathcal{R}(I)$ und

$$\int_{I} f = c |I| :$$

Für jede Zerlegung Δ von I gilt:

$$r(\Delta, f) = \sum_{p \in P(\Delta)} m_p |I_p| = c \sum_{p \in P(\Delta)} |I_p| = c |I| = \sum_{p \in P(\Delta)} M_p |I_p| = R(\Delta, f),$$

d.h.,
$$J_*(f, I) = c|I| = J^*(f, I)$$
.

(b) Die *n*-dim. Dirichletfkt.

$$f: I \longrightarrow \mathbb{R}, \quad f(x) := \begin{cases} 0 & \text{für } x \in I \setminus \mathbb{Q}^n, \\ 1 & \text{für } x \in I \cap \mathbb{Q}^n, \end{cases}$$

ist <u>nicht</u> Riemann-int.bar für a < b:

$$\overline{\forall}$$
 $r(\Delta, f) = 0, R(\Delta, f) = \sum_{p \in P(\Delta)} |I_p| = |I|, \text{ also } J_*(f, I) = 0 \neq |I| = J^*(f, I).$

Th. 4.5. (a)
$$\forall r(\Delta, f) \leq R(\Delta', f)$$
.

- (b) $J_*(f,I) \leq J^*(f,I)$.
- (c) Sind Δ^k Zerl. von I mit $\lim |\Delta^k| = 0$, so gilt $\lim r(\Delta^k, f) = J_*(f, I)$, $\lim R(\Delta^k, f) = J^*(f, I)$. $f \in \mathcal{R}(I) \Rightarrow \lim r(\Delta^k, f) = \lim R(\Delta^k, f) = \int_I f$ sowie $\lim \rho(\Delta^k, f) = \int_I f$.
- (d) Ex. $\alpha \in \mathbb{R}$ so, dass

$$\forall_{(\Delta^k)_{k\in\mathbb{N}} \text{ Folge von Zerl. von } I} \quad \Big(\lim |\Delta^k| = 0 \ \Rightarrow \ \alpha = \lim \rho(\Delta^k, f)\Big),$$

so gilt $f \in \mathcal{R}(I)$ und $\alpha = \int_I f$.

Def. 4.6. Für $B \subseteq A$ heißt

$$\chi_B: A \longrightarrow \{0,1\}, \quad \chi_B(x) := \begin{cases} 1 & \text{für } x \in B, \\ 0 & \text{für } x \notin B, \end{cases}$$

die <u>charakteristische Fkt</u> von B.

(b) Für
$$J := [c, d] \subseteq I$$
 ist $\chi_{[c,d]} \in \mathcal{R}(I)$ und $\int_I \chi_{[c,d]} = |J|$.

(c) Monotonie:
$$\forall f,g \in \mathcal{R}(I)$$
 $f \leq g \Rightarrow \int_I f \leq \int_I g$.

(d)
$$\Delta$$
-Ungl.: $\forall \int_{f \in \mathcal{R}(I,\mathbb{C})} |\int_{I} f| \leq \int_{I} |f|$.

(e) Mittelwertsatz für Integrale:
$$\forall \quad \forall \quad \forall \quad m \leq m \leq M \Rightarrow m \, |I| \leq \int_I f \leq M \, |I|.$$

Th. 4.8.
$$f: I \longrightarrow \mathbb{C}$$
 stetig $\Rightarrow f$ R.-int.bar.

Th. 4.9. (a)
$$f \in \mathcal{R}(I)$$
, $\phi : f(I) \longrightarrow \mathbb{R}$ lip.st. $\Rightarrow \phi \circ f \in \mathcal{R}(I)$.

(b)
$$f \in \mathcal{R}(I)$$

 $\Rightarrow |f|, f^2, f^+, f^- \in \mathcal{R}(I).$

(c)
$$f, g \in \mathcal{R}(I)$$

 $\Rightarrow fg, \max(f, g), \min(f, g) \in \mathcal{R}(I).$
 $f, g \in \mathcal{R}(I) \text{ und } \exists_{\delta > 0} g \ge \delta$
 $\Rightarrow f/g \in \mathcal{R}(I).$

4.2 Satz von Fubini

Th. 4.10 (Satz von Fubini). Sei $I = J \times K$, n = p + q. Für $f \in \mathcal{R}(I, \mathbb{C})$ gilt:

$$\int_I f = \int_I f(x,y) \, \mathrm{d}(x,y) \, = \int_K \int_J f(x,y) \, \mathrm{d}x \, \mathrm{d}y \, = \int_J \int_K f(x,y) \, \mathrm{d}y \, \, \mathrm{d}x \, .$$

Induktion liefert

$$\int_{I} f = \int_{I} f(x) dx = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \cdots dx_1,$$

wobei es egal ist, in welcher Reihenfolge die Integrale ausgeführt werden.

Bsp. 4.11. Sei $I := [0,1]^3$, $f : I \longrightarrow \mathbb{R}$, f(x,y,z) := xyz. Dann ist

$$\int_{I} f = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(x, y, z) \, dx \, dy \, dz = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} xyz \, dx \, dy \, dz$$

$$= \int_{0}^{1} \int_{0}^{1} \left[\frac{x^{2}yz}{2} \right]_{x=0}^{x=1} \, dy \, dz = \int_{0}^{1} \int_{0}^{1} \frac{yz}{2} \, dy \, dz = \int_{0}^{1} \left[\frac{y^{2}z}{4} \right]_{y=0}^{y=1} \, dz$$

$$= \int_{0}^{1} \frac{z}{4} \, dz = \left[\frac{z^{2}}{8} \right]_{0}^{1} = \frac{1}{8}.$$

5 Gewöhnliche Differentialgleichungen (ODE) erster Ordnung

ODE: Ordinary Differential Equation (engl. für gew. Dif.gl.)

5.1 Definition und geometrische Interpretation

Def. 5.1. Sei $G \subseteq \mathbb{R} \times \mathbb{R}$, $f: G \longrightarrow \mathbb{R}$ stetig. Dann heißt

$$y' = f(x, y) \tag{5.1}$$

explizite ODE 1. Ordnung.

Gesucht: Fkt. y, die (5.1) erfüllt.

Eine Lösung der ODE ist eine differenzierbare Fkt

$$\phi: I \longrightarrow \mathbb{R}$$

 $(I \subseteq \mathbb{R} \text{ sei nichttriviales Intervall})$ so, dass

- (i) Graph von ϕ ist Teilmenge von G, d.h. $\{(x, \phi(x)) \in I \times \mathbb{R} : x \in I\} \subseteq G$.
- (ii) $\forall_{x \in I} \quad \phi'(x) = f(x, \phi(x)).$

Def. 5.2. Ein Anfangswertproblem (AWP) für (5.1) besteht aus (5.1) und der Anfangsbedingung

$$y(x_0) = y_0 \tag{5.2}$$

mit $(x_0, y_0) \in G$. Eine Lsg. des AWP besteht aus einer Lsg. ϕ von (5.1), die zusätzlich (5.2) erfüllt.

ODE: Es wird nur nach einer Variable abgeleitet.

PDE (partielle Dif.gl.): Es treten verschiedenen partielle Abl. auf.

1. Ordnung: Es treten nur 1. Abl. auf.

n. Ordnung: Es treten Abl. bis zur Ordnung n auf.

explizite Gl.: (5.1) ist nach y' aufgelöst,

implizite Gl.: f(x, y, y') = 0.

Th. 5.3. Sei $G \subseteq \mathbb{R} \times \mathbb{R}$, $f : G \longrightarrow \mathbb{R}$ stetig, $(x_0, y_0) \in G$.

Dann ist das AWP 1. Ord.

$$y' = f(x, y), \tag{5.3a}$$

$$y(x_0) = y_0,$$
 (5.3b)

zur Integralgleichung

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$$
 (5.4)

in folgendem Sinn äquivalent:

Ist $x_0 \in I \subseteq \mathbb{R}$ nichtr. Intervall und $\phi: I \longrightarrow \mathbb{R}$ dif.bar mit

$$\{(x,\phi(x)) \in I \times \mathbb{R} : x \in I\} \subseteq G,\tag{5.5}$$

so ist ϕ Lsg. von (5.3) g.d.w.

$$\forall_{x \in I} \quad \phi(x) = y_0 + \int_{x_0}^x f(t, \phi(t)) dt, \qquad (5.6)$$

d.h., g.d.w. ϕ Lsg. von (5.4).

Bew.: Sei ϕ Lsg. von (5.3). Nach dem Hauptsatz (HS) folgt:

$$\forall_{x \in I} \quad \phi(x) = \underbrace{\phi(x_0)}_{y_0} + \int_{x_0}^x \underbrace{f(t, \phi(t))}_{\phi'(t)} dt,$$

d.h., ϕ erfüllt (5.4).

Sei nun ϕ Lsg. von (5.4) (d.h. (5.6) gilt).

Dann gilt $\phi(x_0) = y_0$ und der HS liefert

$$\forall_{x \in I} \quad \phi'(x) = f(x, \phi(x)), \text{ d.h., } \phi \text{ löst } (5.3).$$

Bsp. 5.4. Hängt f in (5.3) nur von x ab

(also $f: I \longrightarrow \mathbb{R}, x_0 \in I$), so liefert Th. 5.3, dass die eindeutige Lsg. von (5.3) gegeben ist durch

$$\phi: I \longrightarrow \mathbb{R}, \quad \phi(x) = y_0 + \int_{x_0}^x f(t) \, \mathrm{d}t,$$
 (5.7)

d.h. genau durch die entsprechende Stammfkt. von f.

Z.B. hat das AWP

$$y' = a,$$
$$y(0) = c,$$

mit $a, c \in \mathbb{R}$ genau die Lsg.

$$\phi: \mathbb{R} \longrightarrow \mathbb{R}, \quad \phi(x) = c + \int_0^x a \, dt = c + xa.$$

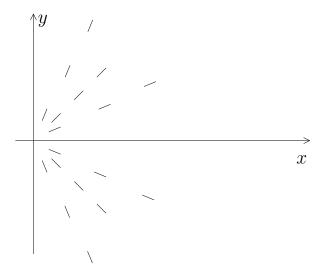
1-dim. ODE y' = f(x, y) beschreibt Richtungsfeld:

Punkt (x, y) wird Steigung y' = f(x, y) der Fkt. y zugeordnet.

In einfachen Fällen kann man Lsg. durch Zeichnen des Richtungsfeldes erraten:

Bsp. 5.5. (a)
$$G = \mathbb{R}^+ \times \mathbb{R}, f : G \longrightarrow \mathbb{R}, f(x,y) := \frac{y}{x}$$
, also

$$y' = \frac{y}{x}$$
. Richtungsfeld:



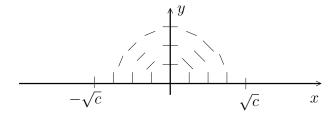
Vermutung: Lösungen sind Strahlen, die vom Ursprung ausgehen, also $\phi_c: \mathbb{R}^+ \longrightarrow \mathbb{R}$ mit

$$y = \phi_c(x) = c x \text{ für } c \in \mathbb{R}.$$

Differenzieren bestätigt die Vermutung.

(b)
$$G = \mathbb{R} \times \mathbb{R}^+, f : G \longrightarrow \mathbb{R}, f(x, y) := -\frac{x}{y}$$
, also

$$y' = -\frac{x}{y}$$
. Richtungsfeld:



Vermutung: Lösungen sind Halbkreise:

$$\phi_c:]-\sqrt{c}, \sqrt{c}[\longrightarrow \mathbb{R}^+, \quad y=\phi_c(x)=\sqrt{c-x^2}, \ c\in \mathbb{R}^+.$$

Beweis:

$$y' = \phi'_c(x) = \frac{-2x}{2\sqrt{c - x^2}} = \frac{-x}{\phi_c(x)} = \frac{-x}{y}.$$

5.2 Trennung der Variablen

Wir betrachten die ODE

$$y' = f(x)g(y). (5.8)$$

Th. 5.6 (Trennung der Variablen). I, J seien (beschr. oder unbeschr.) offene Intervalle, $f: I \longrightarrow \mathbb{R}, g: J \longrightarrow \mathbb{R}$ seien stetig mit $\forall g \in J = 0$.

Für $(x_0, y_0) \in I \times J$ betrachte das AWP bestehend aus (5.8) und der Anfangsbed.

$$y(x_0) = y_0. (5.9)$$

Def. Fkt.

$$F: I \longrightarrow \mathbb{R}, \quad F(x) := \int_{x_0}^x f(t) \, \mathrm{d}t, \quad G: J \longrightarrow \mathbb{R}, \quad G(y) := \int_{y_0}^y \frac{\mathrm{d}t}{g(t)}.$$
 (5.10)

(a) Eindeutigkeit: Auf jedem offenen Intervall $I' \subseteq I$ mit $x_0 \in I'$ und $F(I') \subseteq G(J)$ hat das AWP genau eine Lsg. Diese Lsg. ist

$$\phi: I' \longrightarrow \mathbb{R}, \quad \phi(x) := G^{-1}(F(x)), \tag{5.11}$$

wobei $G^{-1}:\,G(J)\longrightarrow J$ die Umkehrf
kt. von Gist.

(b) Existenz: Es gibt ein off. Int. $I' \subseteq I$ mit $x_0 \in I'$ und $F(I') \subseteq G(J)$, d.h. so, dass sich (a) auf I' anwenden lässt.

Bew.: (a) Zunächst hat G dif.bare Umkehrfkt. $G^{-1}: G(J) \longrightarrow J$: Nach HS ist G dif.bar mit G' = 1/g. Da $g \neq 0$ und stetig ist, ist G sogar C^1 . Für $G'(y_0) = 1/g(y_0) > 0$ ist G str. monoton steigend auf G (da nach Zwischenwertsatz G of auf ganz G). Analog ist G str. mon. fallend auf G für G0. Also hat G0 eine dif.bare Umkehrfkt. auf G1. Also ist ϕ aus (5.11) wohldef. (wegen $F(I') \subseteq G(J)$);

wir zeigen, dass ϕ das AWP löst:

Anf. bed.: $\phi(x_0) = G^{-1}(F(x_0)) = G^{-1}(0) = y_0 \checkmark$

ODE: (5.11) $\Rightarrow F = G \circ \phi$ auf I'. HS und Kettenregel:

$$\bigvee_{x \in I'} f(x) = F'(x) = G'(\phi(x)) \phi'(x) = \frac{\phi'(x)}{g(\phi(x))},$$

d.h., ϕ löst (5.8).

Eindeutigkeit: Sei $\phi: I' \longrightarrow \mathbb{R}$ eine beliebige Lsg. des AWP.

$$(5.8) \quad \Rightarrow \quad \bigvee_{x \in I'} \quad \frac{\phi'(x)}{g(\phi(x))} = f(x).$$

Integrieren:

$$\bigvee_{x \in I'} \int_{x_0}^x \frac{\phi'(t)}{g(\phi(t))} dt = \int_{x_0}^x f(t) dt = F(x),$$

$$\bigvee_{x \in I'} \text{Substitution } \phi(t) \to u$$

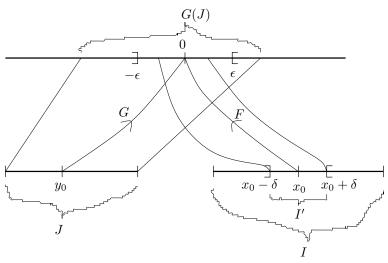
also

$$\forall F(x) = \int_{\phi(x_0)}^{\phi(x)} \frac{du}{g(u)} = \int_{y_0}^{\phi(x)} \frac{du}{g(u)} = G(\phi(x)).$$
(5.12)

 G^{-1} in (5.12) anwenden $\Rightarrow \phi$ ist durch (5.11) gegeben.

(b) G str. steigend oder str. fallend und $G(y_0)=0$ $\Rightarrow \exists \]-\epsilon,\epsilon[\subseteq G(J).$

$$F \text{ stetig, } F(x_0) = 0 \Rightarrow \exists_{\delta > 0} F(\underbrace{]x_0 - \delta, x_0 + \delta[}) \subseteq] - \epsilon, \epsilon \subseteq G(J).$$



Bsp. 5.7. Betrachte

$$y' = -\frac{y}{x}$$
 auf $I \times J := \mathbb{R}^+ \times \mathbb{R}^+$ (5.13)

mit y(1) = c mit $c \in \mathbb{R}^+$ gegeben. Setzt man

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}, \quad f(x) := -\frac{1}{x}, \quad g: \mathbb{R}^+ \longrightarrow \mathbb{R}, \quad g(y) := y,$$

so lässt sich Th. 5.6 anwenden. Berechne $\phi = G^{-1} \circ F \colon \mathrm{Es}$ ist

$$F: \mathbb{R}^+ \longrightarrow \mathbb{R}, \qquad F(x) = \int_1^x f(t) \, \mathrm{d}t = -\int_1^x \frac{\mathrm{d}t}{t} = -\ln x,$$

$$G: \mathbb{R}^+ \longrightarrow \mathbb{R}, \qquad G(y) = \int_c^y \frac{\mathrm{d}t}{g(t)} = \int_c^y \frac{\mathrm{d}t}{t} = \ln \frac{y}{c}.$$

Wegen $F(\mathbb{R}^+) = \mathbb{R} = G(\mathbb{R}^+)$ kann man $I' = I = \mathbb{R}^+$ wählen (ϕ ist auf ganz I definiert). Es ist

$$G^{-1}: \mathbb{R} \longrightarrow \mathbb{R}^+, \quad G^{-1}(t) = c e^t.$$

Also

$$\phi: \mathbb{R}^+ \longrightarrow \mathbb{R}, \quad \phi(x) = G^{-1}(F(x)) = c e^{-\ln x} = \frac{c}{x}.$$

 \rightarrow Anwendung von Th. 5.6 ist rigoros und zuverlässig.

ightarrow Das folgende Vorgehen lässt sich jedoch evt. leichter merken:

Trennung der Variablen als heuristisches Kochrezept:

Schreibe (5.8) als

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y). \tag{5.14a}$$

Trennung der Variablen:

$$\frac{\mathrm{d}y}{g(y)} = f(x)\,\mathrm{d}x\,. \tag{5.14b}$$

Integration:

$$\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \,\mathrm{d}x. \tag{5.14c}$$

Einsetzen der Grenzen nach Anf. bed. $y(x_0) = y_0$:

$$\int_{y_0}^{y} \frac{dt}{g(t)} = \int_{x_0}^{x} f(t) dt.$$
 (5.14d)

Nach y auflösen und $\phi(x) := y$ setzen. Überprüfen, dass ϕ das AWP tatsächlich löst. Das größte Intervall I finden mit $x_0 \in I$, auf dem ϕ def. ist.

Bsp. 5.8. Betrachte

$$y' = \frac{x}{y}$$
 auf $I \times J := \mathbb{R}^+ \times \mathbb{R}^+$ (5.15)

mit Anf. bed. $y(x_0) = y_0; \quad x_0, y_0 \in \mathbb{R}^+$. Nach (5.14)

$$\frac{dy}{dx} = \frac{x}{y} \quad \rightsquigarrow \quad y \, dy = x \, dx \quad \rightsquigarrow \quad \int y \, dy = \int x \, dx \quad \rightsquigarrow \quad \int_{y_0}^y t \, dt = \int_{x_0}^x t \, dt$$

$$\rightsquigarrow \quad y^2 - y_0^2 = x^2 - x_0^2 \quad \rightsquigarrow \quad \phi(x) = y = \sqrt{x^2 + y_0^2 - x_0^2}$$

(neg. Vorzeichen scheidet wegen $y_0 = \phi(x_0) \in \mathbb{R}^+$ aus).

Probe: $\phi(x_0) = y_0 \checkmark$

$$\phi'(x) = \frac{2x}{2\sqrt{x^2 + y_0^2 - x_0^2}} = \frac{x}{\phi(x)} \quad \checkmark$$

Für $y_0 \ge x_0$ ist ϕ auf ganz $I = \mathbb{R}^+$ definiert.

Für $y_0 < x_0$ folgt aus $x^2 + y_0^2 - x_0^2 > 0$, dass $x^2 > x_0^2 - y_0^2$, d.h., das max. Def. intervall für ϕ ist $I' =]\sqrt{x_0^2 - y_0^2}$, $\infty[$.

5.3 Lineare ODE, Variation der Konstanten

Def. 5.9. Sei $I \subseteq \mathbb{R}$ offenes Intervall,

 $a, b: I \longrightarrow \mathbb{R}$ stetige Fkt. Dann heißt

$$y' = a(x)y + b(x) \tag{5.16}$$

<u>lineare ODE</u> 1. Ordnung.

homogen: für $b \equiv 0$, inhomogen: sonst.

Th. 5.10 (Variation der Konstanten). Sei $I \subseteq \mathbb{R}$ offenes Intervall,

 $a, b: I \longrightarrow \mathbb{R}$ stetig, $x_0 \in I, c \in \mathbb{R}$.

Dann hat die lin. ODE (5.16) genau eine Lsg., die die Anfangsbed. $y(x_0) = c$ erfüllt. Diese Lsg. ist

$$\phi: I \longrightarrow \mathbb{R}, \quad \phi(x) = \phi_0(x) \left(c + \int_{x_0}^x \phi_0(t)^{-1} b(t) dt \right),$$
 (5.17a)

 mit

$$\phi_0: I \longrightarrow \mathbb{R}, \quad \phi_0(x) = \exp\left(\int_{x_0}^x a(t) \, \mathrm{d}t\right) = e^{\int_{x_0}^x a(t) \, \mathrm{d}t}$$
 (5.17b)

(hier: $\phi_0^{-1} := \frac{1}{\phi_0}$).

Bew.: a, b stetig $\Rightarrow a, b$ über $[x_0, x]$ riemannintegrierbar und

$$\phi'_0: I \longrightarrow \mathbb{R}, \quad \phi'_0(x) \stackrel{\mathrm{HS}}{=} a(x) \exp\left(\int_{x_0}^x a(t) \, \mathrm{d}t\right) = a(x)\phi_0(x).$$

 $\phi_0 \neq 0$, stetig $\Rightarrow \phi_0^{-1}$ stetig, R.-int.bar und

$$\phi': I \longrightarrow \mathbb{R},$$

$$\phi'(x) = \overbrace{\phi'_0(x)}^{a(x)\phi_0(x)} \left(c + \int_{x_0}^x \phi_0(t)^{-1} b(t) dt\right) + \underbrace{\phi_0(x)\phi_0(x)^{-1} b(x)}_{b(x)}$$

$$\text{HS, Produktregel } f'g + g'f$$

$$= a(x)\phi(x) + b(x).$$

 $\Rightarrow \phi$ löst (5.16). Wegen

$$\phi(x_0) = \phi_0(x_0) (c+0) = 1 \cdot c = c$$

gilt auch die Anf. bed.

Eindeutigkeit: Sei $\psi: I \longrightarrow \mathbb{R}$ Lsg. von (5.16) mit $\psi(x_0) = c$.

Zu zeigen: $\psi = \phi$.

Def. $u := \psi/\phi_0$. Zeige:

$$\forall u(x) = c + \int_{x_0}^x \phi_0(t)^{-1} b(t) dt.$$
(5.18)

Es gilt:

$$a \phi_0 u + b = a \psi + b = \psi' = (\phi_0 u)' = \phi'_0 u + \phi_0 u' = a \phi_0 u + \phi_0 u'$$

$$\Rightarrow b = \phi_0 u' \Rightarrow u' = \phi_0^{-1} b$$

$$\Rightarrow \quad \forall u(x) = u(x_0) + \int_{x_0}^x u'(t) dt = c + \int_{x_0}^x \phi_0(t)^{-1} b(t) dt$$

$$\Rightarrow (5.18).$$

Kor. 5.11 (Homogene lin. ODE). Für $b \equiv 0$ hat (5.16) genau eine Lsg. y mit $y(x_0) = c$, und zwar

$$\phi(x) = c \exp\left(\int_{x_0}^x a(t) \, dt\right) = c e^{\int_{x_0}^x a(t) \, dt}.$$
 (5.19)

Bem. 5.12. "Variation der Konstanten":

Man erhält (5.17) aus (5.19) durch Ersetzen der Konstanten c durch die Fkt. $x \mapsto c + \int_{x_0}^x \phi_0(t)^{-1} b(t) dt$.

Bsp. 5.13. (a) Die hom. lin. ODE

$$y' = ky, \quad k \in \mathbb{R},$$

mit $y(x_0) = c \ (x_0, c \in \mathbb{R})$ hat nach Kor. 5.11 die eindeutige Lsg.

$$\phi: \mathbb{R} \longrightarrow \mathbb{R}, \quad \phi(x) = c \exp\left(\int_{x_0}^x k \, \mathrm{d}t\right) = ce^{k(x-x_0)}.$$

(b) Mit Kor. 5.11 berechnen wir erneut die Lsg. von (5.13) aus Bsp. 5.7 (hom. lin. ODE mit a(x) = -1/x). Mit Anf.bed. y(1) = c ist die eind. Lsg.

$$\phi(x) = c \exp\left(-\int_1^x \frac{\mathrm{d}t}{t}\right) = ce^{-\ln x} = \frac{c}{x}.$$

(c)
$$y' = 2xy + x^3 (5.20)$$

mit $y(0) = c, c \in \mathbb{R}$. Inhom. lin. ODE mit

$$a: \mathbb{R} \longrightarrow \mathbb{R}, \quad a(x) := 2x,$$

 $b: \mathbb{R} \longrightarrow \mathbb{R}, \quad b(x) := x^3.$

Lösung der hom. Gl. nach Kor. 5.11:

$$\phi_{0,c}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \phi_{0,c}(x) = c \exp\left(\int_0^x a(t) dt\right) = ce^{x^2}.$$

Also Lsg. von (5.20) aus (5.17a):

$$\phi: \mathbb{R} \longrightarrow \mathbb{R},$$

$$\phi(x) = e^{x^2} \left(c + \int_0^x e^{-t^2} t^3 dt \right) = e^{x^2} \left(c + \left[-\frac{1}{2} (t^2 + 1) e^{-t^2} \right]_0^x \right)$$

$$= e^{x^2} \left(c + \frac{1}{2} - \frac{1}{2} (x^2 + 1) e^{-x^2} \right) = \left(c + \frac{1}{2} \right) e^{x^2} - \frac{1}{2} (x^2 + 1).$$

$$\left[\phi'(x) = 2x(c + \frac{1}{2}) e^{x^2} - x \right]$$

5.4 Substitution

 \rightarrow Geschickte Substitution der Variablen erlaubt es manchmal, die zu lösende ODE in eine ODE zu überführen, deren Lsg. man schon kennt.

Bem. 5.14. Ähnlich wie bei Trennung der Var. wird auch Substitution in der Praxis oft heuristisch verwendet. Für

$$y' = f(x, y), y(x_0) = y_0$$
 (*) geht man wie folgt vor:

- (1) Setze z := T(x, y), berechne z', d.h. Abl. von $x \mapsto z(x) = T(x, y(x))$.
- (2) In z' setze y' = f(x, y) und substituiere dann $y = T_x^{-1}(z)$ (Auflösen von $z = T(x, y) = T_x(y)$ nach y). Dies liefert das transformierte AWP $z' = g(x, z), z(x_0) = T(x_0, y_0)$ (**).
- (3) Löse (**); erhalte Lsg. μ . Dann ist $x \mapsto \phi(x) := T_x^{-1}(\mu(x))$ Kandidat für Lsg. von (*).
- (4) Prüfen, dass ϕ (*) löst.

Bsp. 5.15. Betrachte

$$f: \mathbb{R}^+ \times \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x,y) := 1 + \frac{y}{x} + \frac{y^2}{x^2}$$
 (5.21)

und das AWP

$$y' = f(x, y), \quad y(1) = 0.$$
 (5.22)

Setze $z:=T(x,y):=\frac{y}{x}$, gehe gemäß Bem. 5.14 vor:

(1) $z'(x) = \frac{y'(x) x - y(x)}{x^2}.$

(2) Ersetze $y'(x) = f(x, y), y = T_x^{-1}(z) = xz$:

$$z' = \frac{1}{x} \left(1 + \frac{y}{x} + \frac{y^2}{x^2} \right) - \frac{y}{x^2} = \frac{1}{x} \left(1 + z + z^2 \right) - \frac{z}{x}$$
$$= \frac{1 + z^2}{x}, \quad z(1) = 0/1 = 0. \tag{5.23}$$

(3) Löse (5.23), z.B. durch Tr. der Var., erhalte

$$\mu: \underbrace{]e^{-\frac{\pi}{2}}, \, e^{\frac{\pi}{2}}[} \longrightarrow \mathbb{R}. \quad \mu(x) := \tan \ln x.$$
 Dann ist $\phi: \quad || \quad \longrightarrow \mathbb{R}, \quad \phi(x) := x \, \mu(x) = x \, \tan \ln x,$

Kandidat für Lsg. von (5.22).

(4) Probe: $\phi(1) = 1 \cdot \tan 0 = 0$

$$\phi'(x) = \tan \ln x + x \frac{1}{x} (1 + \tan^2 \ln x) = 1 + \tan \ln x + \tan^2 \ln x$$
$$= 1 + \frac{\phi(x)}{x} + \frac{\phi^2(x)}{x^2} \quad \checkmark$$

Th. 5.16. Sei $G \subseteq \mathbb{R} \times \mathbb{R}$ offen, $f: G \longrightarrow \mathbb{R}$, $(x_0, y_0) \in G$. Setze

$$\bigvee_{x \in \mathbb{R}} G_x := \{ y \in \mathbb{R} : (x, y) \in G \}$$

und betrachte dif.bare Variablentransformation/Substitutionsfkt. $T: G \longrightarrow \mathbb{R}$ mit

$$\forall G_{x\neq\emptyset} \quad \Big(T_x := T(x,\cdot): \, G_x \longrightarrow T_x(G_x), \quad T_x(y) := T(x,y),$$
 ist Diffeomorphismus $\Big),$ (d.h. T_x inv.bar und T_x, T_x^{-1} sind dif.bar).

Dann sind die AWP

$$y' = f(x, y), \tag{5.24a}$$

$$y(x_0) = y_0, (5.24b)$$

und

$$y' = \frac{f(x, T_x^{-1}(y))}{(T_x^{-1})'(y)} + \partial_x T(x, T_x^{-1}(y)),$$
 (5.25a)

$$y(x_0) = T(x_0, y_0), (5.25b)$$

in folgendem Sinn äquivalent:

(a) Dif.bare Fkt. $\phi: I \longrightarrow \mathbb{R}$ ist Lsg. von (5.24a) g.d.w.

$$\mu: I \longrightarrow \mathbb{R}, \quad \mu(x) := (T_x \circ \phi)(x) = T(x, \phi(x)),$$
 (5.26)

Lsg. von (5.25a) ist.

(b) $\phi: I \longrightarrow \mathbb{R}$ dif.bar ist Lsg. von (5.24) g.d.w. μ aus (5.26) Lsg. von (5.25) ist.

Bew.:

$$G$$
 offen \Rightarrow G_x offen \Rightarrow $T_x(G_x)$ offen.

Wende nun Kettenregel auf $T_x \circ T_x^{-1} = \text{Id an}$:

$$\bigvee_{y \in T_x(G_x)} T'_x(T_x^{-1}(y)) (T_x^{-1})'(y) = 1,$$

d.h., $(T_x^{-1})'(y) \neq 0$ mit

$$\forall \\
 y \in T_x(G_x) \quad \left((T_x^{-1})'(y) \right)^{-1} = T_x' \left(T_x^{-1}(y) \right).$$
(5.27)

$$(5.26) \quad \Rightarrow \quad \bigvee_{x \in I} \quad \phi(x) = T_x^{-1}(\mu(x)). \tag{5.28}$$

Kettenregel für μ :

$$\psi_{x \in I} \qquad \mu'(x) = \left(\partial_x T(x, \phi(x)) \ \partial_y T(x, \phi(x))\right) \begin{pmatrix} 1\\ \phi'(x) \end{pmatrix}
= T'_x(\phi(x)) \phi'(x) + \partial_x T(x, \phi(x)). \tag{5.29}$$

Sei nun ϕ Lsg. von (5.24a). Dann:

$$\forall \mu'(x) \stackrel{(5.29),(5.24a)}{=} T'_x(\phi(x)) f(x,\phi(x)) + \partial_x T(x,\phi(x))$$

$$\stackrel{(5.28)}{=} T'_x(T_x^{-1}(\mu(x))) f(x,T_x^{-1}(\mu(x))) + \underbrace{\partial_x T(x,T_x^{-1}(\mu(x)))}_{(T_x^{-1})'(\mu(x))} + |||$$

$$\stackrel{(5.27)}{=} \frac{f(x,T_x^{-1}(\mu(x)))}{(T_x^{-1})'(\mu(x))} + |||$$

d.h., μ löst (5.25a).

Umgekehrt sei μ Lsg. von (5.25a). Dann:

$$\begin{array}{ll} \forall & \underline{f\left(x,T_x^{-1}(\mu(x))\right)} \\ x \in I & \overline{T\left(x,T_x^{-1}(\mu(x))\right)} \\ & & \updownarrow (5.28) \\ & \stackrel{(5.25a)}{=} \mu'(x) \stackrel{(5.29)}{=} T_x'(\phi(x)) \, \phi'(x) + \underline{\partial_x T\left(x,\phi(x)\right)}. \\ & & | \cdot (T_x^{-1})'(\mu(x)), \\ & & (5.27), (5.28) \\ \Rightarrow & \forall \\ x \in I & \phi'(x) = f\left(x,T_x^{-1}(\mu(x))\right) \stackrel{(5.28)}{=} f\left(x,\phi(x)\right), \end{array}$$

d.h. ϕ löst (5.24a).

Bleibt (b) zu zeigen. (b) folgt aus (a), da

$$\phi(x_0) = y_0 \qquad \Rightarrow \qquad \mu(x_0) = T(x_0, \phi(x_0)) = T(x_0, y_0),$$

$$\mu(x_0) = T(x_0, y_0) \qquad \Rightarrow \qquad \phi(x_0) = T_{x_0}^{-1}(\mu(x_0)) = T_{x_0}^{-1}(T(x_0, y_0)) = y_0.$$

Als Anwendung:

Th. 5.17. Betrachte die Bernoulli-Dif.gl.

$$y' = f(x, y) := a(x) y + b(x) y^{\alpha}$$
(5.30a)

mit $\alpha \in \mathbb{R} \setminus \{0,1\}$ und $a,b:I \longrightarrow \mathbb{R}$ stetig auf dem off. Int. $I \subseteq \mathbb{R}, f: I \times \mathbb{R}^+ \longrightarrow \mathbb{R}$. Anf. bed.

$$y(x_0) = y_0, \quad (x_0, y_0) \in I \times \mathbb{R}^+.$$
 (5.30b)

Betrachte auch das zugehörige lin. AWP

$$y' = (1 - \alpha) (a(x) y + b(x)), \tag{5.31a}$$

$$y(x_0) = y_0^{1-\alpha}, (5.31b)$$

mit der durch Th. 5.10 gegebenen eind. Lsg. $\psi: I \longrightarrow \mathbb{R}$.

(a) Eindeutigkeit: Auf jedem off. Int. $I' \subseteq I$ mit $x_0 \in I'$ und $\psi > 0$ auf I'hat das AWP (5.30) eine eind. Lsg. Diese ist

$$\phi: I' \longrightarrow \mathbb{R}^+, \quad \phi(x) := (\psi(x))^{\frac{1}{1-\alpha}}.$$

(b) Existenz: Es gibt ein off. Int. $I' \subseteq I$ mit $x_0 \in I'$ und $\psi > 0$ auf I', d.h. so, dass sich (a) auf I' anw. lässt.

Bew.: (b) gilt nach Th. 5.10, da $\psi(x_0) = y_0^{1-\alpha} > 0$ und ψ stetig ist.

(a): Wende Th. 5.16 an mit Substitution

$$T: I \times \mathbb{R}^+ \longrightarrow \mathbb{R}^+, \quad T(x,y) := y^{1-\alpha}.$$

T ist dif.bar mit $\partial_x T \equiv 0$ und $\partial_y T(x,y) = (1-\alpha) y^{-\alpha}$. Weiter ist

$$\forall_{x \in I} \quad T_x = S, \quad S : \mathbb{R}^+ \longrightarrow \mathbb{R}^+, \quad S(y) := y^{1-\alpha},$$

$$\begin{array}{l} S^{-1}: \ \mathbb{R}^+ \longrightarrow \mathbb{R}^+, \ S^{-1}(y) = y^{\frac{1}{1-\alpha}}, \\ (S^{-1})'(y) = \frac{1}{1-\alpha} \, y^{\frac{\alpha}{1-\alpha}}. \\ S \ \text{und} \ S^{-1} \ \text{sind dif.bar;} \ (5.25a) \ \text{hat die Form} \end{array}$$

$$y' = \frac{f(x, T_x^{-1}(y))}{(T_x^{-1})'(y)} + \partial_x T(x, T_x^{-1}(y))$$

= $(1 - \alpha) y^{-\frac{\alpha}{1-\alpha}} \left(a(x) y^{\frac{1}{1-\alpha}} + b(x) \left(y^{\frac{1}{1-\alpha}} \right)^{\alpha} \right) + 0$
= $(1 - \alpha) \left(a(x) y + b(x) \right)$.

Nach Th. 5.16 ist dann $\phi = S^{-1}(\psi) = \psi^{\frac{1}{1-\alpha}}$ Lsg. von (5.30) auf I' mit $x_0 \in I'$, $\psi > 0$ auf I'. Ist $\lambda : I' \longrightarrow \mathbb{R}^+$ beliebige Lsg. von (5.30), so ist nach Th. 5.16 $\mu := S \circ \lambda = \lambda^{1-\alpha}$ Lsg. von (5.31). Nach Th. 5.10 also $\lambda^{1-\alpha} = \underbrace{\psi \upharpoonright_{I'}}_{\text{Einschränkung auf } I'}$

Literatur

- [Phi16] P. Philip. Analysis II: Topology and Differential Calculus of Several Variables. Lecture Notes, LMU Munich, 2016, AMS Open Math Notes Ref. # OMN:202109.111307, available in PDF format at https://www.ams.org/open-math-notes/omn-view-listing?listingId=111307.
- [Phi22] P. PHILIP. Calculus II for Statistics Students. Lecture Notes, Ludwig-Maximilians-Universität, Germany, 2022, available in PDF format at http://www.math.lmu.de/~philip/publications/lectureNotes/philipPeter_Calc2_forStatStudents.pdf.