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Abstract—A model for the induction heating of an axisym-
metric apparatus is presented, assuming sinusoidal time de-
pendence. To ensure that the total current is equal in each
ring of the induction coil, the decomposition of the total
voltage into the ring voltages is determined by a linear sys-
tem of complex equations. This method is then applied
to simulate the heating process during the growth of SiC
single crystals by the PVT method, where the electromag-
netic problem is coupled to a transient heat equation. We
compare results of the evolution of the heat sources as well
as the resulting temperature field using the correct voltage
distribution to the corresponding results using the simple
homogeneous voltage distribution.

Index Terms— Electromagnetic heating, furnaces, model-
ing, semiconductor growth, simulation, voltage.

I. Introduction

INDUCTION heating is used during many industrial pro-
cesses such as metal hardening and forging (e.g. see [1],

[2], and references therein). Induction heating is also used
for the heating of crucibles during crystal growth, e.g. sub-
limation growth of silicon carbide (SiC) single crystals by
physical vapor transport (PVT) (s. e.g. [3]). Even though
in this article, we consider induction heating in the context
of SiC growth by PVT, the induction heating model pre-
sented in Sec. II is also relevant to other applications, where
the heated workpiece is axisymmetric and where the time
dependence of the electromagnetic quantities is sinusoidal.

SiC is a semiconductor substrate material that is utilized
in electronic and optoelectonic devices such as MESFETs,
thyristors, LEDs, lasers, and sensors. An economically
profitable use of SiC requires the availability of low-defect
SiC boules with large diameter. In spite of substantial
progress in recent years, the production process of low-
defect SiC boules with large diameter remains challenging
and an active research field in experimental work as well as
modeling and simulation (s. e.g. [4], [5], [6], and references
therein).

Large SiC boules are usually grown by the PVT method.
Typically, modern PVT growth systems consist of a ra-
dio frequency (RF) induction-heated graphite crucible con-
taining polycrystalline SiC source powder and a single-
crystalline SiC seed (cf. Fig. 1). The source powder is
placed in the hot zone of the growth apparatus, whereas
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the seed crystal is cooled by means of a blind hole, estab-
lishing a temperature difference between source and seed.
At growth temperature, which can reach up to 3000 K for
growth of the SiC polytype 6H, a low pressure argon (inert
gas) atmosphere is established at some 2 · 103 Pa (cf. [7]).
As the SiC source is kept at a higher temperature than the
cooled SiC seed, sublimation is encouraged at the source
and crystallization is encouraged at the seed, causing the
partial pressures of species such as Si, Si2C, and SiC2 to be
higher in the neighborhood of the source and lower in the
neighborhood of the seed. As the system tries to equalize
the partial pressures, source material is transported to the
seed which grows into the reaction chamber.

The crystal’s defect density and growth rate are strongly
influenced by the temperature distribution, especially the
temperature at the seed and the temperature difference
between source and seed. Thus, the optimization of the
temperature distribution with respect to favorable growth
conditions is an important goal of apparatus design and
control. However, due to the high temperatures, experi-
mental verification of the correlation between the proper-
ties of the grown crystal, the temperature distribution, and
external control parameters such as the coil position and
the heating voltage is very intricate and costly. Thus, to
assist the experimentalist, it is highly desirable to provide
reliable numerical simulation tools based on a precise math-
ematical model. Recent papers concerned with modeling
heat transfer during PVT growth include [5], [6], [8].

An accurate model of the heat transfer must include con-
duction through solid materials as well as through the gas
phase, radiative heat transfer between surfaces of cavities,
and the heat generated by induction heating. The induc-
tion heating model in an axisymmetric, sinusoidal setting
is our main focus in this article.

Induction heating causes eddy currents in the conduct-
ing materials of the growth apparatus, resulting in heat
sources due to the Joule effect. In the case of axisymmetry
and sinusoidal time dependence, the heat sources can be
computed using the coil ring voltages vk as input data (cf.
[9], [10], and Sec. II).

If the coil rings constitute the two-dimensional approxi-
mation of a single, connected coil, the total current in each
coil ring must be the same. This is not reflected in the
simple approximation by a homogeneous distribution of a
total imposed voltage V to the rings, letting vk = V/N ,
which we used to perform numerical simulations of induc-
tion heating in [11]. In our present article, to ensure iden-
tical total currents in the different rings, the amplitude of
vk and the phase shift between vk and V are determined
from a complex linear system (s. [12] and Sec. II). To the
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Fig. 1. Benchmark setup used for PVT growth at the Institute for Crystal Growth (IKZ), Berlin.

authors’ knowledge, the subject of a correct voltage distri-
bution to the coil rings has not received much attention in
the literature. In [12], we used numerical simulations for a
schematic growth apparatus to show that that one can gain
up to 20 percent accuracy in the resulting heat sources by
using the correct voltage distribution as compared to using
an equal voltage in each coil ring.

In the present article we go one step further and com-
pare the two methods, performing numerical simulations
for the IKZ benchmark apparatus shown in Fig. 1, not
only comparing the heat source distributions, but also the
resulting temperature fields and their evolution. As ex-
plained above, the temperature fields are more relevant to
the crystal growth process than the distributions of heat
sources themselves.

II. Modeling Induction Heating

All solid materials in the growth system except quartz
are considered as potential conductors, whereas quartz and
the gas phase are treated as perfect insulators. We assume
that displacement currents as well as surface currents can
be neglected. Furthermore, we assume that a sinusoidal
alternating voltage V (t) = V0 sin(ωt) is imposed in the
coil, resulting in an alternating current that generates a
rapidly oscillating magnetic field, inducing eddy currents
in the conducting parts of the apparatus. The goal is to
compute the distribution of heat sources in the apparatus
caused by the eddy currents due to the Joule effect. To
be able to consider the problem in an axisymmetric set-
ting, the actual coil is replaced by N cylindrical rings with
a sinusoidal alternating voltage imposed in each ring. All
the involved electromagnetic quantities are assumed to be

axisymmetric and sinusoidal. Thus, the voltage imposed
in the k-th ring has the form vk(t) = Im(vkeiωt), where
i denotes the imaginary unit and v1, . . . ,vN are complex
voltages satisfying

N∑

k=1

vk = V0. (1)

Here, as in the following, we use the complex representation
of sinusoidal functions, where bold face is used to denote
complex representations.

The power density µ per volume of the heat sources can
be computed from the current density j:

µ(r, z) =
|j(r, z)|2
2 σ(r, z)

, (2)

where (r, z) denote cylindrical coordinates, and σ denotes
the electrical conductivity.

It is shown in [9], [10] that under the above assump-
tions, and given the total voltage in each coil ring vk,
k = 1, . . . , N , there is a complex-valued magnetic scalar
potential φ such that (cf. [10, Eq. (28)])

j =

{
−iω σ φ + σ vk

2πr in the k-th coil ring,
−iω σ φ in all other conducting materials.

(3)

The potential φ is determined from the system of ellip-
tic partial differential equations [10, (22), (29)], which we
rewrite in the following divergence form (4) which is more
suitable for our numerical approach via a finite volume dis-
cretization:

−ν div
grad(rφ)

r2
= 0 in insulators, (4a)



−ν div
grad(rφ)

r2
+

i ωσφ

r
=

σ vk

2πr2
in the k-th coil ring,

(4b)

−ν div
grad(rφ)

r2
+

i ωσφ

r
= 0

in other conducting materials,
(4c)

where ν denotes the magnetic reluctivity, i.e. the reciprocal
of the magnetic permeability. The quantities ν and σ can
vary in space, but they are supposed to be constant in time.

The system (4) is completed by interface and boundary
conditions. Owing to the assumption of no surface cur-
rents, we have the interface condition [10, (30)]:

(
ν¹Material1

r2
grad(rφ)¹Material1

)
• ~nMaterial1

=
(

ν¹Material2

r2
grad(rφ)¹Material2

)
• ~nMaterial1

(5)

on interfaces between Material1 and Material2, where
¹ denotes the restriction to the respective material,
and ~nMaterial1 denotes the outer unit normal vector to
Material1. It is also assumed that φ is continuous through-
out the whole domain and that φ = 0 both on the symme-
try axis r = 0 and sufficiently far from the growth appara-
tus (cf. [5, Sec. 3.2]).

For each solution φ to (4), the corresponding total cur-
rent in the k-th coil ring is given by

jk(vk, φ) =
vk

2π

∫

Ωk

σ

r
drdz − iω

∫

Ωk

σφ drdz , (6)

Ωk denoting the two-dimensional domain of the k-th coil
ring.

Since the coil rings constitute the approximation of a
single, connected coil, the total current must be the same
in each coil ring, i.e.

jk(vk, φ) = jk+1(vk+1, φ), k ∈ {1, . . . , N − 1}. (7)

Hence, the tuple (φ,v1, . . . ,vN ) needs to satisfy the linear
system consisting of (1) and (4) – (7). A method for the
numerical solution of this system was described in [12, Sec.
II.B]. Moreover, it was described in [12, Sec. II] how scaling
of the solution (φ,v1, . . . ,vN ) also allows to prescribe the
total power.

III. Numerical Experiments

A. General Setting and Methods

The numerical simulations presented in the following
were performed for the growth system displayed in Fig.
1, consisting of a container having a radius of 11 cm and
a height of 81 cm placed inside of 9 hollow rectangular-
shaped copper induction coil rings. It is assumed that all
components of the growth system as well as all relevant
physical quantities are cylindrically symmetric. As we are
using the outer boundary condition φ = 0, the domain
where the problem for φ is solved has been chosen larger
than the apparatus itself: φ = 0 was set at z = −0.8 m,
z = 1.0 m, r = 1.2 m, and r = 1.0 mm (to permit the

evaluation of terms with r in the denominator). The de-
pendence of φ on the domain size is investigated in [5].

The used heat transport model includes conduction
through solid materials as well as through the gas phase
and was described in [13], [14]. On the outside sur-
faces of the growth container, the temperature is fixed at
room temperature Troom = 293 K, which agrees with ex-
perimental conditions [15]. Radiative contributions from
the quartz wall and the Al lids are neglected. The inner
container, consisting of the remaining solid components,
is assumed to be exposed to a black body environment
(e.g. a large isothermal room) radiating at room tempera-
ture Troom. This is reasonable, since the quartz walls are
transparent. Thus, the outer boundaries of the inner con-
tainer emit according to the Stefan-Boltzmann law. Ra-
diative heat transfer between surfaces of cavities of the in-
ner container is included using the net radiation method
for diffuse-gray radiation as described in [13]. All solids
are treated as opaque, except the SiC single crystal, where
semi-transparency is accounted for via the band approxi-
mation model. For the two blind holes, we use black body
phantom closures (denoted by Γtop and Γbottom in Fig. 1)
which emit radiation at Troom. Thus, we allow for radiative
interactions between the open cavities and the ambient en-
vironment, including reflections at the cavity surfaces. The
view factor algorithm is based on [16] and is described in
[13, Sec. 4].

Assuming sinusoidal time dependence of the imposed al-
ternating voltage, the heat sources are computed using the
model described in Sec. II and using the numerical method
described in [12, Sec. II.B]. The distribution of the heat
sources is redetermined in each time step of the transient
problem for the temperature evolution to account for tem-
perature dependence of the electrical conductivity.

A finite volume method is used for the discretizations
arising in the stationary computation of the magnetic
scalar potential φ and in the transient temperature simu-
lations. An implicit Euler scheme provides the time dis-
cretization of the temperature evolution equation; only
emissivity terms are evaluated explicitly, i.e. using the tem-
perature at the previous time step. The nonlinear systems
arising from the finite volume discretization of the nonlin-
ear heat transport problem are solved by Newton’s method.

All simulations were performed using the software
WIAS-HiTNIHS 1 which is based on the program pack-
age pdelib being developed at the Weierstrass Institute of
Applied Analysis and Stochastics (WIAS), Berlin (cf. [17]).

As described in [13, Sec. 5], for simulations of the tem-
perature distribution evolution, it is reasonable to assume
that the gas phase is made up solely of argon, notwith-
standing the fact that species such as Si, Si2C, and SiC2

make up a significant portion of the gas mixture at high
temperatures.

The angular frequency used for the induction heating
is ω = 2πf , where f = 10 kHz, and the total voltage is
V0 = Veff

√
2, where Veff = 330V. In each material, the

1High Temperature Numerical Induction Heating Simulator; pro-
nounciation: ∼nice.



magnetic reluctivity is assumed to be ν = µ−1
0 = 107

4π · Am
Vs .

The material data used for argon, copper, graphite, insu-
lation, SiC crystal, and SiC powder, respectively, are pre-
cisely the data provided in the appendices of [5] and [13],
respectively. The only exception is the thermal conduc-
tivity of the SiC powder, which is according to [18, App.
A]. The material data used for aluminum and quartz are
provided in App. A.

B. Numerical Results and Discussion

We discuss the results of two transient numerical simu-
lations of the temperature field evolution, both starting at
Troom = 293 K. To assess the error made when distributing
the total voltage homogeneously to the coil rings as com-
pared with determining the ring voltages according to Sec.
II, for the computations of the heat source distributions,
one simulation (subsequently called Cor) uses the correct
voltages, where (φ,v1, . . . ,vN ) is determined according to
(1) and (4) – (7); and the other simulation (subsequently
called Hom) uses vk = V0/N for each ring, i.e. using the
homogeneous voltage distribution. In the following, the
subscript “cor” is used to refer to quantities from simu-
lation Cor, and the subscript “hom” is used to refer to
quantities from simulation Hom. After t = 3h, both sim-
ulations have reached a quasi-stationary final state.

For both simulations Cor and Hom, the currents jk are
computed numerically according to (6), where the integrals
are approximated by sums over finite volume elements. For
Hom at times t = 1h and t = 3h, the results in Table I
show that the current in each of the outer rings (k = 1, 9)
is almost twice the current in the other rings. For Cor, the
total currents were calculated to jk = (31.6− 567i) A at t
= 1h and to jk = (31.8 − 566i) A at t = 3h, respectively.
The minor differences between t = 1h and t = 3h are due to
the temperature dependence of the electrical conductivity.

Table II shows that in Cor, the voltages in the outermost
rings deviate from the homogeneous value of 51.9 V by
some 15 percent.

The total electrical power Pel computed during simula-
tions Cor and Hom at t = 1h and at t = 3h, respectively,
is provided in Table III, which also contains the informa-
tion on how Pel is split between the heating power P

[app]
heat

in the apparatus and the heating power P
[coil]
heat in the coil.

Fig. 2 depicts numerical results at t = 1h (column (1))
and at the quasi-stationary final state t = 3h (column (2)).
Rows (a) and (b) show the heat source distributions (left
halfs) and the temperatures distributions (right halfs) com-
puted during simulations Cor and Hom, respectively; row
(c) depicts the corresponding absolute errors, and row (d)
depicts the corresponding relative errors.

In the insulation material, the isotherms lie very dense,
producing the dark outer regions in the temperature fields
depicted in rows (a) and (b) of Fig. 2. The same holds
inside the SiC source powder at t = 1h, where the inte-
rior of the powder is still relatively cold and its thermal
conductivity is low.

Fig. 2(d) shows that the relative error of the heat sources
reaches up to 30 percent in the lower parts of the insulation.

However, for the effect on the temperature distribution, the
error in parts of large heat sources (i.e. the outer graphite,
cf. Fig. 2(a),(b)) is more relevant. Comparing Fig. 2(a),(b)
with Fig. 2(d) shows that the error is between 10 and 20
percent in regions where µ is maximal. Still, Fig. 2(d)(2)
shows that the relative error in the temperature field is low
at t = 3h, and even though the absolute error inside the
growth chamber is considerable (Fig. 2(c)(2)), the qualita-
tive differences in the stationary temperature distributions
are minor (Figs 2(a)(2),(b)(2)).

The situation is different at t = 1h, where both the ab-
solute and the relative error of the temperature are consid-
erable inside the SiC source powder (Figs 2(c)(1),(d)(1)).
This can be significant, as knowledge of the temperature
of the source during the heating stage is important, e.g.
for allowing enough time for baking out contaminants (cf.
[18]).

IV. Conclusions

In two transient numerical simulations of the temper-
ature evolution in an induction-heated PVT growth ap-
paratus, we evaluated the error made when using a ho-
mogeneous voltage distribution in the coil rings as com-
pared to determining the correct ring voltages from a lin-
ear system of equations, ensuring that the total current in
each coil ring is identical. We found relative errors of the
heat sources of up to 30 percent. While the relative errors
of the temperatures were some two percent in the quasi-
stationary distribution at t = 3h with only minor qualita-
tive differences, one can gain almost 10 percent accuracy
for the temperature distribution inside the SiC source at
t = 1h, which can e.g. help to correctly gauge the time to
allow for the contaminant bake-out phase during the heat-
ing process.

Appendix

I. Material Data

The material data used for argon, copper, graphite, insu-
lation, SiC crystal, and SiC powder, respectively, are pre-
cisely the data provided in the appendices of [5] and [13],
respectively. The only exception is the thermal conduc-
tivity of the SiC powder, which is according to [18, App.
A]. The material data used for aluminum and quartz are
provided below, where ρ denotes mass density, σ denotes
electrical conductivity, κ denotes thermal conductivity, csp

denotes specific heat, and ε denotes emissivity.

A. Aluminum

Since in the considered apparatus, the Al parts are not
heated significantly, a constant value is taken for each of the
following quantities, considering the respective quantity at
room temperature.

The material parameters used for the Al lids are

ρ[Al][T ] = 2700 kg/m3, σ[Al][T ] = 3.72 · 107 (Ωm)−1,

κ[Al][T ] = 237 W/(m K), c[Al]
sp [T ] = 896 J/(kg K).



TABLE I

Total currents in coil rings (numbered from top to bottom) computed during simulation Hom at t = 1h and at t = 3h,

respectively.

k 1 2 3 4 5 6 7 8 9

Hom, t = 1h: Re(jk)[A] 28.1 22.9 32.6 38.0 38.9 35.9 29.5 19.6 25.7
Hom, t = 1h: Im(jk)[A] -919 -515 -478 -470 -469 -471 -479 -516 -926
Hom, t = 3h: Re(jk)[A] 28.2 23.1 32.9 38.3 39.3 36.2 29.8 19.8 25.8
Hom, t = 3h: Im(jk)[A] -918 -514 -477 -469 -468 -470 -479 -516 -926

TABLE II

Voltages in coil rings (numbered from top to bottom) computed during simulation Cor at t = 1h and at t = 3h, respectively.

k 1 2 3 4 5 6 7 8 9

Cor, t = 1h: Re(vk)[V] 43.7 50.7 54.4 56.3 56.8 56.2 54.4 50.1 43.5
Cor, t = 1h: Im(vk)[V] 0.389 0.128 -0.187 -0.407 -0.451 -0.307 -0.023 0.310 0.548
Cor, t = 3h: Re(vk)[V] 43.7 50.7 54.4 56.3 56.8 56.2 54.3 50.6 43.5
Cor, t = 3h: Im(vk)[V] 0.393 0.130 -0.188 -0.411 -0.455 -0.311 -0.024 0.312 0.553

TABLE III

Total electrical power Pel and total powers of heat

sources in the apparatus P
[app]
heat and in the coil P

[coil]
heat as

computed during simulations Cor and Hom at t = 1h and at

t = 3h, respectively.

(1h)cor (1h)hom (3h)cor (3h)hom

Pel [kW] 7.37 7.03 7.42 7.09

P
[app]
heat [kW] 6.28 5.88 6.34 5.94

P
[coil]
heat [kW] 1.09 1.15 1.08 1.15

B. SiO2 (Quartz)

The material parameters used for SiO2 are

ρ[SiO2][T ] = 2600 kg/m3, σ[SiO2][T ] = 0.0,

κ[SiO2][T ] =
(
1.82− 1.21 · 10−3 T/K

+ 1.75 · 10−6 (T/K)2
)

W/(m K),

c[SiO2]
sp [T ] =

(
932 + 0.2564 T/K

− 2.403 · 107 (T/K)−2
)

J/(kg K),

ε[SiO2][T ] = 0.82 + 3.5 · 10−5 T/K.
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Fig. 2. Numerical results of computations of temperature distributions (right halfs) and heat source distributions (left halfs) at t = 1h (column
(1)) and at the quasi-stationary final state t = 3h (column (2)). Rows: (a): using correct voltage distribution, (b): using homogeneous voltage
distribution, (c): absolute error, (d): relative error.


