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Griffith Theory: Drawbacks
A.A. GRIFFITH. Phil. Trans. of the Royal Soc. of London. Series A 221 (1921),
163–198.
Experimental Evidence: Material failure occurs below theoretical value of criti-
cal stress, critical stress varies with the size and geometry of the specimen
(G.B. SINCLAIR. Appl. Mech. Rev. 57 (2004), 251–297).
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Physical / Mathematical Issues: Griffith theory predicts
stress singularity at crack tip:
σmax = 2 a

b σ0 (load acts entirely on undeformed state),
σmax = ε

σ0
ln

(
cosh 2 σ0

ε + a
b sinh 2 σ0

ε

)
(load applied incre-

mentally),
limb→0 σmax = ∞ in both cases.

For b → 0, Griffith theory predicts its own failure: The
assumptions used in its derivation (elasticity, small de-
formations) no longer apply. Its predictions become
nonphysical.

Limited Scope: Griffith theory can not predict location of crack initiation and crack
path.
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Cohesive Forces According to Barenblatt and Sinclair
G.I. BARENBLATT. Advan. Appl. Mech. 7 (1962), 55–129.
G.B. SINCLAIR. Appl. Mech. Rev. 57 (2004), 251–297.
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on the separation s.
Qualitative picture of dependence of cohesive stress σco

Qualitative proper-
ties of the cohesive
stress-separation
law (se: equilibrium
separation):

Repulsion for
s < se, nearly linear
σco(s) ≈ ke (s − se)

for s close to se,
then σco reaches
maximum and
gradually decays to
0 for large s.

Challenges:
(a) Compute realistic quantitative laws for σco(s) for a given material from quantum mechanics.
(b) Accounting for the nonlinear law σco(s) can render computation of the resulting stress field
very difficult.

APCOM’07-EPMESC XI, Kyoto, Japan, December 3-6, 2007 4(13)



Predicting Crack Initiation and Path: Francfort-Marigo Theory
G.A. FRANCFORT, J.-J. MARIGO. J. Mech. Phys. Solids 46 (1998), 1319–1342.

Goal: Formulate the problem such that the location and path of a crack, in con-
trast to Griffith theory, does not need to be described a priori, but is part of the
problem’s solution.

Mathematical setting:
Let Ω ⊆ RN , N ∈ {1, 2, 3}, be a body’s un-
cracked reference configuration.
For each time t ∈ [0, T ], a strained and
cracked configuration of the body is de-
scribed by a displacement function
u : Ω −→ RN together with a crack Γ ⊆ Ω.

Example with Dirichlet boundary condi-
tions:

Ω

∂D,1Ω

∂D,2Ω

uD,2

Prescribe u = uD on some part of the boundary ∂Ω of Ω. For example uD,1(t, x) =
(0, 0, 0), uD,2(t, x) = (0,−t, 0) (see figure).
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Quasistatic Energy Minimization

The goal is to determine u(t, x) by quasistatic energy minimization.

Quasistatic:

Assumption: There are two, decoupled time scales:

Slow Time Scale: Variation of boundary conditions and loading.

Fast Time Scale: The system instantaneously settles into an energy minimum
for each time t of the slow time scale.

Quasistatic Evolution:

Find t 7→ u(t) such that u(t) satisfies an energy balance (energy spent in crack
increase must equal the work of the external forces) and has minimal energy
among all admissible displacement fields v ∈ AD(t).

The choice for AD(t) is not obvious. Tentative choice:

AD(t) :=
{
u ∈ BV (Ω, RN) ∩ L∞(Ω, RN) : uD(t) = u on ∂Du

}
.
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Allowing for Reversible Cracks -1-

For each time t ∈ [0, T ], reversibility is described by a reversibility function

r : Ω −→ {0, 1}, r(x) =

{
1 if there is an irreversible crack at x,
0 otherwise.

Irreversibility is triggered where a crack has opened more than a threshold value
ath.

Cracks are now defined in terms of u and r:
Γ(u, r) := r−1{1} ∪

{
x ∈ Ju :

(
[u](x)

)
• nJu(x) > 0

}
.

Given u(t), r can be defined in terms of u as a memory function:

ru(t, x) =

{
0 if

(
[u](t, x)

)
• nJu(t)

(x) < ath for all s ≤ t,

1 otherwise.
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Allowing for Reversible Cracks -2-

Due to the reversibility function, the formulation of the minimality condition at t
makes use of the function u already defined for times smaller than t:

Let v ∈ AD(t) be an admissible displacement field at time t, and let
u : [0, t[−→ BV (Ω, RN) ∩ L∞(Ω, RN)

be given. Then u can be extended to t by v:

uv : [0, t] −→ BV (Ω, RN) ∩ L∞(Ω, RN),

uv(s) :=

{
u(s) for s < t,

v for s = t.

Thereby, v also gives rise to a reversibility function rv:

rv : [0, t] −→ {0, 1}, rv := ruv.
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Minimality condition at time t

u(t) needs to satisfy

(1) u(t) ∈ AD(t), (2) E(t)(uu(t)) ≤ E(t)(uv) for each v ∈ AD(t),

where the total energy is given by

E(t)(u) = Eb(u)−F(t)(u) + Ecr

(
Γ(u, ru)

)
:

Eb(u) is the strain energy of the bulk, Eb(u) :=
∫

Ω W
(
x,∇u(x)

)
dx

with a suitable material function W : Ω× RN2 −→ R+
0 ;

F(t)(u) is the energy due to body and surface forces;

Ecr

(
Γ(u, ru)

)
is the crack energy:

Ecr(Γ) =
∫

Γ κ
(
x, nΓ(x), [u](x), r(x)

)
dHN−1(x),

where κ : Ω×SN−1×RN ×{0, 1} −→ R+
0 ∪{∞} is a material function, describing

the material’s toughness, nΓ is the unit normal vector on the crack.

The dependence on r(x) can account for crack reversibility:
Cohesive forces should play no role once the crack has become irreversible:
κ depends nontrivially on the third variable if, and only if, the fourth variable is 0.
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Global Versus Local Energy Minimization

Example: Global minimization fails (const. body force, F. & M. 1998, Sec. 5.2):

x = 0

x = 2

F

x = 1

F

a}

Ω := {x ∈ R : 0 < x < 2}, ∂DΩ := {2},
uD : [0, T ] −→ L∞(∂DΩ, R), uD(t)(2) := 0,

W : Ω× R −→ R+
0 , W (x, ξ) := ξ2/2,

F : [0, T ]× Ω× R −→ R, F (t, x, z) := −t z,

κ : Ω× {−1, 1} × RN × {0, 1} −→ R+
0 ∪ {∞},

κ(x, n, z, 0) :=


∞ for z • n ≤ −ath,

continuous for −ath < z • n ≤ ath,

κth > 0 for ath ≤ z • n,

κ(x, n, z, 1) := κth, ath := 1. Let a > 1 and consider

ua : [0, T ] −→ BV ∞(Ω, R) ∩ L∞(Ω, R), ua :=

{
ua(t, x) := 0 for 1 < x < 2,

ua(t, x) := −a for 0 < x < 1.
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Global Versus Local Energy Minimization -2-
Example where global minimization fails (constant body force):

x = 0

x = 2

F

x = 1

F

a}

W (x, ξ) := ξ2/2, F (t, x, z) := −t z, κ(x, n, z, 1) := κth,

ua :=

{
ua(t, x) := 0 for 1 < x < 2,

ua(t, x) := −a for 0 < x < 1.

E(t)(ua) =

∫
Γ(ua,rua)

κ(x, nΓ(ua,rua)(x), [ua](x), rua(t, x)) dH0(x)

+

∫
Ω

W
(
x,∇ua(x)

)
dx −

∫
Ω

F
(
t, x, ua(x)

)
dx

=

∫
{x=1}

κ(x, 1, a, 1) dH0(x)

+

∫
Ω

(∇ua(t, x))2/2 dx −
∫ 1

0

t a dx

= κth − t a.

Thus, for each t > 0, one has lim
a→∞

E(t)(ua) = −∞ ⇒ failure for arbitrarily small
positive load.
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Global Versus Local Energy Minimization -3-
Constant body force with local energy minimization:

x = 0

x = 2

F

x = 1

F

a}

W (x, ξ) := ξ2/2, F (t, x, z) := −t z, ath := 1,

κ(x, n, z, 1) := κth,

κ(x, n, z, 0) :=


∞ for z • n ≤ −ath,

cont. κj(z • n) for −ath < z • n ≤ ath,

κth > 0 for ath ≤ z • n.

For t ∈ [0, T ], let ue(t) : Ω −→ R, ue(t) ≤ 0, be
the solution for the “perfectly elastic” limit of the
material, i.e. ue(t) is the (global) minimizer of

Ee(t)(u) :=

∫
Ω

1

2

(
∇u(x)

)
•

(
∇u(x)

)
dx +

∫
Ω

t u(x) dx .

Consider a crack at y ∈ Ω: ue(t) + φa,b,y, where φa,b,y(x) :=

{
b for y < x < 2,

−a for 0 < x < y.
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Global Versus Local Energy Minimization -4-
Constant body force with local energy minimization:

x = 0

x = 2

F

x = 1

F

a}

uD(t)(2) := 0, W (x, ξ) := ξ2/2,

F (t, x, z) := −t z, κ(x, n, z, 0) := κj(n z),

φa,b,y(x) :=

{
b for y < x < 2,

−a for 0 < x < y,
⇒ b = 0.

φa,y := φa,0,y, ∇φa,y = 0, ∇(ue(t) + φa,y) = ∇(ue(t)).

E(t)
(
ue(t) + φa,y

)
= κj(a) +

∫
Ω

1

2

(
∇ue(t, x)

)
•

(
∇ue(t, x)

)
dx

+

∫
Ω

t
(
ue(t, x) + φa,y(x)

)
dx

= Ee(t)
(
ue(t)

)
+ κj(a)− t a y.

E(t)
(
ue(t)

)
is a local min if, and only if, κj(a)− t a y

has local min at 0.

Result: At critical t > 0, crack appears at x = 2 (the physically expected result).
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