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Griffith Theory: Drawbacks

A.A. GRIFFITH. Phil. Trans. of the Royal Soc. of London. Series A 221 (1921),
163—-198.

Experimental Evidence: Material failure occurs below theoretical value of criti-
cal stress, critical stress varies with the size and geometry of the specimen
(G.B. SINCLAIR. Appl. Mech. Rev. 57 (2004), 251-297).

o0 a0 70 Physical / Mathematical Issues: Griffith theory predicts
T T T stress singularity at crack tip:

omax = 3 09 (load acts entirely on undeformed state),
N S Omax = £ In(cosh =2 + ¢sinh 22) (load applied incre-
2 mentally),

- ey - limp_o omax = 00 IN both cases.

Omax Omax

¢ ¢ ¢ For b — 0, Griffith theory predicts its own failure: The

assumptions used in its derivation (elasticity, small de-
formations) no longer apply. lts predictions become
nonphysical.

00 0o 0o

Limited Scope: Griffith theory can not predict location of crack initiation and crack
path.
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Cohesive Forces According to Barenblatt and Sinclair

G.l. BARENBLATT. Advan. Appl. Mech. 7 (1962), 55—129.
G.B. SINCLAIR. Appl. Mech. Rev. 57 (2004), 251-297.

Qualitative proper-
I SO S G ties of the cohesive
stress-separation
law (s.: equilibrium
separation):

infinite plate with enlarged Oco
semi-infinite crack

Repulsion for
! z Se s s < S, hearly linear

Oco(T)
L O—C()(S) % ke (S - Se)
for s close to s,

then o, reaches

Qualitative picture of dependence of cohesive stress o,

‘ ‘ ‘ ¢ ‘ on the separation s. maximum and
oo vao oo 00 oo 00
gradually decays to
0 for large s.
Challenges:

(@) Compute realistic quantitative laws for o,(s) for a given material from quantum mechanics.
(b) Accounting for the nonlinear law o.,(s) can render computation of the resulting stress field
very difficult.
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Predicting Crack Initiation and Path: Francfort-Marigo Theory

G.A. FRANCFORT, J.-J. MARIGO. J. Mech. Phys. Solids 46 (1998), 1319-1342.

Goal: Formulate the problem such that the location and path of a crack, in con-
trast to Griffith theory, does not need to be described a priori, but is part of the

problem’s solution.

Mathematical setting: Op1§2

Let Q C RY, N € {1,2,3}, be a body’s un-
cracked reference configuration.

For each time ¢t € [0,7], a strained and Q
cracked configuration of the body is de-

scribed by a displacement function
u: 0 — RY together with a crack I' C .

Op 2
Example with Dirichlet boundary condi- b un o
tions: |
Prescribe u = up on some part of the boundary 02 of 2. For example up (¢, x) =
(0,0,0), upo(t, x) = (0, —t,0) (see figure).
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Quasistatic Energy Minimization

The goal is to determine u(t, x) by quasistatic energy minimization.
Quasistatic:

Assumption: There are two, decoupled time scales:

Slow Time Scale: Variation of boundary conditions and loading.

Fast Time Scale: The system instantaneously settles into an energy minimum
for each time ¢ of the slow time scale.

Quasistatic Evolution:

Find ¢t — wu(t) such that u(t) satisfies an energy balance (energy spent in crack
iIncrease must equal the work of the external forces) and has minimal energy
among all admissible displacement fields v € AD(#).

The choice for AD(t) is not obvious. Tentative choice:
AD(t) == {u € BV(Q,RY) N L>(Q,RY) : up(t) =uon dpu}.
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Allowing for Reversible Cracks -1-

For each time ¢ € |0, T, reversibility is described by a reversibility function

1 if there is an irreversible crack at z,
rQ — {0,1}, ’r(az)—{ v

0 otherwise.

Irreversibility is triggered where a crack has opened more than a threshold value
Ath -

Cracks are now defined in terms of v and r:
C(u,r) =r {1} U {z € J,: ([ul(z)) eny(z) > 0}.

Given u(t), » can be defined in terms of v as a memory function:

(t,z) 0 if ([u](t, ) ®ny,, () < ayforalls <t
Tull, L) = .
1 otherwise.
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Allowing for Reversible Cracks -2-

Due to the reversibility function, the formulation of the minimality condition at ¢
makes use of the function u already defined for times smaller than ¢:

Let v € AD(¢) be an admissible displacement field at time ¢, and let
u: [0, t}— BV (Q,RY) N L>*(Q,RY)
be given. Then u can be extended to ¢ by v:

uy o [0,8] — BV(Q,RN) N L=(Q,RY),

w(s) = {u(s) for s < t,

v for s = t¢.
Thereby, v also gives rise to a reversibility function r":

r? [0, t] — {0, 1}, 1V =1y,
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Minimality condition at time ¢

u(t) needs to satisfy

(1) u(t) € AD(t), (2) &) (uyw) < E(t)(uy) for each v € AD(?),
where the total energy is given by

E(t)(u) = E(u) — F(t)(u) + Ear(Tw, 7))

Ey(u) is the strain energy of the bulk,  &,(u) := [, W (z, Vu(z)) dx
with a suitable material function W : Q x RN — RY;

F(t)(u) is the energy due to body and surface forces;

8 (F(u r,)) is the crack energy:

= Jp sz, nr(z), [ul(x), r(2)) AR H(2),
where ke QOx SV RY x{0,1} — Ry U{oco} is a material function, describing
the material’'s toughness, nr is the unit normal vector on the crack.

The dependence on r(x) can account for crack reversibility:
Cohesive forces should play no role once the crack has become irreversible:
x depends nontrivially on the third variable if, and only if, the fourth variable is O.
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Global Versus Local Energy Minimization

Example: Global minimization fails (const. body force, F. & M. 1998, Sec. 5.2):

T =2 Q={zeR:0<ax<2}, 0pQ:={2}
up : [0,7] — L*(0p2, R), up(t)(2) =0,
W:QxR—R, W) =E/2,

=1 — F: 0T xOxR—R, Ftxz):=—tz,
jo ke Qx {—=1,1} x RY x {0,1} — R} U {00},
(oo for zen < —ay,
r=0— ¢ k(z,n,z,0) = < continuous for —ay, < zen < ay,
a ’ \lith>0 for ay, < zen,
P k(z,n,z,1) =Ky, ay:=1. Leta > 1andconsider

a ta =0 for 1 27
wa: [0,7] — BY(Q,R) N L¥O,R), 1, = {U< ) or 1 <z <
Ug

(t,z) =—a for0<az<l1.
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Global Versus Local Energy Minimization -2-
Example where global minimization fails (constant body force):
W([lﬁ, 5) = 52/27 F(ta €T, Z) = —tZ, /i([l?, n,z, 1) .— Kith,

T =2 uq(t, ) =0 forl < x < 2,
Uy =
Ug(t, ) = —a for0 <z <1.
L E(1)(u,) = / K@) (@) 0], 7 8, 2) ()
}CL Ua,Tug,
+/W(az,Vua(a:)) dx —/F(t,x,ua(az)) dx
Q Q
i e ~ [ K Lanar)
{z=1}
¢ 1
F +/(Vua(t,:1:))2/2dx —/ tadx
Q 0
E = Kip, — L a.
Thus, for each ¢t > 0, one has lim £(t)(u,) = —oo = failure for arbitrarily small
positive load.
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Global Versus Local Energy Minimization -3-
Constant body force with local energy minimization:
W<:C7€> = 52/27 F(t,ﬂf,Z) =—tz, Q= 17

v =9 k(z,n,z,1) = Ky,
)

00 for zen < —ay,

k(z,m,2,0) = < cont. kj(zen) for—ay < zen < ay,

r=1 " }CL \'%th>0 forCLthSZ.TL.
Fort € [0,T], let uc(t) : Q2 — R, ue(t) < 0, be
the solution for the “perfectly elastic” limit of the
r=0— 9 material, i.e. u.(t) is the (global) minimizer of
[
1
F Eo(t)(u) == / 5 (Vu(z)) e (Vu(z))de + / tu(z)de.
Q Q
F

b fory <z <2,

Consider a crack at y € Q: ue(t) + Pu sy Where ¢, (x) =
- —a for0<x<uy.
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Global Versus Local Energy Minimization -4-
Constant body force with local energy minimization:
up(t)(2) =0, W(z,§) =¢&/2,

7 =9 F(t,x,z):=—tz, k(x,n,z0):=kKinz2),

b fory<z<?2
a ) . — | = =0
Paby() {_a for0 <z <y,

r=1 — }a ¢a,y = ¢a,0,y> Vv Qﬁa,y = 0, V(ue(t) -+ ¢a,y) — v<ue<t))'
E(t)(ue(t) + ¢ay) = Kila) + /Q% (Vue(t,z)) o (Vue(t,z)) do
+ /Qt (ue(t, x) + qﬁa,y(az)) dx

F = E(t) (ue(t)) + kj(a) — tay.

F o E(t)(ue(t)) is alocal min if, and only if, xi(a) —tay
has local min at 0.

Result: At critical ¢ > 0, crack appears at x = 2 (the physically expected result).
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