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Applications of SiC bulk single crystals

Light-emitting diodes:

Lifetime: ≈ 10 years

Light extraction efficiency> 32 %

(light bulb:≈ 10 %)

Blue laser:

Its application in the DVD player

admits up to 10-fold capacity of disc

SiC-based electronics still works

at 600 deg. Celsius,

SiC sensors placed close to car

engines can save resources and costs
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SiC growth by physical vapor transport (PVT)
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› polycrystalline SiC powder sub-

limates inside induction-heated

graphite crucible at 2000 – 3000

K and ≈ 20 hPa

› a gas mixture consisting of Ar

(inert gas), Si, SiC2, Si2C, . . . is

created

› an SiC single crystal grows on a

cooled seed



Problems:

› Needed: Perfect single crystals as large and as quick as

possible (currently: ∅ 5 – 10 cm, one growth run: 2 – 3

days)

› High energy costs, high costs for apparatus replacement

(every 10 runs)

› Wrong control parameters (setup, position of induction

coil, heating power) ⇒ (costly !) failure of growth run

› High temperatures prevent measurements inside growth

apparatus⇒ experimental optimization of process is dif-

ficult and costly

HHj

HHj

Goal:

Stationary and transient optimal control of process, using mathematical modeling,

numerical simulation.
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Model includes

1. Heat conduction in gas, graphite, powder, crystal

2. Radiative heat transfer between cavities (nonlocal integral operators)

3. Semi-transparency of crystal (band model)

4. Induction heating (Maxwell’s equations)

5. Mass transport in gas, powder, graphite (Euler equations, porous media equations,

. . . )

6. Chemical reactions in gas (reaction-diffusion equations)

7. Crystal growth, sublimation of source powder, decomposition of graphite walls

(multiple free boundaries)



Model of the gas phase

Continuous mixture theory and material laws (ideal gas etc.) yield:

› Mass balance:
∂ρgas

∂t
+ div (ρgasvgas) = 0. (1a)

› Momentum balance:

∂ (ρgasvgas)
∂t

+ div (pgas1) = ρgasg, (1b)

pgas = R ρgas Tgas

A∑
ι=1

c(αι)

M (αι)
.

t: time, R: universal gas constant, g: gravimetric acceleration.

Quantities in the gas mixture:

ρgas: mass density, vgas: local mean velocity, pgas: pressure, Tgas: absolute

temperature.

Quantities in the gas component αι:

c(αι): concentration, M (αι): molecular mass.



› Energy balance:

∂

∂t
(ρgasεgas) + div (ρgasεgasvgas + qgas + pgasvgas) = ρgasg • vgas, (1c)

εgas = R Tgas

A∑
ι=1

z(αι)
c(αι)

M (αι)
,

qgas = −κgas∇Tgas

−R2 ρgas Tgas

A∑
ι=1

c(αι)
(
z(αι) + 1

)
(
M (αι)

)2 ·
(
D(αι)

)−1

∇
(
ρgasc

(αι) Tgas

)

+ R2 ρgas Tgas

A∑

ι,ι′=1

(
c(αι)

)2 (
z(αι) + 1

)

M (αι)M (αι′ )
·
(
D(αι)

)−1

∇
(
ρgas Tgasc

(αι′ )
)

.

Quantities in the gas mixture:

εgas: internal energy, qgas: heat flux, κgas: thermal conductivity.

Quantities in the gas component αι:

z(αι): configuration number, D(αι): diffusion coefficient.



› Reaction-diffusion equations (ι ∈ {1, . . . , A}):

d c(αι)

dt
− 1

ρgas
div

(
ρgasc

(αι)
(
D(αι)

)−1

·
(
∇ ρgasc

(αι)
R

M (αι)
Tgas − c(αι)∇ pgas

))

=
1

ρgas

n∑
a=1

γ(αι)
a M (αι)M (H)Λa.

(1d)

γ
(αι)
a : stoichiometric coefficients,

H: hydrogen,

Λa: rates of chemical reactions and phase transitions.



Nonlinear heat conduction in solid material βj , j ∈ {1, . . . , N}

ρ[βj ]c[βj ]
sp

∂T [βj ]

∂t
+ div q[βj ] = f [βj ], (2a)

q[βj ] = −κ[βj ]∇T [βj ], (2b)

ρ[βj ]: mass density,

c
[βj ]
sp : specific heat,

T [βj ]: absolute temperature,

q[βj ]: heat flux,

κ[βj ]: thermal conductivity,

f [βj ]: power density of heat sources (induction heating).



Interface conditions

Continuity of the heat flux:

Between solid materials:

(κ[β]∇T ) • n[β] = (κ[β′]∇T ) • n[β] onγβ,β′ . (1a)

Between gas and solid:

(κ(Ar)∇T ) • ngas +R −J = (κ[β]∇T ) • ngas onγβ,gas. (1b)

n[β]: outer unit normal w.r.t. solidβ, ngas: outer unit normal w.r.t. gas phase,

R: radiosity, J : irradiation.

Continuity of temperature throughout apparatus.



Outer boundary conditions

Emission according to Stefan-Boltzmann law:

−
(
κ[β]∇T

)
• n[β] = σε[β](T ) · ( T 4 − T 4

room

)
, (2)

ε: emissivity , σ: Boltzmann radiation constant,

Troom = 293 K.

On surfaces of open cavities:

−(κ[β]∇T ) • n[β] −R + J = 0. (3)
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Model of diffuse-gray radiation

Goal: ComputeR− J .

Assumption: Solid is opaque; reflection and emittance are independent of the angle of

incidence and of the wavelength.

At each point of the surfaceΣ of the gas cavity:

R = E + Jr, (4)

E: emitted radiation,Jr: reflected radiation.

Stefan-Boltzmann law:

E(T ) = σ ε(T ) T 4, (5)

σ: Boltzmann radiation constant,ε: emissivity of the solid surface.

Opaqueness and Kirchhoff’s law:

Jr = (1− ε)J. (6)



Model of diffuse-gray radiation (2)

Diffuseness yields:

J(T ) = K(R(T )), (7)

where

K(ρ)(x) :=
∫

Σ

Λ(x, y)ω(x, y) ρ(y) dy (a.e.x ∈ Σ), (8)

Λ(x, y) =





1 x andy are mutually visible,

0 otherwise,
(9)

ω(x, y) :=

(
ng(y) · (x− y)

) (
ng(x) · (y − x)

)

π
(
(y − x) · (y − x)

)2

(
a.e.(x, y) ∈ Σ2, x 6= y

)
. (10)



Model of diffuse-gray radiation (3)

Combining (4) – (7) provides nonlocal equation forR(T ):

R(T )− (
1− ε(T )

)
K(R(T )) = σ ε(T )T 4. (11)

One can write (11) in the form

GT (R(T )) = E(T ), (12)

where the operatorGT is defined by

GT (ρ) := ρ− (
1− ε(T )

)
K(ρ). (13)

Lemma:GT is invertible. Thus:

R(T ) = G−1
T (E(T )). (14)

Combining (11) and (7):

R(T )− J(T ) = −ε(T )
(
K(R(T ))− σ T 4

)
. (15)



Modeling Semi-Transparency

To model thesemi-transparencyof the SiC-crystal, a two band model is used, i.e. it is

assumed that a rangeIrefl of wavelengths exists such that

• the crystal emits only lightwaves with wavelengths inIrefl,

• lightwaves with wavelengths inIrelf are reflected or absorbed at the surface of the

SiC–crystal,

• lightwaves with other wavelengths cross the crystal unaffected.

The contributions to the power density fromIrefl andR+ \ Irefl are then computed

analogously to the opaque case.
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Modeling induction heating

Assumptions:

› Cylindrical symmetry

› Sinusoidal time dependence

› No surface currents

› The gas phase is perfectly insulating

› All solids are possibly conducting materials

› Given total voltage in the induction coil:

V (t) = V0 sin(ωt).



Heating mechanism:

alternating voltage ⇒ alternating current

⇒ alternating magnetic field

⇒ eddy currents

⇒ heat sources (Joule effect)

Goal: Computation of heat source distribution



Voltage inside coil rings:

› Replace coil by N axisymmetric rings

› Voltage in the k-th ring: vk(t) = Im(vkeiωt).

› Decomposition of total voltage:

N∑

k=1

vk = V0. (9)

Heat sources:

µ(r, z) =
|j(r, z)|2
2 σ(r, z)

, (10)

µ: power density (per volume) of heat sources,

j: current density,

σ: electrical conductivity,

(r, z): cylindrical coordinates.



Magnetic scalar potential:

There exists a complex-valued magnetic scalar potential φ such that

j =




−iω σ φ + σ vk

2πr (inside k-th ring),

−iω σ φ (other conductors).
(11)

Elliptic system of PDEs for φ:

› In insulators:

−ν div
∇(rφ)

r2
= 0. (12a)

› In the k-th coil ring:

−ν div
∇(rφ)

r2
+

i ωσφ

r
=

σ vk

2πr2
. (12b)

› In other conductors:

−ν div
∇(rφ)

r2
+

i ωσφ

r
= 0. (12c)



› Interface condition: Between material1 and material2:
(νmaterial1

r2
∇(rφ)material1

)
• nmaterial1

=
(νmaterial2

r2
∇(rφ)material2

)
• nmaterial1 .

(12d)

› Outer boundary condition:

φ = 0. (12e)

› φ is assumed to be continuous everywhere.

ν: magnetic reluctivity,

nmaterial1 : outer unit normal w.r.t. material1.



Current inside coil rings:

For each solution φ of (12), the corresponding total current inside the k-th coil ring is

jk(vk, φ) =
vk

2π

∫

Ωk

σ

r
drdz − iω

∫

Ωk

σφ drdz , (13)

Ωk: domain of (circular) 2d-projection of the k-th coil ring.

Equal total current in each ring:

› As the rings must approximate a single connected coil:

jk(vk, φ) = jk+1(vk+1, φ), k ∈ {1, . . . , N − 1}. (14)

The vk must satisfy the linear system consisting of (9) and (12) – (14).

› Scaling of solution (φ,v1, . . . ,vN ) admits prescribing the total power.
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Discretization of heat equation: finite volume method

Recall form of heat equation forT :

∂εm(T, x)
∂t

− div
(
κm(T )∇T

)− fm(T, t, x) = 0 on [0, tf ]× Ωm.

Time discretization byimplicit Euler scheme:

0 = t0 < · · · < tN = tf , N ∈ N,

kn := tn − tn−1,

∆ := max{kn : n = 1, . . . , N}.



Space discretization:Ω :=
⋃

m Ωm is discretized intocontrol volumesusing aconstraint

Delaunay triangulation.

∂Ω

Ω

(a)

α

(b)

βα

Figure 1: (a): Violates constrained Delaunay criterion. (b): Violates constrained Delaunay

criterion if and only if dashed line constitutes not only a common edge of two triangles,

but also an interface between different domainsΩm1 andΩm2 .



Let V denote the set of vertices of the constraint Delaunay triangulation. For eachv ∈ V

define theVoronöı boxcentered atv:

ωv :=
{
x ∈ Ω : ‖x− v‖2 < ‖x− w‖2 for eachw ∈ V \ {v}}.

For eachm, v: ωm,v := ωv ∩ Ωm.

Then:Ωm =
⋃

v∈Vm
ωm,v, whereVm := V ∩ Ωm,

Notation:λ2 andλ1: 2-dimensional and 1-dimensional Lebesgue measure,

nbm(v) := {w ∈ Vm \ {v} : λ1(ωm,v ∩ ωm,w) 6= 0}: set ofm-neighbors ofv.



Finite volume scheeme in cylindrical coordinates:

Find nonnegative solution(T0, . . . ,TN ), Tn = (Tn,v)v∈VΩ , to

T0,v = Troom (v ∈ VΩ),

Hn,v(Tn−1,Tn) = 0 (v ∈ VΩ, n ∈ {1, . . . , n}),

where for eachn ∈ {1, . . . , n}:

Hn,v(Tn−1,Tn)

:= k−1
n

∑
m

(
εm(Tn,v, v)− εm(Tn−1,v, v)

) · vr · λ2(ωm,v)

−
∑
m

∑

w∈nbm(v)

κm(Tn,v) · vr + κm(Tn,w) · wr

2
· Tn,w − Tn,v

‖v − w‖2 · λ1

(
ωm,v ∩ ωm,w

)

+
∑
m

σ εm(Tn,v) · (T 4
n,v − T 4

room) · vr · λ1(∂ωm,v ∩ ∂Ω)

−
∑
m

fm(Tn,v, tn, v) · vr · λ2(ωm,v).



Theorem:

Assume (i) – (iv):

(i) εm ≥ 0, κm ≥ 0, εm ≥ 0, andf(0, t, x) ≥ 0.

(ii) εm(·, x) is increasing, and there isL > 0 such that

|εm(T, x)− εm(T̃ , x)| ≥ L |T − T̃ | for eachx ∈ Ωm.

(iii) κm, εm, andfm are locally Lipschitz in theirT -dependence.

(iv) fm is bounded from above.

Then there isM > 0 (independent of the time discretization) and∆M such that, for

∆ < ∆M , the finite volume scheme has a unique solution

(T0, . . . ,TN ) ∈ (
[0,M ]VΩ

)N+1
.
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The software WIAS-HiTNIHS

(HighTemperatureNumericalInductionHeatingSimulator)

Developers: J̈urgen Geiser, Olaf Klein (WIAS)

Christian Meyer (TU Berlin)

Peter Philip (IMA)

Cooperation with: Institute of Crystal Growth (IKZ) Berlin

Purpose:

• Transient simulation of induction-heated systems

• Systematic study and optimization of control parameters such as

– Geometrical setup of apparatus

– Positioning of induction coil

– Heating power



Simulated phenomena

› Axisymmetric heat source distribution

– Sinusoidal alternating voltage

– Correct voltage distribution to the coil rings

– Temperature-dependent electrical conductivity

› Axisymmetric temperature distribution

– Heat conduction through gas phase and solid components of growth apparatus

– Non-local radiative heat transport between surfaces of cavities

– Radiative heat transport through semi-transparent materials

– Convective heat transport



Numerical models and methods

› Induction heating:

– Determination of complex scalar magnetic potential from elliptic partial

differential equation

– Calculation of heat sources from potential

› Temperature field:

– View factor calculation

– Band model of semi-transparency

– Solution of parabolic partial differential equation



Discretization and implementation

• Implicit Euler method in time

• Finite volume method in space

– Constraint Delaunay triangulation of domain yields Voronoı̈ cells

– Full upwinding for convection terms

– Complicated nonlinear system of equations

– Solution by Newton’s method

• Implementation tools:

– Program packagepdelib

– Grid generatorTriangle

– Matrix solverPardiso
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Computed temperature differences between top and bottom:Pmax = 7 kW
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Computed temperature differences between top and bottom:Pmax = 5.5/8.5 kW

(lower coil position in both cases)
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Computed temperature evolution of the powder charge:Pmax = 7 kW
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Project C9 Aims of the project

Improving the crystal’s growth by controlling suitable parameters to reach a desired

temperature profile

But: Complete problem is too

complex for theoretic analysis.

⇒ Two-fold strategy:

1. Mathematical analysis for a

simplified model

2. Numerical optimization of a

comprehensive model relevant to

application

Simplified

Numerical Extension of the 

problem

analysis

algorithms algorithms

Optimal control of sublimation growth

Complex problem 
close to application

Optimization

model

of SiC bulk single crystals

Optimal control 

Center Days 2004



Project C9 Simplified model

Optimal control problem for the heat equation with non-local radiation boundary

conditions:

0

0.5

1

1.5

2

0 0.5 1 1.5 2

ΓΓ

Ωs

Ωr g 0

minimize
1

2

∫

Ωg

|∇y − z|2 dx +
ν

2

∫

Ωs

u2 dx

subject to −div(κ∇y) = u in Ω

κg

(

∂y

∂nr

)

g

− κs

(

∂y

∂nr

)

s

= G(σ|y|3y) on Γr

κs

∂y

∂n0

= εσ(y4

a
− |y|3y) on Γ0

(G: non-local radiation operator)

1

• Existence of an optimal solution and necessary optimality conditions in the

semilinear case with pointwise control constraints

• Regularization technique for the linear case with pointwise state constraints

Center Days 2004



Stationary optimal control problem for the temperature field

Known fact: Crystal surface forms along isotherms.

Goal: Radially constant isotherms during growth.

Control:
∫

Ωgas

w(z)
(∂T

∂r
(r, z)

)2

d(r, z) −→ min.

PDEs (vgas = 0, f(x, T, P ) = f(x, P )):

− div
(
κ(Ar)(T )∇T

)
= 0 in Ωgas,

− div
(
κ(x, T )∇T

)
= f(x, P ) in Ω \ Ωgas.

Constraints:

› Troom ≤ T ≤ Tmax in Ω,

› Tmin,SiC-C ≤ T ≤ Tmax,SiC-C on ΓSiC-C (need right polytype),

› T |ΩSiC-S ≥ T |ΓSiC-C + δ, δ > 0 (source temp. ≥ seed temp. +δ),

› 0 ≤ P ≤ Pmax (bounds for heating power P (control parameter)).

ΓSiC-C

Ωgas

ΩSiC-S



(a): T (P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)

SiC crystal

SiC powder

3002 K
3007 K

3012 K

3022 K
3042 K

(b): T (P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz), Nelder-Mead res. for Fr,2(T )

SiC crystal

SiC powder

2304 K

2314 K

2334 K

(c): T (P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz), Nelder-Mead res. for Fr,2(T )−Fz,2(T )
2

SiC crystal

SiC powder

2299 K

2304 K

2314 K

2324 K

2364 K



Thank You for Your Attention !

Once Again: Publications / More Information:

http://www.ima.umn.edu/˜philip/sic/#Publications

http://www.ima.umn.edu/˜philip/sic/




