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SiC growth by physical vapor transport (PVT)
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• polycrystalline SiC powder sublimates inside

induction-heated graphite crucible at 2000 – 3000 K

and≈ 20 hPa

• a gas mixture consisting of Ar (inert gas), Si, SiC2,

Si2C, . . . is created

• an SiC single crystal grows on a cooled seed



Goal:

Stationary and transientoptimal controlof process, using

mathematical modeling, numerical simulation.

Heat Transport Model

Nonlinear heat conduction in materialj:

∂εj

∂t
+ div qj = fj , qj = −κj ∇T,

εj : internal energy, T : absolute temperature,

qj : heat flux, κj : thermal conductivity,

fj : power density of heat sources (induction heating).

Interface Conditions

Continuity of the heat flux:

Between solids:qj1 • nj1 = qj2 • nj1 onγj1,j2 .

Between gas and solidj:

qgas • ngas−R+J = qj • ngas onγj,gas,

nj , ngas: outer unit normal,R: radiosity, J : irradiation.

Continuity of temperature throughout apparatus.



Outer Boundary Conditions

Emission according to Stefan-Boltzmann law:

− (κj ∇T ) • nj = σεj(T )
(
T 4 − T 4

room

)
,

εj : emissivity, Troom = 293 K.

On surfaces of open cavities:

qj • nj −R + J = 0.



Crystal Growth and Source Sublimation

Consider the crystal surface; the modeling at the source’s

surface proceeds analogous.

• Step 1:Assume growth istransport-limited, neglect

growth kinetics: The “SiC-gas” pressurepSiC-gasat the

surface is identical to the corresponding equilibrium

pressurepeq
crystal.

• Step 2:Include growth kineticsvia aHertz-Knudsen

formula:

mass flux from gas to crystal

=
scrystal M

1/2
SiC

(2πRT )1/2

(
pSiC-gas− peq

crystal

)
,

scrystal: probability of colliding molecule to be

absorbed by surface,MSiC: molar mass,R: universal

gas constant,T : absolute Temperature.

• Step 3:Include chemical reactions: “SiC-gas” actually

consists of Si, SiC2, Si2C, Si2, etc.Mass action laws

yield relations between the different partial pressures



in the equilibrium, e.g. for

2SiC−→ Si + SiC2,

SiC+ Si−→ Si2C,

SiC+ Si2 −→ Si2C + Si

involving solid SiC and some gas species:

pSi pSiC2 = KI(T ),

pSi2C

pSi
= KII(T ),

pSi2C pSi

pSi2
= KIII(T )

with appropriate functionsKI, KII, andKIII.

• Step 4:Formulate mass action laws forreactions

changing the composition of the surface.

• Step 5:Model thekinetics of the chemical reactions.



Modeling Induction Heating

Assumptions:Axisymmetry, sinusoidal time dependence.

Then acomplex magnetic scalar potentialφA exists such

that the heat sources are:

µ =
σω2

2
|φA|2,

σ: electrical conductivity,ω: frequency of imposed

voltage.φA is determined from complex, elliptic PDEs:

In insulators:

∂r

(ν

r
∂r(rφA)

)
+ ∂z (ν∂zφA) = 0,

in conductors:

−∂r

(ν

r
∂r(rφA)

)
− ∂z (ν∂zφA) + iωσφA =

σ

2πr
V,

ν: reciprocal of magnetic permeability,i: imaginary unit,

V : imposed voltage (non-zero only in coil rings).

φA and its flux are continuous at interfaces,φA vanishes on

outer boundaries.

Thecorrect voltage distribution to the coil ringsis

determined from a linear system.



Stationary optimal control problem for the temperature

field

Known fact: Crystal surface forms along isotherms.

Goal: Radially constant isotherms during growth.

Control:
R

Ωgas

w(z)
ş∂T

∂r
(r, z)

ť2

d(r, z) −→ min.

PDEs(vgas = 0, f(x, T, P ) = f(x, P )):

− div
ą
κ(Ar)(T )∇T

ć
= 0 in Ωgas,

− div
ą
κ(x, T )∇T

ć
= f(x, P ) in Ω \ Ωgas.

Constraints:

• Troom ≤ T ≤ Tmax in Ω,

• Tmin,SiC-C ≤ T ≤ Tmax,SiC-C on ΓSiC-C (need right

polytype),

• T ¹ΩSiC-S≥ T ¹ΓSiC-C +δ, δ > 0 (source temp.≥ seed

temp.+δ),

• 0 ≤ P ≤ Pmax (bounds for heating powerP (control

parameter)).

ΓSiC-C

Ωgas

ΩSiC-S



Numerical results: Optimization of temperature field

(a): T (P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)
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(b): T (P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz)
Nelder-Mead res. forFr,2(T )

SiC crystal

SiC powder

2304 K

2314 K
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(c): T (P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz),
Nelder-Mead res. forFr,2(T )−Fz,2(T )
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