Remnants from the Bookshelf

cropped up again in jww Silvia Steila

Gerhard Jäger

Institute of Computer Science University of Bern

ABM - December - 2017

White spots within a basically known area

$$\Gamma_0$$

Bachmann-Howard ordinal

$$\Pi_1^1$$
-CA + (BI)

$$\Delta_2^1$$
-CA + (BI)

$$\Pi_2^1$$
-CA + (BI)

The general framework

The languages \mathcal{L}_1 and \mathcal{L}^{\star}

- \mathcal{L}_1 : a standard language of first order arithmetic with a constant \overline{m} for every natural number m and an n-ary relation symbol $R_{\mathcal{Z}}$ for every n-ary primitive recursive relation \mathcal{Z} ; we write 0 for $\overline{0}$.
- $\mathcal{L}^{\star} := \mathcal{L}_1(N, S, Ad, \in)$
 - ▶ N a constant for the set of the natural numbers,
 - ▶ S a unary relation symbol to say that an object is a set.
 - ▶ Ad a unary relation symbol to say that an object is an admissible set.
- Δ_0 , Σ_n , Π_n , Σ , and Π formulas of \mathcal{L}^* defined as usual.
- A^b is the relativization of formula A to set b.

Systems of basic set theory BS⁰ and BS

Number-theoretic axioms of BS⁰

- (N.1) A^N for every closed axiom A of PA.
- $(N.2) \ 0 \in a \land (\forall x, y \in N)(x \in a \land R_{\mathcal{S}}(x, y) \rightarrow y \in a) \rightarrow N \subseteq a.$

Ontological axioms of BS⁰.

- (0.1) $S(a) \leftrightarrow a \notin N$.
- (0.2) $a \in N \rightarrow b \notin a$.
- $(0.3) \ 0 \in N.$
- (0.4) $R_{\mathcal{Z}}(a_1,\ldots,a_n) \rightarrow a_1,\ldots,a_n \in \mathbb{N}$.

Set-theoretic axioms of BS⁰.

- (S.1) Pair: $\exists x (a \in x \land b \in x)$.
- (S.2) Union: $\exists x (\forall y \in a) (\forall z \in y) (z \in x)$.
- (S.3) Δ_0 separation (Δ_0 -Sep): for all Δ_0 formulas $\varphi[y]$,

$$\exists x (x = \{y \in a : \varphi[y]\}).$$

 $BS := BS^0$ plus full induction on N and full \in -induction, i.e.

$$\forall x((\forall y \in x)\varphi[y] \rightarrow \varphi[x]) \rightarrow \forall x\varphi[x]$$

for all formulas $\varphi[x]$ of \mathcal{L}^* .

Theories for admissible sets

The schema of Δ_0 collection

For all Δ_0 formulas $\varphi[x,y]$ of \mathcal{L}^* :

$$(\forall x \in a) \exists y \varphi[x, y] \ \to \ \exists z (\forall x \in a) (\exists y \in z) \varphi[x, y]. \tag{Δ_0-Col}$$

KPu⁰ and KPu

$$\mathsf{KPu}^0 \; := \; \mathsf{BS}^0 + (\Delta_0\text{-}\mathsf{Col}),$$

$$\mathsf{KPu} \; := \; \mathsf{BS} + (\Delta_0\mathsf{-Col}).$$

Theorem (Jä)

$$KPu^0 \equiv PA$$
 and $KPu \equiv ID_1$.

Adding admisible sets

Ad-axioms

$$(Ad.1)$$
 $Ad(d) \rightarrow N \in d \land Tran[d]$.

$$(Ad.2) \ Ad(d_1) \land Ad(d_2) \rightarrow d_1 \in d_2 \lor d_1 = d_2 \lor d_2 \in d_1.$$

(Ad.3) For any closed instance of an axiom φ of KPu,

$$Ad(d) \rightarrow \varphi^d$$
.

Remark. The Ad-axioms do not imply the existence of admissible sets. However, this is achieved by the limit axiom (Lim):

$$\forall x \exists y (x \in y \land Ad(y)).$$

KPI⁰, KPI, KPi⁰, KPi

$$\mathsf{KPI}^0 := \mathsf{BS}^0 + \mathsf{Ad}\text{-axioms} + (\mathsf{Lim}),$$
 $\mathsf{KPI} := \mathsf{BS} + \mathsf{Ad}\text{-axioms} + (\mathsf{Lim}),$
 $\mathsf{KPi}^0 := \mathsf{KPu}^0 + \mathsf{Ad}\text{-axioms} + (\mathsf{Lim}),$
 $\mathsf{KPi} := \mathsf{KPu} + \mathsf{Ad}\text{-axioms} + (\mathsf{Lim}),$

Theorem (Jä)

$$\begin{split} \mathsf{KPI^0} \; &\equiv \; \mathsf{KPi^0} \; \equiv \; \mathsf{ATR_0}, \\ \mathsf{KPI} \; &\equiv \; \Pi_1^1\text{-CA} + \big(\mathsf{BI}\big), \\ \mathsf{KPi} \; &\equiv \; \Delta_2^1\text{-CA} + \big(\mathsf{BI}\big). \end{split}$$

The role of Δ_1 separation

The schema of Δ_1 separation

For any Σ_1 formula $\varphi[x]$ and Π_1 formula $\psi[x]$ of \mathcal{L}^* ,

$$(\forall x \in a)(\varphi[x] \leftrightarrow \psi[x]) \rightarrow \exists y(y = \{x \in a : \varphi[x]\}).$$
 (Δ_1 -Sep)

We know:

- (i) $(\Delta_1$ -Sep) is provable in KPu⁰.
- (ii) Jensen, cf. Barwise: α is admissible if and only if α is a limit ordinal and L_{α} satisfies (Δ_1 -Sep).

Conjecture/Theorem

$$\mathsf{BS}^0 + (\Delta_1\text{-}\mathsf{Sep}) \equiv \Delta_1^1\text{-}\mathsf{CA}_0$$
 and $\mathsf{BS} + (\Delta_1\text{-}\mathsf{Sep}) \equiv \Delta_1^1\text{-}\mathsf{CA}.$

Question

- Is there a natural way to formalize something like (V=L) in the theory BS + $(\Delta_1$ -Sep)?
- And if so, does it affect the proof-theoretic strength of this theory?

Σ and Π reduction

Definition

Let \mathfrak{F} be a collection of formulas of \mathcal{L}^{\star} and $\neg \mathfrak{F}$ the collection of its duals. Then the axioms schema (\mathfrak{F} -Red) of \mathfrak{F} reduction consists of all formulas

$$(\forall x \in a)(\varphi[x] \to \psi[x]) \to \exists y(\{x \in a : \varphi[x]\} \subseteq y \subseteq \{x \in a : \psi[x]\}),$$

where $\varphi[x]$ is from $\neg \mathfrak{F}$ and $\psi[x]$ from \mathfrak{F} .

Conjecture/Theorem

- $\bullet \ \mathsf{BS}^0 + (\Sigma\operatorname{\!-Red}) \ \equiv \ \Sigma_1^1\operatorname{\!-AC}_0 \quad \text{and} \quad \mathsf{BS} + (\Sigma\operatorname{\!-Red}) \ \equiv \ \Sigma_1^1\operatorname{\!-AC}.$
- \bullet BS⁰ + (Π -Red) \equiv ATR₀ and BS + (Π -Red) \equiv ATR.

Question

Clearly, KPu^0 proves (Σ -Red). But what can we say about

$$KPu^0 + (\Pi-Red)$$
 and $KPu + (\Pi-Red)$?

It is clear that

$$\begin{split} \mathsf{KPu}^0 + \big(\Pi\text{-Red}\big) \; \subseteq \; \mathsf{KPu}^0 + \big(\Sigma_1\text{-Sep}\big), \\ \\ \mathsf{KPu} + \big(\Pi\text{-Red}\big) \; \subseteq \; \mathsf{KPu} + \big(\Sigma_1\text{-Sep}\big). \end{split}$$

Adding principles of second order arithmetic

Canonical embedding of \mathcal{L}_2 into \mathcal{L}^* .

Language \mathcal{L}_2 of second order arithmetic embedded into \mathcal{L}^\star by translating

$$\exists n(\ldots)$$
 into $(\exists n \in \mathbb{N})(\ldots)$ and $\forall n(\ldots)$ into $(\forall n \in \mathbb{N})(\ldots)$, $\exists X(\ldots)$ into $(\exists x \subseteq \mathbb{N})(\ldots)$ and $\forall X(\ldots)$ into $(\forall x \subseteq \mathbb{N})(\ldots)$.

Theorem

- 2 KPi $\equiv \Delta_2^1$ -CA + (BI).

Question

What is the strength of KPu + $(\Pi_1^1$ -CA)?

Arithmetic operator forms

Arithmetic formulas (in their translation into \mathcal{L}^{\star}) of the form

$$\mathfrak{A}[X^+, n],$$

possibly with additional set and number parameters. We set

$$Fix_{\mathfrak{A}}[\mathsf{N},x] := x \subseteq \mathsf{N} \wedge (\forall n \in \mathsf{N})(n \in x \leftrightarrow \mathfrak{A}[x,n]).$$

Arithmetic fixed point axioms

Let $\mathfrak{A}[X^+, n]$ be an arithmetic operator form.

$$\exists x Fix_{\mathfrak{A}}[\mathsf{N}, x], \qquad (\Pi_{\infty}^{0} - \mathsf{FP})$$

$$\exists x (Fix_{\mathfrak{A}}[N,x] \land \forall y (Fix_{\mathfrak{A}}[N,y] \to x \subseteq y)), \qquad (\Pi_{\infty}^{0}\text{-LFP})$$

Questions

- Is $KPu^0 + (\Pi_{\infty}^0 FP)$ is proof-theoretically equivalent to ATR₀?
- ② What is the proof-theoretic strength of KPu + $(\Pi^0_{\infty}$ -FP)?
- **3** What is the proof-theoretic strength of KPu + $(\Pi_{\infty}^0$ -LFP)?

Subset-bounded separations

$\Pi_1^{\mathcal{P}}$ separation $(\Pi_1^{\mathcal{P}}\text{-Sep})$

For any Δ_0 formula $\varphi[x, y]$ and any a:

$$\exists z(z = \{x \in a : (\forall y \subseteq a)\varphi[x, y]\}).$$

$\Pi_1^{\mathcal{P}}(\Delta_1)$ separation $(\Pi_1^{\mathcal{P}}(\Delta_1)\text{-Sep})$

For every Σ_1 formula $\varphi[x,y]$, every Π formula $\psi[x,y]$,and any a:

$$\forall x, y(\varphi[x, y] \leftrightarrow \psi[x, y]) \rightarrow \exists z(z = \{x \in a : (\forall y \subseteq a)\varphi[x, y]\}).$$

Questions

- What is the exact relationship between KPu + $(\Pi_1^1$ -CA) and KPu + $(\Pi_1^{\mathcal{P}}$ -Sep)?
- **②** What is the exact relationship between $KPu + (\Pi_1^{\mathcal{P}}\text{-Sep})$ and $KPu + (\Delta_0\text{-LFP})$?
- **3** Is $(\Delta_2^1$ -CA) provable in KPu + $(\Pi_1^{\mathcal{P}}(\Delta_1)$ -Sep)?

Thank you for your attention!