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Abstract. Rijke has given a type-theoretic formulation of the Yoneda
lemma and a proof of it from Martin-Löf’s J-rule and the function ex-
tensionality axiom. Escardó has derived the J-rule from Rijke’s type-
theoretic formulation of the Yoneda lemma. Here we give a Yoneda
lemma-formulation of Voevodsky’s axiom of univalence. Based on the
work of Escardó, and applying Coquand’s technique of reducing the J-
rule to the transport and the contractibility of singleton types, we derive
the univalence axiom from its Yoneda lemma-formulation.

1 Introduction

The univalent perspective on the foundations of mathematics, which was based
on the homotopic interpretation of Martin-Löf’s intensional type theory1 (ITT)
by Voevodsky in [18], Awodey and Warren in [2], and was inspired by Hof-
mann and Streicher’s groupoid interpretation of ITT in [8], reinforced the type-
theoretic approach to the subject and brought mathematics and computer sci-
ence even closer.

Univalent type theory (UTT) is the extension of ITT with Voevodsky’s ax-
iom of univalence (UA), the most important univalent concept, that reflects the
standard mathematical practice of identifying isomorphic objects. According to
UA, an equivalence between two types generates a proof of their equality. The
converse, i.e., the generation of an equivalence between two types from a proof
of their equality, follows easily from Martin-Löf’s J-rule, the induction principle
that corresponds to the inductive definition of equality between the terms of a
type, as a new type2.

1 See e.g., [11], [12] and [13]. The canonicity property of ITT i.e., the fact that every
closed term of the type of natural numbers is reduced to a numeral, makes ITT a
programming language. As it is mentioned in [6], this is “a major compelling aspect
of ITT compared to non-constructive foundations such as set theory”.

2 One of the key-features of ITT is the use of two kinds of equality for the terms a, b
of a type A. The definitional, or judgmental equality a ≡ b expresses that a and b
are by definition equal, while the propositional equality a =A b, or simpler a = b, is
a new type, and every term p : a =A b is interpreted as a “proof” that a and b are
propositionally equal. Through the “rough” homotopic interpretation of ITT, p is a
“path” from the point a to point b in the “space” A.
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It is well-known that proofs and computations in constructive mathematics
rely heavily on the choice of representations. The univalence axiom allows one
to identify equivalent definitions and hence makes program and data refinement
possible3. Moreover, it implies function extensionality4, and shapes the theories
of higher inductive types (HITs), of homotopy n-types and of categories within
the univalent framework5.

Originally, UA was motivated by the classical model of simplicial sets, devel-
oped in [10]. The computational interpretation of UA in cubical sets in [3] is a
milestone in the development of the univalent foundations. Types in the cubi-
cal model are interpreted as cubical sets, and terms of types, including equality
proofs, as n-dimensional cubes (points, lines, squares, cubes etc.). There is also
a so-called glueing operation that allows to yield paths from equivalences, and
hence proves the univalence axiom. Based on this model, an extension of ITT is
formed, which is called cubical type theory (CTT), as every type has a “cubical”
structure6.

The central role of UA in the univalent foundations of mathematics and the
current position of the univalent foundations in logical studies raises naturally
the following question: how one can explain the central role of UA in categorical
terms?

Here, we try to answer this question providing a Yoneda-lemma formulation
of UA. In [15] Rijke gave a type-theoretic formulation of Yoneda lemma and
proved it from the J-rule and the function extensionality axiom. In [7] Escardó
took Rijke’s type-theoretic formulation of Yoneda lemma as primitive and proved
the J-rule from it, so that its computation rule holds definitionally. The main
results included here are the following.

1. We give a Yoneda lemma-formulation (sY-UA) of Voevodsky’s UA. Although,
in contrast to Voevodsky’s formulation of UA, the computation rules of sY-UA
hold definitionally, we could have formulated (sY-UA) using propositional
equality instead.

2. Based on the work of Escardó, and applying Coquand’s technique of reducing
the J-rule to the transport and the contractibility of singleton types, we

3 For example, as it is mentioned in the Git repository of the Haskell implementation of
cubical type theory (https://github.com/mortberg/cubicaltt), computing is instant
for the binary representation of natural numbers, but very time-consuming for the
unary representation of a large number. Consequently, proof-checking for large unary
numbers is almost impossible. By defining a doubling structure, one can transport
a proof from binary to unary numbers, where checking the transported proof for
unary numbers is also instant.

4 According to it, the pointwise equality of two functions generates a proof of their
equality. Function extensionality is not provable in ITT.

5 All these theories are developed in [17]. HITs generalize inductive types, allowing
constructors to produce not only elements of the type, but also paths and higher
paths i.e., elements of the iterated equality types. Homotopy type theory (HoTT)
is, roughly speaking, UTT extended with HITs.

6 As shown in [9], CTT also satisfies the canonicity property.
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prove from sY-UA the principle of equivalence induction with a definitional
computation rule (Theorem 2).

3. From sY-UA we prove Voevodsky’s UA (Proposition 1, Proposition 2 and
Corollary 2).

We work in the informal framework of UTT found in [17]. Our presentation
of the Yoneda lemma-formulation of UA is done in two stages. First we introduce
a weak Yoneda lemma-formulation of univalence (wY-UA), and then a strong one
(sY-UA), in order to fully prove UA from sY-UA.

1.1 A weak Yoneda lemma-formulation of the univalence axiom

In [15] Rijke viewed a type family P : A→ U over a type A : U as a presheave of
a locally small category C i.e., as an element of SetC

op

, and gave a type-theoretic
version of the Yoneda lemma. Recall that SetC

op

is the category of contravariant
set-valued functors on C, and by the definition of a locally small category C, if
A,B ∈ C0, where C0 denotes the objects of C and C1 denotes the arrows of C,
the collection HomC(A,B) ≡ {f ∈ C1 | f : A → B} is a set. According to the
Yoneda lemma (see [1], section 8.2), if C is a locally small category, C ∈ C0 and
F ∈ SetC

op

, then there is an isomorphism HomSetC
op (Y(C), F ) ' F (C), which

is natural in both F and C, where Y : C → SetC
op

is the Yoneda embedding i.e.,
the functor

Y(C) ≡ HomC(−, C) : Cop → Set

Y(f : C → C ′) ≡ HomC(−, f) : HomC(−, C)→ HomC(−, C ′)
defined post-compositionally. Through the Yoneda lemma, the Yoneda embed-
ding is shown to be an embedding i.e., an injective on objects, faithful, and full
functor. If one corresponds U to Set, and of course, the fixed universe of types U
is closed under function types, a type A to Cop, and take HomA(a, b) ≡ (a =A b),
for every a, b : A, and if one defines the Yoneda embedding Ya : A → U , where
Ya(x) ≡ (x =A a), for every x : A, and if for every P,Q : A→ U one defines

Hom(P,Q) ≡
∏
x:A

(
P (x)→ Q(x)

)
,

then

Hom(Ya, P ) ≡
∏
x:A

(
Ya → P (x)

)
≡
∏
x:A

(
(x =A a)→ P (x)

)
≡
∏
x:A

∏
p:x=Aa

P (x).

Theorem 1 (Yoneda lemma (YL) in ITT + Function extensionality,
Rijke, 2012). Let P : A→ U and a : A. There is a pair of quasi-inverses (j, i) :
Hom(Ya, P ) ' P (a) i.e., (j ◦ i)(u) = u, for every u : P (a), and (i ◦ j)(σ) = σ,
for every σ :

∏
x:A

∏
p:x=Aa

P (x) such that

i(u)(a, refla) ≡ u, u : P (a),

j(σ) ≡ σ(a, refla), σ :
∏
x:A

∏
p:x=Aa

P (x).
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In [7] Escardó showed that the YL in ITT, taken as primitive, implies the
existence of a pair of quasi-inverses (j, i) :

(∏
x:A

∏
p:x=Aa

B
)
' B, where B : U ,

such that i(b)(a, refla) ≡ b,, for every b : B, and j(σ) ≡ σ(a, refla), for every
σ :
∏
x:A

∏
p:x=Aa

B. Moreover, if b : B, x : A, and p : x =A a, then i(b)(x, p) =B

b. The contractibility of singleton types follows from this fact, and since the
transport is an easy consequence of YL, then by Coquand’s result in [5], the
J-rule follows. Note that Escardó avoided the use of functional extensionality in
proving the converse of Theorem 1.

As in the case of Martin-Löf’s J-rule, Voevodsky’s original formulation of UA
does not involve the Yoneda lemma. If A : U , and using the J-rule, one shows
easily the existence of a term

IdtoEqv :
∏
X:U

∏
p:X=UA

X 'U A

such that IdtoEqv(A, reflA) ≡ (idA, eA), where (idA, eA) : A 'U A, and A 'U
B ≡

∑
f :A→B isequiv(f) is Voevodsky’s notion of equivalence between types A

and B in a universe U (see [17], section 2.4). According to UA, there is a term

ua :
∏
X:U

∏
e:X'UA

X =U A

such that
ua(X, IdtoEqv(X, p)) = p, p : X =U A,

[IdtoEqv(X, ua(X, e))]∗(x) = e∗(x),

for every x : X, where if e : A 'U B, we write e ≡ (e∗, e∗∗) with e∗ : A →
B and e∗∗ : isequiv(e∗). Because of the IdtoEqv-computation rule we get
ua(A, (idA, eA)) = reflA. Following the simpler writing found in book-HoTT,
we write ua(idA) = reflA, and IdtoEqv(ua(f), x) = f(x).

Extending Rijke’s categorical interpretation, we view the fixed universe U
as a category with objects the types in U and HomU (A,B) ≡ A 'U B, which
is locally small, since (A 'U B) : U . Clearly, U can be seen as a category
identical to its opposite. If we correspond the successor universe U ′ of U to Set,
a contravariant functor from U to U ′ is a type family P : U → U ′. Next we define
the corresponding Yoneda functor from U to U ′U .

Definition 1. Let A,B : U , e : A 'U B, X : U , and Y : U → (U → U ′) be
defined by A 7→ YA and e 7→ Y(e), where YA : U → U with

YA(X) ≡ X 'U A,

Y(e) : Hom(YA,YB) ≡
∏
X:U

∏
e′:X'UA

X 'U B

Y(e) ≡ λ(X : U , e′ : X 'U A).e ◦ e′.
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It is immediate to show that for every ε : B 'U C we have that Y(ε ◦ e) ≡
Y(ε) ◦ Y(e), and Y(idA) ≡ 1YA

. Next we formulate the first, and weaker version
of a Yoneda lemma-formulation of UA. Instead of the definitional equality, in the
computation rule of the term i we could have used propositional equality.

Weak Yoneda lemma-formulation of the univalence axiom (wY-UA): Let
P : U → U ′ and A : U . There is a pair of quasi-inverses

(j, i) : Hom(YA, P ) ' P (A),

where

i : P (A)→
∏
X:U

∏
e:X'UA

P (X) & j :

(∏
X:U

∏
e:X'UA

P (X)

)
→ P (A)

with the following i-computation-rule and j-computation-rule, respectively,

i(u)(A, (idA, eA)) ≡ u, u : P (A),

j(σ) ≡ σ(A, (idA, eA)), σ : Hom(YA, P ).

Next we show that the i-term of wY-UA “constructs” the ua-term of UA.

Proposition 1 (wY-UA). There is a term

ua′ :
∏
X:U

∏
e:X'UA

X =U A,

such that ua′(A, (idA, eA)) ≡ reflA.

Proof. Let P : U → U ′ defined by P (X) ≡ (X =U A). Since

i : A =U A→
∏
X:U

∏
e:X'UA

X =U A,

we define ua′ ≡ λ(X : U , e : X 'U A).i(reflA)(X, e), hence ua′(A, (idA, eA)) ≡
i(reflA)(A, (idA, eA)) ≡ reflA.

Proposition 2. If X : U and p : X =U A, then

ua′(X, IdtoEqv(X, p)) = p.

Proof. Let C(X, p) ≡ ua′(X, IdtoEqv(X, p)) = p. Since

C(A, reflA) ≡ ua′(A, IdtoEqv(A, reflA)) = reflA

≡ ua′(A, (idA, eA)) = reflA

≡ reflA = reflA,

what we want follows from the J-rule.
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Next we show that the ua-term of UA “constructs” the i-term of wY-UA

Proposition 3 (UA). There is a term

i′ : P (A)→
∏
X:U

∏
e:X'UA

P (X),

such that i′(u)(A, (idA, eA)) = u, for every u : P (A).

Proof. Let u : P (A). Since ua(X, e) : X =U A, we have that ua(X, e)−1 : A =U

X, and consequently
[
ua(X, e)−1

]P
∗ : P (A)→ P (X). We define

i′(u) ≡ λ(X : U , e : X 'U A).
[
ua(X, e)−1

]P
∗ (u).

Hence,

i′(u)(A, (idA, eA)) ≡ [ua(A, (idA, eA))−1
]P
∗ (u)

=
(
refl−1A

)P
∗ (u)

≡
(
reflA

)P
∗ (u)

≡ idP (A)(u)

≡ u.

As in Voevodsky’s UA, the non-trivial term is the ua-term, in wY-UA the non-
trivial term is the i-term. The j-term of wY-UA is immediate, as the IdtoEqv-term
follows immediately from the J-rule.

1.2 A strong Yoneda lemma-formulation of the univalence axiom

Next, we add a natural computation-rule to the weak Yoneda lemma-formulation
of univalence in order to get from this strong Yoneda lemma-formulation of uni-
valence the term of J-type that corresponds to the univalence axiom (this is
the Je-term in Theorem 2). Following Escardó’s line of proof of the J-rule from
the YL in ITT, and employing, as in the case of Escardó, Coquand’s equiva-
lence of the J-rule to the transport and the contractibility of singleton types, we
fully derive Voevodsky’s UA from this strong Yoneda lemma-formulation of uni-
valence. Note that, as in the weak version wY-UA, the computation-rules of the
strong Yoneda lemma-formulation involve only judgmental equalities, although
we could have also used propositional equality. First we define an obvious gen-
eralization of the notion of homotopy.

Definition 2. Let A,B : U and let Q : A → B → U ′ be a type family over A
and B (or a relation on A,B). If

F,G :
∏
x:A

∏
y:B

Q(x, y),
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we say that F,G are homotopic, and we write F ≈ B, if there is a term

H : F ≈ B ≡
∏
x:A

∏
y:B

F (x, y) =Q(x,y) G(x, y).

Proposition 4. Let A : U and P : U → U ′. If we fix some

σ : Hom(YA, P ) ≡
∏
X:U

∏
f :X'A

P (X),

there is a term

HapplyY,σ :
∏

τ∈Hom(YA,P )

∏
p:τ=σ

τ ≈ σ

≡
∏

τ∈Hom(YA,P )

∏
p:τ=σ

(∏
X:U

∏
f :X'A

τ(X, f) =P (X) σ(X, f)

)
such that

HapplyY,σ(σ, reflσ) ≡ λ(X : U , f : X ' A).reflσ(X,f).

Proof. If C(τ, p) ≡ τ ≈ σ, then C(σ, reflσ) ≡ σ ≈ σ and λ(X : U , f : X '
A).reflσ(X,f) : C(σ, reflσ). What we want follows immediately from the based
version of the J-rule (see [17], section 1.12.1, and [14]).

Next, we equip wY-UA with an explicit description of the terms of type
i ◦ j ∼ idHom(YA,P ) and j ◦ i ∼ idP (A).

Strong Yoneda lemma-formulation of the univalence axiom (sY-UA): Let
A : U and P : U → U ′. There is a pair of quasi-inverses

(j, i) : Hom(YA, P ) ' P (A)

where the terms

i : P (A)→
∏
X:U

∏
f :X'A

P (X) & j :

(∏
X:U

∏
f :X'A

P (X)

)
→ P (A)

are equipped with the following i-computation-rule and j-computation-rule:

i(u)(A, idA) ≡ u, u : P (A),

j(σ) ≡ σ(A, idA), σ : Hom(YA, P ).

Moreover, there are terms

G : i ◦ j ∼ idHom(YA,P ) ≡
∏

σ∈Hom(YA,P )

i(j(σ)) = σ,
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H : j ◦ i ∼ idP (A) ≡
∏

u:P (A)

j(i(u)) = u,

equipped with the following G-computation-rule and H-computation-rule7:

HapplyY,σ
(
i(j(σ)), G(σ)

)
(A, idA) ≡ reflσ(A,idA),

H(u) ≡ reflu,

for every σ : Hom(YA, P ) and for every u : P (A), respectively.

The last two computation-rules, which make the difference between the two
Yoneda lemma-formulations of univalence, are justified as follows. Since G(σ) :
i(j(σ)) = σ, we have that HapplyY,σ

(
i(j(σ)), G(σ)

)
is a term of type∏

X:U

∏
f :X'A

i(j(σ))(X, f) =P (X) σ(X, f),

hence HapplyY,σ
(
i(j(σ)), G(σ)

)
(A, idA) is a term of type i(j(σ))(A, idA) =P (A)

σ(A, idA). By the j, i-computation-rules we have that

i(j(σ))(A, idA) ≡ i(σ(A, idA))(A, idA) ≡ σ(A, idA),

therefore HapplyY,σ
(
i(j(σ)), G(σ)

)
(A, idA) is a term of type σ(A, idA) =P (A)

σ(A, idA). Similarly, if u : P (A), we have that H(u) : j(i(u)) = u, and since
j(i(u)) ≡ i(u)(A, idA) ≡ u, we get H(u) : u =P (A) u. It is natural to demand,
as is the case in all axioms of this kind, like the J-rule, that the terms associ-
ated to these computation-rules are the most expected ones. Note though, that
the H-computation-rule is not significant, while the G-computation-rule makes
the whole difference between the two Yoneda lemma-formulations of univalence.
Next follows the (strong) analogue to a lemma of Escardó in [7].

Lemma 1 (sY-UA). If B : U ′, there are terms

iB : B →
∏
X:U

∏
f :X'A

B & jB :

(∏
X:U

∏
f :X'A

B

)
→ B,

such that
iB(b)(A, idA) ≡ b, b : B,

jB(σ) ≡ σ(A, idA), σ :
∏
X:U

∏
f :X'A

B,

and terms

GB :
∏

σ∈Hom(EA,B)

iB(jB(σ)) = σ & HB :
∏
b:B

j(i(b)) = b,

7 If we had used propositional equality in the formulation of the i-rule, we could have
also written write the G-computation-rule using propositional equality.
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such that

HapplyY,σ

(
iB(jB(σ)), GB(σ)

)
(A, idA) ≡ reflσ(A,idA), σ : Hom(YA, B)

HB(b) ≡ reflb, b : B.

Moreover, if b : B, X : U , f : X ' A, and[
σb ≡ λ(X : U , f : X ' A).b

]
:
∏
X:U

∏
f :X'A

B,

then {
HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
(X, f)

}
:
[
iB(b)(X, f) =B b

]
such that

HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
(A, idA) ≡ reflb.

Proof. We apply sY-UA on the constant type family P : U → U ′, defined by
P (X) ≡ B, for every X : U . To show iB(b)(X, f) =B b we work as follows.
Since iB(jB(σb)) ≡ iB(σb(A, idA)) ≡ iB(b), we get GB(σb) : iB(b) = σb. Since

HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
is of type

∏
X:U

∏
f :X'A

iB(jB(σb))(X, f) =B σb(X, f),

the term HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
(X, f) is of type

iB(b)(X, f) =B σb(X, f) ≡ iB(b)(X, f) =B b.

Consequently, the term

HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
(A, idA)

is of type iB(b)(A, idA) =B σb(A, idA) ≡ b =B b, and by the G-computation-rule
of sY-UA we get

HapplyY,σb

(
iB(jB(σb)), GB(σb)

)
(A, idA) ≡ reflσb(A,idA) ≡ reflb.

The next corllary explains why we need to use the successor universe U ′ of
U in the formulation of sY-UA.
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Corollary 1 (sY-UA). If EA ≡
∑
X:U X 'U A, there is a term

Me :
∏
X:U

∏
f :X'A

(X, f) =EA
(A, idA),

such that Me(A, idA) ≡ refl(A,idA).

Proof. By Lemma 1 there is a pair of quasi-inverses

(jEA
, iEA

) :

(∏
X:U

∏
f :X'A

EA

)
' EA

with the associated terms and computation rules. Let τ :
∏
X:U

∏
f :X'AEA,

where τ ≡ λ(X : U , f : X ' A).(X, f). We have that

(X, f) ≡ τ(X, f)

=EA

[
iEA

(jEA
(τ))

]
(X, f)

≡
[
iEA

(τ(A, idA))
]
(X, f)

≡
[
iEA

((A, idA))
]
(X, f)

=EA
(A, idA).

Since the term

HapplyY,τ

(
iEA

(jEA
(τ)), GEA

(τ)

)
(X, f)

is of type
[
iEA

(jEA
(τ))

]
(X, f) = τ(X, f), we have that the term[

HapplyY,τ

(
iEA

(jEA
(τ)), GEA

(τ)

)
(X, f)

]−1
is of type τ(X, f) =

[
iEA

(jEA
(τ))

]
(X, f). Since the term

HapplyY,σ(A,idA)

(
iEA

(jEA
(σ(A,idA))), GEA

(σ(A,idA))

)
(X, f)

is of type [
iEA

((A, idA))
]
(X, f) =EA

(A, idA),

we can define the required term of type (X, f) =EA
(A, idA) by

Me(X, f) ≡
[
HapplyY,τ

(
iEA

(jEA
(τ)), GEA

(τ)

)
(X, f)

]−1
∗

HapplyY,σ(A,idA)

(
iEA

(jEA
(σ(A,idA))), GEA

(σ(A,idA))

)
(X, f).

Consequently,

Me(A, idA) ≡
[
HapplyY,τ

(
iEA

(jEA
(τ)), GEA

(τ)

)
(A, idA)

]−1
∗
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HapplyY,σ(A,idA)

(
iEA

(jEA
(σ(A,idA))), GEA

(σ(A,idA))

)
(A, idA)

≡
[
reflτ(A,idA)

]−1 ∗ refl(A,idA)

≡
[
refl(A,idA)

]−1 ∗ refl(A,idA)

≡ refl(A,idA) ∗ refl(A,idA)

≡ refl(A,idA).

Next we describe the J-rule, actually its based version, that corresponds to
sY-UA. Note that wY-UA also implies the corresponding term, but we need sY-UA

to get its computation-rule.

Theorem 2 (sY-UA). If A : U , there is a term

Je :
∏

C:
∏

X:U
∏

f:X'A U

∏
c:C(A,idA)

(∏
X:U

∏
f :X'A

C(X, f)

)
such that Je(C, c,A, idA) ≡ c, for every C :

∏
X:U

∏
f :X'A U and c : C(A, idA).

Proof. We fix C :
∏
X:U

∏
f :X'A U and c ∈ C(A, idA). Let EA ≡

∑
X:U X ' A,

and P : EA → U , defined by

P ((X, f)) ≡ C(X, f),

for every X : U and f : X ' A. By Corollary 1

Me(X, f) : (X, f) =EA
(A, idA),

hence
Me(X, f)−1 : (A, idA) =EA

(X, f).

Consequently [
Me(X, f)−1

]P
∗ : P ((A, idA))→ P ((X, f))

i.e., [
Me(X, f)−1

]P
∗ : C(A, idA)→ C(X, f).

We define
Je(C, c,X, f) ≡

[
Me(X, f)−1

]P
∗ (c).

By Corollary 1 we get

Je(C, c,A, idA) ≡
[
Me(A, idA)−1

]P
∗ (c)

≡
[
(refl(A,idA))

−1]P
∗ (c)

≡
[
refl(A,idA)

]P
∗ (c)

≡ idP ((A,idA))(c)

≡ idC(A,idA)(c)

≡ c.
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The term Je with its computation-rule is the inductive, or “type-theoretic”
version of UA, while sY-UA is the “categorical” version of UA. In the book-HoTT
(Corollary 5.8.5) the term Je is constructed from UA, but its computation-rule
involves propositional equality. Next, we show that the univalence function

ua′ ≡ λ(X : U , f : X ' A).i(reflA)(X, f)

defined in the proof of Proposition 1, and for which we know that ua′(A, idA) ≡
reflA, satisfies, in the context of sY-UA, also the second computation-rule of
Voevodsky’s UA.

Corollary 2. If f : X ' A, then IdtoEqv(X, ua′(X, f)) = f.

Proof. We define C(X, f) ≡ IdtoEqv(X, ua′(X, f)) = f . Since

C(A, idA) ≡ IdtoEqv(A, ua′(A, idA)) = idA

≡ IdtoEqv(A, reflA) = idA

≡ idA = idA,

we have that reflidA
: C(A, idA), and we use Theorem 2.

2 Concluding remarks

As we have already stressed, although our strong Yoneda lemma-formulation of
univalence supports the definitional approach to the computation-rules associ-
ated to the judgements of type theory, we could have formulated sY-UA using
propositional equality instead8.

Here we showed the proximity of UA to the J-rule also from a categorical
point of view. Both admit a Yoneda lemma-formulation. The centrality of the
Yoneda lemma in category theory, together with the deep connections between
Martin-Löf type theory and category theory, and between homotopy type theory
and (∞, 1)-category theory9, maybe sheds some light to the centrality of UA in
univalent foundations. It is an open question, and hopefully future work, if this
connection between the Yoneda lemma and the univalence axiom can be used
in order to translate some non-trivial applications of the Yoneda lemma10 into
homotopy type theory.

I would like to thank G. Jäger for motivating my work in this paper.

8 It is an open question whether there is a model of univalent type theory where the
computation-rule of UA holds definitionally. In cubical type theory the computation-
rule of UA involves propositional equality (see [3]), and this is why in [4] the
computation-rule of the J-rule involves also propositional equality.

9 See e.g., [16] for a general discussion, and [17] for many concrete examples of these
connections.

10 Such non-trivial applications are e.g., the Tannaka duality and the Isbell conjugation.
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