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I. Sets, classes and proper classes

All begun when Cantor’s Full Comprehension Scheme (FCS):

∃u(u = {x | φ(x)}),

where φ is any formula of L = (∈), was proved contradictory for φ(x) := x /∈ x. Zermelo’s
Restricted Comprehension Scheme (RCS), also known as Separation Scheme,

∃u(u = {x ∈ v | φ(x)})

replaced the FCS and it implies that V /∈ V : if V ∈ V , then u = {x ∈ V | x /∈ x} ∈ V and then
u ∈ u↔ u /∈ u. If FCS was not contradictory, we wouldn’t need so many axioms to describe our
intuition about sets. E.g., the union of two sets would be defined as u ∪ v = {x | x ∈ u ∨ x ∈ v}.

I.1 The first-order non-logical axioms of ZF in the language L = (∈)

Extensionality: ∀x,y(∀z(z ∈ x↔ z ∈ y)→ x = y).

Empty set: ∃x∀y(y /∈ x).

Pair: ∀x,y∃z∀w(w ∈ z ↔ w = x ∨ w = y).

Union: ∀x∃y∀z(z ∈ y ↔ ∃w(w ∈ x ∧ z ∈ w)).

Replacement Scheme: If φ(x, y, ~w) is a function formula, then

∀x∃v∀y(y ∈ v ↔ ∃z(z ∈ x ∧ φ(z, y, ~w)).

Power-set: ∀x∃y∀z(z ∈ y ↔ ∀w(w ∈ z → w ∈ x)).

Foundation: ∀x(x 6= ∅ → ∃z(z ∈ x ∧ ¬∃w(w ∈ z ∧ w ∈ x))).

Infinity: ∃x(∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ {y} ∈ x)).

I.2 On the axioms of ZF

1. Unlike group-axioms (first the models, the groups, and then the axioms) the set-axioms are
given first and then we study their models!!!

2. The axioms of ZF are generally “accepted”. The system generated by the addition of the
infamous axiom of choice AC

∀u∃f :u→V (∀x(x ∈ u→ x 6= ∅ → f(x) ∈ x),

i.e., form every non-empty element x of u the “choice-function” f selects an element of x, to
ZF is called ZFC. The AC is not that “innocent”. When a proof uses it, usually this is noted.
It has many important consequences in standard mathematics, for example every ideal in
a ring is contained in a maximal ideal, every vector space has a basis, and every product
of compact spaces is compact. But it has also some counter-intuitive consequences like the
Banach-Tarski paradox: it is possible to decompose the 3-dimensional solid unit ball into
finitely many pieces and, using only rotations and translations, reassemble the pieces into
two solid balls each with the same volume as the original.

3. There exist many set theories (e.g., in Bernays-Gödel ST we have two sorts (types) of objects:
sets and classes).
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4. There exist many constructive set theories e.g., CZF, based on intuitionistic logic (Aczel-
Rathjen).

5. The axioms of ZF are due to Zermelo, except Replacement (Fraenkel, Skolem), and
Foundation (von Neumann). Bolzano was maybe the first who considered infinite sets,
he also introduced the term Menge, but it was Cantor who introduced cardinals-ordinals,
who proved that R is uncountable, that the set of algebraic numbers A is countable, and he
formulated the continuum hypothesis CH.

6. Note the difference between an axiom and an axiom-scheme.

7. The converse of Extensionality is provable by the equality axioms.

8. First we show by Extensionality the uniqueness of ∅, and then we write ∅ ∈ V or we use the
symbol ∅ in the Foundation. The same pattern is followed in every similarly written non
first-order axiom.

9. Note that the Restricted Comprehension Scheme (Aussonderung) is derivable from the
Replacement Scheme.

10. Note that the existence of an inductive set is equivalent to the existence of an infinite set, but
that requires the notion of a finite set. Of course, it is intuitively expected that an inductive
set is not finite (see [3], p.26, Ex. 2.4).

I.3 Classes and proper classes

In the metatheory of ZF classes i.e., formulas φ(x,~c) in L = (∈) with parameters are used. Usually
we identify φ(x,~c) with the informal object

Aφ = {x | φ(x,~c)},

and we denote it by A, omitting the subscript in most cases.

A set a is a class: a = {x | x ∈ a} = {x | ψ(x, a)}, where ψ(x, a) := x ∈ a.

We use the following definitions for classes:

V := {x | x = x}

∅ := {x | x 6= x}
Aφ∨ψ := Aφ ∪Aψ := {x | φ(x) ∨ ψ(x)}
Aφ∧ψ := Aφ ∩Aψ := {x | φ(x) ∧ ψ(x)}

Acφ := A¬φ := {x | ¬φ(x)}
Aφ \Aψ := Aφ ∩Acψ.

By the principle of the excluded middle Aφ∨¬φ = V . We use the following rules for classes:

Aφ ⊆ Bψ :↔ ZF ` ∀x(φ(x)→ ψ(x))

Aφ = Bψ :↔ ZF ` ∀x(φ(x)↔ ψ(x))

b ∈ Aφ :↔ ZF ` φ(b)

B ∈ Aφ :↔ ZF ` ∃b(B = b ∧ φ(b)).

Note that the last equality is well-defined, since a set is a class. The same applies to the formulations
A ∩ x, or A ⊆ x. A class A is called proper, if

ZF ` ¬∃a(A = a),
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and we denote this fact informally as A /∈ V .

Basic facts on (proper) classes:

a. R /∈ V .
b. ∀x(A ∩ x ∈ V ).
c. ∀x(A ⊆ x→ A ∈ V ).
d. A ⊆ B → A /∈ V → B /∈ V .
e.

⋃
A /∈ V → A /∈ V .

f. F ′′A /∈ V → A /∈ V .
g. On /∈ V , since an ordinal cannot be contained to itself.

I.4 On the axiom of Foundation

1. Verify the axiom of foundation on specific sets. There are sets x, like ω, for which there exists
only one element not intersecting x, while there are sets, like R, such that every element
doesn’t intersect x.

2. It is not used in actual mathematics but it is important for the formation of the set-theoretic
universe. It is also very important in the construction of models of set theory.

3. There exist no infinite 3-chains x0 3 x1 3 x2 3 . . . .

4. There exist no cycles x0 ∈ x1 . . . xn ∈ x0.

5. @x(x ∈ x).

6. @x(P(x) ⊆ x).

7. ∀x,y(x /∈ y ∨ y /∈ x).

II. Transitive classes/sets and well-founded relations

II.1 Transitive classes/sets

A class A is transitive, if it satisfies the rule

y ∈ x ∈ A
y ∈ A .

1. If u is transitive, then u ∪ {u} is transitive.
2. If u ∈ V , show that the following are equivalent:

(a) u is transitive.
(b)

⋃
u ⊆ u.

(c)
⋃
u+ = u, where u+ = u ∪ {u}.

3. If u is a non-empty set each element of which is transitive, then
⋂
u is also transitive.

4. If u is a non-empty set, then

u is transitive →
⋂
u = ∅.

5. For every set u there exists a transitive set v such that u ⊆ v. We can describe the least such
transitive set u, which is called the transitive closure of u. If we consider the following inductive
rules to define u

x ∈ u
x ∈ u ,

y ∈ x ∈ u
y ∈ u ,
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which can also be rewritten as

x ∈ u
x ∈ u ,

x ∈
⋃
u

x ∈ u ,

they induce the corresponding induction principle:

∀x∈u(φ(x))→
∀y∈u∀x(φ(y)→ x ∈ y → φ(x))→
∀x∈u(φ(x)),

where φ(x) is any formula. Show that u is a transitive set and if v is a transitive set such that
u ⊆ v, then u ⊆ v. We can also describe u as the result of the iteration of a certain operation on u
for a specific “ordinal” number of times, as follows:

u0 = u,

un+1 =
⋃
un,

u =
⋃
{un | n ∈ ω}.

II.2 On the definition of addition in ω (Exercise 2, Blatt 2)

1. Using the Rekursionssatz für ω, show the following special case of it:

If a is a non-empty set, x is a fixed element of a and h : a → a, there exists a unique function
f : ω → a such that

f(0) = x,

f(n+ 1) = h(f(n)).

2. Show that if m ∈ ω, there exists a function Am : ω → ω such that

Am(0) = m,

Am(n+ 1) = Am(n) + 1,

where n+ 1 is the successor of n. Then we define the addition of natural numbers as the set

+ := {((m,n), σ) | m,n ∈ ω ∧ σ = Am(n)}.

II.3 Well-founded relations

If (u, r) is a structure, then r is called well-founded (w.f.r.), if

∀v⊆u(v 6= ∅ → ∃a∈v∀x∈v(x 6 ra))

i.e., if each non-empty subset v of u has an r-minimal element.

1. Show that a w.f.r. is irreflexive and asymmetric i.e.,

∀x∈u(x 6 rx),

∀x,y∈u(x r y → y 6 rx).
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2. Give an example of a w.f.r. which is not a transitive relation.

3. Show that if r is a well-ordering (see also next section), then r is a w.f.r., and find a w.f.r.
which is not a well-ordering.

4. If (u, r) is a w.f.r., there exists no sequence α : ω → u such that

α1rα0, α2rα1, α3rα2 . . . .

II.4 Well-orderings

A partial ordering (p.o) (u,<) is an irreflexive and transitive relation < on u. If (u1, <), (u2, <)
are p.o., a function f : u1 → u2 is called order-preserving, if

∀x,y∈u1
(x < y → f(x) < f(y)).

If (u1, <), (u2, <) are linear p.o., an order-preserving f is also called increasing. If f : u1 → u2 is
1−1 and onto u2, then f is called an isomorphism, if f, f−1 are o.p. (in this case we write u1 ∼= u2).
If u2 = u1 and f is an isomorphism, f is called an automorphism. A well-ordering (w.o.) is a p.o.
(w,<) such that

∀u⊆w(u 6= ∅ → u has a < -least element).

Clearly, a w.o. is a linear p.o. (if x 6= y, then min{x, y} is in w).

1. If (w,<) is a well-ordered set, then show that there exists no sequence α : ω → w such that

α0 > α1 > α2 > . . . .

Show also that this property (the non-existence of infinitely decreasing chains) implies the
existence of a minimum element for each non-empty subset of w (for that one uses actually
the principle of dependent choices).

2. (optional) If α, β : ω → w show that there exist i < j such that

α(i) ≤ α(j) ∧ β(i) ≤ β(j).

3. (optional) There exist quasi-orderings (q.o) (u,�) i.e., a reflexive and transitive relation on
u, such that every sequence in u is good1 but (u,�) is not a well-ordering.

4. (optional) We define
ω(∞) = (ωω,�p),

where
α �p β ↔ ∀n(α(n) ≤ β(n)),

for each α, β ∈ ωω. The ω(∞) has a bad sequence: Clearly, the pointwise ordering �p on NN

is a q.o., but the following sequence of elements of NN

α1 = (1, 2, 3, 4, 5, ...)

α2 = (2, 1, 3, 4, 5, ...)

...............................

αn = (n, n− 1, ..., 1, n+ 1, n+ 2, ...),

is bad. If n = αn(0), then αn(n− 1) = 1, for each i ∈ N. If i < j, then αj(j − 1) = 1,
while αi(j − 1) > 1. Therefore, it can never be the case that αi �p αj , for some i < j. The
interesting thing about this example is that the corresponding qo N(k) = (Nk,�p), where
u �p v ↔ (∀i ∈ k)ui ≤ vi, for each u, v ∈ Nk, is proved to be a wqo, for each k ∈ N.

1A sequence α : ω → w is called good, if there exist i < j such that α(i) � α(j); otherwise it is called bad.
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5. If (w,<) is a w.o. and f : w → w is increasing, then

∀x∈w(f(x) ≥ x).

6. If (w,<) is a w.o. and f : w → w is an automorphism, then f = idw.

7. If (w1, <), (w2, <) are w.o. and w1
∼= w2, then the isomorphism between them is unique.

8. If (w,<) is a w.o. and for each x ∈ w we define

x̂ = {y ∈ w | y < x},

then there exists no isomorphism between w, x̂.

9. If (w1, <), (w2, <) are w.o., then

w1
∼= w2 ∨ ∃y∈w2

(w1
∼= ŷ) ∨ ∃x∈w1

(w2
∼= x̂).

(The proof of this proposition is of the same style to the first Satz of the Vorlesung notes.)

III. Ordinals

1. They were invented by Cantor to solve a problem in Fourier series.
2. As it is noted by T. Forster in [2], “ordinals are the kind of numbers that measures the length
of precisely this sort of process: transfinite and discrete”. E.g., as it is asked in the exercise 4 of
Blatt 3, if (u, r) is a structure and r is founded, we define

u0 := ∅,
uα+1 := {x ∈ u | ∀y(y r x→ y ∈ uα},

uλ :=
⋃
α<λ

uα.

By Replacement one shows that there exists an ordinal ξ such that uξ+1 = uξ. Also,

u0 ⊆ u1 ⊆ . . . uζ = u,

where ζ is the minimum ordinal satisfying uζ+1 = uζ .
3. The intuition behind addition and multiplication of ordinals:

α+ β is the order structure generated by considering each element of β greater than element of α
and the orderings of α, β are kept as they are.

Using this intuition verify that 1 + ω 6= ω + 1, and ω + ω2 6= ω2 + ω.

α · β is the order structure generated by considering each element of β equal to α.

Using this intuition explain why 2 · ω 6= ω · 2.
4. Some countable ordinals:

0, 1, 2, . . . , ω,

ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 2 + ω = ω · 3,

ω · 3 + 1, ω · 3 + 2, . . . , ω · 3 + ω = ω · 4, . . .

. . . , ω · ω = ω2, . . . , ω2 + ω, . . . , ω2 + ω · 2, . . .

. . . , ω2 + ω2 = ω2 · 2, . . . , ω2 · 3, . . . , ω2 · ω = ω3, . . .
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. . . , ω4, . . . , ω5, . . . , ωω, . . . , ωω
ω

, . . . , ε0.

5. Show that
lim(λ)↔ ∀α(α < λ→ α+ 1 < λ).

6. Find a non-transitive subset of some ordinal α which does not belong to α.
7. Show that for all ordinals α, β

α < s(β)↔ α ≤ β.

8. If α, β, γ, δ ∈ On, show the following properties:

(i) α < β → γ + α < γ + β. Especially, 0 < β → γ < γ + β.
(ii) α ≤ β → α+ γ ≤ β + γ. Find α, β, γ such that α < β and α+ γ = β + γ.
(iii) α < β → γ·α < γ·β. Especially, 1 < β → γ < γ·β.
(iv) α ≤ β → α· γ ≤ β· γ. Find α, β, γ such that α < β and α· γ = β· γ.
(v) α+ γ < β + γ → α < β.
(vi) α· γ = β· γ → γ is successor ordinal→ α = β.
(vii) α· (β + γ) = α·β + α· γ. Is it true that (β + γ)·α = β·α+ γ·α?
(ix) If α ∈ On and x ∈ α, then x ∈ On.
(x) ∀α,β∈On(α ≤ β ↔ α ⊆ β).
(xi) If a ⊆ On and a 6= ∅, then min a =

⋂
a is the least ordinal in a.

9. ∀α,β∈On(β ≤ α→ ∃!γ∈On(α = β + γ)).
10. If α < β and γ > 1, then γα < γβ . Check that this doesn’t hold for the corresponding
operations on cardinals. 11. If ε0 is the ordinal defined by2

ε0 := sup{ω, ωω, ωω
ω

, . . .}

show that ωε0 = ε0 and also that ε0 is the least ordinal α satisfying ωα = α. Therefore, ε0 is the
least ordinal bigger than ω which is closed under addition, multiplication and exponentiation of
ordinals.
12. ∀α>0,γ∃!β,ρ(ρ < α ∧ γ = α · β + ρ).
13. Cantor’s normal form theorem: Every ordinal α > 0 can be written uniquely as

α = ωβm · km + . . .+ ωβ0 · k0,

where m ≥ 1, α ≥ βm > . . . > β0, and k0, . . . , km ∈ N \ {0}. Thus the ordinal ε0 has the following
convenient representation

ε0 = ωε0 · 1,

and that’s why in general α ≥ βm. The above convenience is one of the reasons we use ω as a base
in the representation of ordinals in a normal form.
14. Show that for every ordinal α there is a limit ordinal λ such that α < λ.

IV. The cumulative hierarchy

1. Show that ∀α(Vα ∈ V ).

2. Find a transitive set u having a non-transitive element x.

3. If the rank of a set x is defined as in the Vorlesung by3

rn(x) := min{α ∈ On | x ∈ Vα},

show that y ∈ x→ rn(y) < rn(x). Does the converse hold?

2This is a very important ordinal in proof theory as the infamous theorem of Gentzen on the consistency of
arithmetic shows. For that see [6], Chapter 10.

3If one defines the rank of x as the least α such that x ∈ Vα+1, one gets rn(α) = α.
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4. Show that the following are equivalent:

(i) Foundation Axiom.
(ii) V =

⋃
α∈On Vα.

5. Show the following:

(i) ∀α∈On(α ∈ Vα+1 \ Vα).
(ii) ∀α∈On(rn(α) = α+ 1).

6. Show that
A ∈ V ↔ {rn(x) | x ∈ A} is bounded in On.

7. The rank of a set, as defined above, is always a successor ordinal i.e.,

∀x∈V ∃α∈On(rn(x) = α+ 1),

where
α = sup{rn(y) | y ∈ x}.

8. Using the standard set-theoretic constructions of Z,Q,R (see for example [1], Chapter 5),
show that Z,Q,R,R R ∈ Vω+ω.

Suppose that u ∈ V and φ is a formula of the language of ZFC. The relativization φu of φ to u is
generated by replacing all occurrences x ∈ V in φ by x ∈ u. Then we define

u |= φ := ZFC ` φu.

Then show the following:

1. ∀α∈On(Vα |= Extensionality Axiom).

2. ∀α∈On(α 6= 0→ Vα |= Empty set Axiom).

3. ∀α∈On(limitordinal(α)→ Vα |= Pair Axiom).

4. ∀α∈On(Vα |= Union axiom).

5. ∀α∈On(limitordinal(α)→ Vα |= Power set Axiom).

6. ∀α∈On(Vα |= Separation Scheme).

7. ∀α∈On(α > ω → Vα |= Infinity Axiom).

8. What about the converse to 2, 3, 5, 7?

9. Consider the following formulation of the Axiom of Choice: if R is a relation, then there
exists a function F such that dom(F ) = dom(R), in order to show:

∀α∈On(Vα |= Axiom of Choice).

In summary we conclude that if λ is any limit ordinal number > ω, then

Vλ |= ZF0,

where
ZF0 = ZF \ {Replacement Axiom},

and ZF is considered here to contain the Separation Scheme4. One could ask if the Replacement
Scheme is derivable by the rest axioms. Next results show the independence of the Replacement

4As you already know the Separation scheme is proved by the Replacement scheme, but in many textbooks it is
included in the list of axioms of ZF and it is noted or proved later that it is derivable (see e.g., [3] or [4]). In that
way it is clear that ZF0 contains the required Separation Scheme.
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Scheme.

(i) There exists a well-ordering structure (w,<) such that <∈ Vω+ω and otp(w,<) /∈ Vω+ω.
(ii) Conclude by (i) that

Vω+ω 6|= Replacement Axiom.

The above result is expected from Gödel’s second incompleteness theorem. If there was a limit
ordinal λ such that Vλ |= Replacement Axiom too, then we would have that Vλ |= ZF. But then
ZF could prove its own consistency, and that contradicts Gödel’s second incompleteness theorem.

V. Normal functions

A function F : On→ On is called normal, if it satisfies the following:

(i) ∀α,β(α < β → F (α) < F (β)), i.e., F is (strictly) increasing.
(ii) ∀λ∈LOn(F (λ) =

⋃
α<λ F (α)), where LOn is the class of limit ordinals. This condition is the

continuity condition on F .

1. Show that F1(α) = β + α, F2(α) = β · α and F3(α) = βα are normal functions.

2. Give an example of a monotone function which is not continuous.

3. Give an example of a continuous function which is not monotone.

4. Show that the function F : On→ On defined by

α 7→ α2

is not continuous.

5. Suppose that F is continuous. Then the following are equivalent:

(i) F is normal.
(ii) ∀α(F (α) < F (α+ 1)).

6. Suppose that F : On→ On is increasing. Then the following hold:

(i) ∀α(F (α) ≥ α).
(ii) ∀α,β(F (α) < F (β)→ α < β).

7. If F is normal, then F has an unbounded set of fixed points. Actually, show that

∀α∃β(α ≤ β ∧ F (β) = β ∧ ∀α<γ<β(F (γ) > γ)),

i.e., β is the least fixed point of F above α.

Hint: Define
β :=

⋃
n∈ω

βn,

where

β0 := α,

βn+1 := F (βn).

8. If F is normal, then the derivative F ′ of F is the function F ′ : On→ On defined by:

F ′(0) := µβ(F (β) = β)

F ′(α+ 1) := µβ(F ′(α) < β ∧ F (β) = β)

F ′(λ) := µβ(∀α<λ(F ′(α) < β) ∧ F (β) = β),
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where λ is a limit ordinal and µβ(φ(β)) denotes the minimum ordinal satisfying the formula
φ. Clearly, F ′ enumerates the fixed points of F , in other words the rng(F ′) is the class of
the fixed points of F . Show that F ′ is also normal.

9. A closed and unbounded class of ordinals is called a club. Show that if F : On → On the
following are equivalent:

(i) F is normal.
(ii) The rng(F ) is a club.

Using the normality of the derivative F ′ of some normal function F , we conclude that the
class of fixed points of a normal function is a club.

10. Show that a club is a proper class.

11. If C1, C2 are clubs, then their intersection C1 ∩C2 is also a club. Hence, if F1, F2 are normal
functions, the class of their common fixed points is a club. This, of course, applies to the
normal functions F, F ′.

12. Suppose that F,G : On→ On are normal functions. Then the following hold:

(i) Their composition F ◦G is a normal function.
(ii) If Fix(F ) denotes the club of the fixed points of a normal function F , then

Fix(F ◦G) = Fix(F ) ∩ Fix(G).

13. If F is normal, then

λ is a limit ordinal→ F (λ) is a limit ordinal.

14. If F is normal, then

∀β∃α(F (α) ≤ β ∧ ∀γ(F (γ) ≤ β → γ ≤ α)),

i.e., given an ordinal β and a normal function F , then F (α) is the best approximation to β
below that one can give using F .

15. Using 7 and 14, try to sketch a graph modeling the graph of a normal function.

16. Show that the function ω : On→ On defined by

α 7→ ωα

is normal and also that rng(ω) = Kn \ ω, where Kn denotes the class of cardinals.

17. Show that the class of limit ordinals LOn is a club.

VI. Cofinality

If λ is a limit ordinal its cofinality is defined by

cf(λ) := min{|c| | c ⊆ λ ∧
⋃
c = λ}.

If α is an ordinal and X is a set, a sequence (xξ)ξ<α in X indexed by α, or an α-sequence of X, is
a function x : α → X. An ω-sequence of X is a called simply a sequence. We can describe the
cofinality of λ by

cf(λ) = min{α ∈ On | ∃x : α→ On strictly monotone ∧ lim
ξ→α

xξ = λ},
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where limξ→α xξ = supξ<α xξ. It is clear then why

a. cf(ω + ω) = ω.
b. cf(ω2) = ω.
c. cf(ωω) = ω.
d. cf(ωα+ω) = ω, for every α ∈ On.

Some basic properties are the following:

1. A countable limit ordinal has cofinality ω.
2. ω ≤ cf(λ).
3. ωα+1 is regular, for every α ∈ On.
4. κ ≤ |Vk|, for every κ ∈ Kn.
5. ωα ≤ |Vα|, for every α ∈ On such that α > ω.
6. If κ = ωα, then
a. c ⊆ κ→ |c| < cf(κ)→ c is bounded in k.
b. λ < cf(κ)→ f : λ→ κ→ rng(f) is bounded in k.

VII. Inner models

1. A class W is an inner model of ZF, if

(IM1) W is transitive.
(IM2) On ⊆W .
(IM3) ∀φ∈Ax(ZF)(ZF ` φW ), where φW has been defined inductively.

The word “inner” derives from (IM3), since we need to show that the relativisations φW of the
axioms of ZF are provable in ZF itself.
2. V is an inner model of ZF.
3. In the following W denotes an inner model of ZF.
4. ZF ` θ → ZF ` θW .
5. ZF ` θW → ZF is consistent → ZF + θ is consistent.
This is the main use of the inner models; in order to show the consistency of ZF + θ it suffices,
given the consistency of ZF, to show that ZF ` θW , for some appropriate inner model of ZF. For
example, take θ = AC and W = HOD.
6. φ(~x) is called absolute for W , if ∀~x∈W (φ(~x)↔ φW (~x)).
7. If φ(~x) is Σ0, then φ(~x) is absolute for W .
8. If φ(~x) is Σ1, then ∀~x∈W (φ(~x)← φW (~x)).
8. If φ(~x) is Π1, then ∀~x∈W (φ(~x)→ φW (~x)).
9. The following relations and functions are equivalent to Σ0-formulas:

a. x ⊆ y.
b. z = {x, y}.
c. z = {x}.
d. z = (x, y).
e. z = ∅.
f. z = x ∪ y.
g. z = x ∩ y.
h. z = x \ y.
i. z = S(x).
k. z is transitive.
l. z =

⋃
x.

m. z =
⋂
x, where

⋂
∅ = ∅.

n. z is an ordinal.
o. z is a limit ordinal.
p. z is a successor ordinal.
10. Absolute notions are closed under composition: if θ(~x), F (~x) and Gi(~y), where 1 ≤ i ≤ |~x)|,
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are absolute for W , then so is the formula

φ(G1(~y), . . . , Gn(~y)),

and the function
F (G1(~y), . . . , Gn(~y)).

11. The following relations and functions are absolute for W :

a. z is an ordered pair.
b. u× v.
c. r is a relation.
d. z = dom(r).
e. z = rng(r).
f. r is a function.
g. z = f(x).
h. r is an injection.
i. r is a surection.
j. r is a bijection.

12. ZF ` AW = δ ↔ ZF ` (A = δ)W .
13. ∀x∈W (|x| ≤ |x|W ).
14. ∀κ∈Kn(κW ≤ κ).
15. ∀κ,λ∈Kn∀x∈W (|x| = κ→ |x|W = λW → κ ≤ λ).

16. cf(λ) ≤ cfW (λ).
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