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PREFACE

In these notes we give an introduction to the basic theory of Banach algebras, starting
with a brief historical account of its development. C∗-algebras are studied in order to
prove the commutative and the general Gelfand-Naimark theorem.
The material studied in these notes is mainly the product of a seminar I organized on
Banach algebras at the Mathematics department of AUTH, attended by undergraduates
and my supervisor Chariklia Konstadilaki-Savopoulou. Special Subject II of my study
program consisted of the written in Greek version of these notes and the corresponding
seminar (sections 1-11). Special Subject III contained to sections 12-16, the main
parts of which I presented to the seminar of the Mathematical Analysis Section of the
department of Mathematics of the AUTH.
I would like to thank my supervisor for her encouragement and support.

Thessaloniki 2008.
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1 A brief historical account

The theory of Banach algebras (BA) is an abstract mathematical theory which is the
(sometimes unexpected) synthesis of many specific cases from different areas of math-
ematics.
BA are rooted in the early twentieth century, when abstract concepts and structures
were introduced, transforming both the mathematical language and practice. In the
1930’s general topology has been quite developed while functional analysis was evolved
through the Hahn-Banach theorem1. The uniform bound theorem, the theorem of
closed graph and the open mapping theorem, all of them are 1932-theorems of Banach,
whose book, “Théorie des opérations linéaires” (1932), influenced deeply mathematical
analysis of his era.
Before Gelfand2, who is the founder of the theory of BA, there were some papers dealing
with the study of an additional multiplication on a Banach space (Nagumo, Yosida, von
Neumann and others) without developing though a general theory.
In his dissertation thesis (1939) Gelfand recognized the central role of maximal ideals
and by using their properties he created the modern theory of BA. Later (1941) these
results are found in [Gelfand 1941]. In [Gelfand, Naimark 1943] Gelfand and Naimark3

proved the two major representation theorems, named after them, which form the main
body of the theory of BA. Mazur’s 1938 theorem ([Mazur 1938]) was an important
contribution to Gelfand’s theory.

We give a historical line which describes roughly the development of the theory of BA:

1918: Riesz provides for the first time the axioms for a space with a norm ‖.‖.
1920: Banach’s thesis, first abstract study of normed spaces.

1929: von Neumann studies additional structure on a normed space.

1932: Stone’s “Linear transformations in Hilbert space and their applications to Anal-
ysis” is a major contribution to operator theory.

1932: Banach’s book “Théorie des opérations linéaires”.

1932: Wiener introduced the inequality

‖xy‖ ≤ ‖x‖‖y‖

without studying further consequences of it.

1936: The notion of abstract Banach algebra arises through Nagumo’s “linear metric
ring” and Yosida’s “metrical complete ring”.

1938: Mazur’s theorem: every complex division algebra with a norm is isomorphic to
C and every real one is isomorphic to R, C, or the quaternions.

1939: Gelfand’s thesis: foundations of the theory of commutative BA.

end of 30’s: The term normed ring is established in the Soviet school.

1941: publication of the results of Gelfand’s thesis and proof of Wiener’s lemma.

1Both Hahn (1927) and Banach (1929) had shown the Hahn-Banach theorem for real spaces.
2Israil Moiseevich Gelfand (1913-) is the leading mathematician of the Russian school of the 20th

century.
3Mark Aronovich Naimark 1909-1978.
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1943: Gelfand-Naimark representation theorems.

1945: Ambrose introduces the term Banach algebra.

1947: Segal proves the real analogue to the commutative Gelfand-Naimark represen-
tation theorem.

1956: Naimark’s book “Normed Rings” is the first presentation of the whole new the-
ory of BA, which was important to its development.

1960: Rickart’s book “General theory of Banach algebras” is the reference book of all
later studies of BA.

The new theory of BA was a remarkable new general theory since it unified up to then
distant areas of mathematics, providing new connections between functional analysis
and classical analysis. The proof of Wiener’s lemma was characteristic of the power
of that new theory. Gelfand proved Wiener’s lemma4 (if f is non-zero and has an ab-
solutely convergent Fourier expansion, then 1

f
has such an expansion as well) in a few

lines, attracting that way the attention of the mathematical community.
The Gelfand-Naimark theorems mainly influenced the spectral theory of operators on
a Hilbert space. Actually, the commutative Gelfand-Naimark theorem is the spectral
theorem of normal operators. Also, the constructions found in their proofs influenced
the proofs of theorems from completely different areas (e.g., ?????).
In some sense the theory of BA is a generalization of the complex numbers. As we shall
see this theory is an evolved way to talk about the algebra C.
The theory of BA is used in theoretical physics, since C∗-algebras and von Neumann
algebras are used in statistical mechanics and quantum mechanics. The real analogue
to the commutative Gelfand-Naimark theorem was given by Segal (in [Segal 1947a])
in a paper on the axioms of quantum mechanics. Of course, it was few years before
that quantum mechanics shaped the development of Hilbert spaces through the semi-
nal book of von Neumann on the mathematical foundations of quantum mechanics [von
Neumann 1932].
Finally, BA gave rise to the study of algebraic structures, quite analogue to algebras,
with an additional compatible topological structure (topological algebras).
In the 1970’s C∗-algebras were revitalized by the introduction of topological methods
by Brown, Douglas and Fillmore on extensions of C∗-algebras, Elliott’s use of K-theory
to classify approximately finite dimensional C∗-algebras and Kasparov’s melding of the
two in KK-theory5.

4See section...
5For these developments see [Davidson 1996]. For some recent interactions of the theory of BA with

topics ranged from K-theory, over abstract harmonic analysis, to operator theory see [Lau, Runde 2004].
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2 The Gelfand-Naimark theorems

We present here, roughly, the 1943-Gelfand-Naimark theorems.

Commutative Gelfand-Naimark theorem: If A is a commutative Banach algebra
with involution, such that

‖x∗x‖ = ‖x∗‖ ‖x‖, ∀x ∈ A

then A is isometrically ∗-isomorphic to C0(X), the algebra of all continuous functions
X → C which vanish at infinity6, where X is a locally compact Hausdorff space.

General Gelfand-Naimark theorem: If A is a Banach algebra with involution, such
that

‖x∗x‖ = ‖x∗‖ ‖x‖, ∀x ∈ A
then A is isometrically ∗-isomorphic to a closed (with respect to the norm topology)
∗-subalgebra of B(H), the bounded operators of some Hilbert space H.

The theorem that we shall prove here is the following version of the commutative case:

Commutative Gelfand-Naimark theorem
′
: A complex Banach algebra A is iso-

metrically isomorphic to the algebra C(K,C), of the continuous functions K → C, for
some compact Hausdorff space K, if and only if it is commutative and there is an in-
volution defined on A which turns it to a C∗-algebra.

The real analogue to the above theorem is Segal’s theorem:

Real commutative Gelfand-Naimark theorem: A real Banach algebra A is iso-
metrically isomorphic to the algebra C(K,R), of the continuous functions K → R, for
some compact Hausdorff space K, if and only if it is commutative and

(i) ∀a ∈ A, a2 + 1 has an inverse.
(ii) ∀a ∈ A, ‖a2‖ = ‖a‖2.

6If X is a locally compact Hausdorff space, a function f : X → C vanishes at infinity iff ∀ε > 0 ∃K
compact subset of X such that |f(x)| < ε ∀x ∈ X∞ −K, where X∞ −K is a neighborhood of ∞ in
the one point compactification X∞ of X.
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3 Basic definitions and comments

A vector space A over a field F is called an algebra (over F ) iff
(i) there is a multiplication so that A becomes also a ring. The axiom of compatibility
of the two structures is

λ(xy) = (λx)y = x(λy)

for every λ ∈ F .
(ii) the multiplication is associative.
(iii) there is a unit (which is preserved under homomorphisms).
(iv) F is R or C.
So, A = (A,+, (F, ·), ·, 1).
A ∗-algebra A over C is a pair (A, ∗), where A is a complex algebra and an involution
∗ : A→ A which satisfies:

(i) (x+ y)∗ = x∗ + y∗

(ii) (λx)∗ = λ̄x∗, where λ̄ is the conjugate of λ.
(iii) (xy)∗ = y∗x∗

(iv) x∗∗ = x

A subalgebra B of A is called ∗-subalgebra iff it is ∗-closed (x ∈ B → x∗ ∈ B). A ∗-ideal
of A is an ideal of A satisfying the same condition. A ∗-homomorphism ϕ between ∗-
algebras is an algebra homomorphism such that ϕ(x∗) = ϕ(x)∗. A ∗-algebra A over R
is defined in a similar way.

An algebra with a norm A (over F ) is a vector space with a norm such that A is also
an F -algebra. The compatibility axioms of the two structures are:

(i) ‖xy‖ ≤ ‖x‖‖y‖
(ii)7 ‖1‖ = 1

If (A, ‖.‖) is also a Banach space, then A is called a Banach algebra. An involution is
called isometrical iff ‖x∗‖ = ‖x‖. A normed ∗-algebra is an algebra with a norm, which
is also a ∗-algebra. We do not set here compatibility axioms. A Banach ∗-algebra is a
normed ∗-algebra which is a Banach algebra. A ∗-Banach algebra is a Banach ∗-algebra
in which ∗ is isometrical.
A B∗-algebra is a Banach ∗-algebra satisfying the following property (Rickart 1946):

‖x∗x‖ = ‖x‖2

Two normed ∗-algebras A and B are isometrically ∗-isomorphic iff there is a ∗-
isomorphism θ : A → B which is also an isometry (‖θ(x)‖ = ‖x‖). So θ is an iso-
morphism with respect to both the ∗-structure and the ‖.‖-structure.

A normed ∗-algebra A satisfies the C∗-condition iff

‖x∗x‖ = ‖x∗‖‖x‖ , ∀x ∈ A

A C∗-algebra is a Banach ∗-algebra satisfying the C∗-condition8. A fundamental ex-
ample of a C∗-algebra is B(H). A ‖.‖-closed ∗-subalgebra of B(H) is called a concrete

7Sometimes this property is excluded and a normed algebra satisfying it is called unital.
8The term C∗-algebra was introduced by Segal in [Segal 1947b].
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C∗-algebra9. A von Neumann algebra (or a W ∗-algebra) is a ∗-subalgebra of B(H)
which contains the identity operator and it is closed with respect to the weak operator
topology (WOT)10.

Comment 1: We have defined an algebra to be a vector space which is also a ring and
not a ring which is also a vector space since
(i) there are non-associative algebras, while the multiplication is always associative in
a ring.
(ii) as we saw in the historical development of the theory of BA it was the ring structure
(i.e., the multiplication) that was added on the structure of the vector space.

Comment 2: An ideal I ⊆ A of A is a non-empty subspace of A (as a vector space)
and an ideal of the ring A. Trivially, A/I is an algebra, the quotient algebra of A and
I.
So an ideal of the algebra A is also an ideal of the ring A. The inverse holds if A has
a unit, since if I is an ideal of the ring A it is also closed with respect to the scalar
multiplication.

1 ∈ A→ λi = λ(1i) = (λ1)i ∈ I
Comment 3: Since an algebra A is a special group, the representation theorem of
Cayley (every group is embedded to its group of transformations) applies to A. If
1 ∈ A, the function L : A→ L(A),

x 7→ Lx Lx(y) = xy

is an embedding of A into the algebra L(A) of linear transformations of A. L is called
the (left) canonical representation of A. We shall refer to the canonical representation
of A later.

Comment 4: The hypothesis that all algebras have a unit is harmless, since we can
construct a unit as in the case of a ring without a unit. Namely, if A is an algebra
without a unit, we consider A1 = A× F which is a vector space as a product of vector
spaces and its multiplication is defined by

(a, λ) (b, µ) = (ab+ µa+ λb, λµ)

This multiplication follows supposing (a, λ) and (b, µ) to be like a + λ1, b + µ1 and
multiplying as usual. A1 is obviously an algebra with unit the pair (0, 1) and A is
identified with A × {0}. In this sense, it is easy to see that A is a maximal ideal of
A1

11.
If A is also a normed space such that ‖xy‖ ≤ ‖x‖‖y‖, we define the following norm on
A1:

‖(a, λ)‖1 = ‖a‖+ |λ|
The identification between A and A × {0} becomes then an isometry (‖(a, 0)‖1 =
‖a‖+ |0| = ‖a‖). It is also easy to see that ‖.‖1 produces the product topology on

9The ‖.‖-closed part of the definition explains the C symbol of a C∗-algebra.
10WOT is the weakest topology under which the functions T → (Tx, y) are continuous, T ∈ B(H).

von Neumann used the term rings of operators for them.
11Let M an ideal which strictly contains A × {0} and (a, λ) ∈ M − (A× {0}). Then λ−1(a, λ) ∈

M − (A× {0}), therefore ∃ (b, 1) ∈M − (A× {0}). Since (−b, 0) ∈ A× {0}, (b, 1) + (−b, 0) ∈M , but
(b, 1) + (−b, 0) = (0, 1), i.e., the unit of the algebra. Then M = A1.
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A1 = A× F . But since product topology is the topology of pointwise convergence it is
trivial to check the following equivalence:

(an, λn)
‖.‖1→ (a, λ)⇔ an

‖.‖→ a ∧ λn
|.|→ λ

So, A1 is a Banach space iff A is a Banach space. Also, A1 is commutative iff A is
commutative.
‖.‖1 is not the only one appropriate norm. Every norm which (i) turns A1 into a Ba-
nach space, (ii) gives the norm of A if it is restricted to A and (iii) defines the product
topology, is a right one.
Of course, the usual procedure of completion of a normed space applies to a normed
algebra leading to a Banach algebra.

Comment 5: C over C is the simplest complex Banach algebra, while C and R over
R are the simplest real Banach algebras.
In bibliography usually only complex Banach algebras are defined. The general impres-
sion becomes then that Banach algebras are essentially complex objects i.e., that many
results concerning complex Banach algebras do not have a real analogue. Quite often
though, there is a real analogue, with a different formulation.
The relation between real and complex Banach algebras is not like the relation between
real and complex Banach spaces, where the same facts hold, but it is close to the rela-
tion between the fields R and C. The two major differences between R and C, namely:

(i) R is not algebraically closed, while C is its algebraic closure, and
(ii) R has a complete order, while C cannot be an ordered field,

influence the relation between real and complex Banach algebras.

Comment 6: The involution mapping on a complex algebra is obviously the abstract
version of the conjugate function z 7→ z on complex numbers. This is the first indication
of what we said earlier about the theory of BA being a general theory about C. We
shall encounter many other indications of this in the course of these notes, but at the
same time we shall find differences between them too. It is trivial to see that

(i) ∗ : A→ A is 1-1 and onto A
(ii) 0∗ = 0
(iii) 1∗ = 1

Having C as our model we define the following kinds of elements of an abstract ∗-
algebra:

(i) x is called self-adjoint or hermitian iff x∗ = x.
(ii) x is called normal iff x∗x = xx∗.
(iii) x is called a projection iff x∗ = x and x2 = x.
(iv) x is called unitary iff x∗x = xx∗ = 1.
(v) x is called anti-hermitian iff x∗ = −x.

Of course these concepts have their origin to the corresponding kinds of bounded oper-
ators of a Hilbert space H. But even the elements of C can be seen as such operators,
as we have indicated in Comment 3.
If we use the symbols Her(A), Nor(A), P r(A), Un(A), Her−(A) for the sets of the el-
ements of A satisfying (i)-(v), then, obviously, all of them are subsets of Nor(A).
The elements of C are all normal, but this is not the case in an abstract ∗-algebra.
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In analogy to the following well known facts about complex numbers:

(i) z = Rez + Imz
(ii) Rez = z+z

2
and Imz = z−z

2i

(iii) Rez ∈ Her(C) and Imz ∈ Her−(C)

we can write an element of an abstract ∗-algebra as the following sum

x =
x+ x∗

2
+
x− x∗

2

where x+x∗

2
∈ Her(A) and x−x∗

2
∈ Her−(A). If A was a complex ∗-algebra then the

above analysis can be written:

x =
x+ x∗

2
+
x− x∗

2i
i

since charC 6= 2, therefore 1
2

is meaningful. As in the case of C the above analysis is
unique. To show this it suffices to show that 0 has a unique analysis. If 0 = a+ b where
a∗ = a and b∗ = −b, then a = −b. But a∗ = (−b)∗ = −b∗ = −(−b) = b = −a, which is
absurd. We used the property

(−x)∗ = −x∗

which holds, since (x− x)∗ = (x+ (−x))∗ = x∗ + (−x)∗ = 0∗ = 0.
We also note that the product of two elements x = a+ b and y = c+ d, where a, c ∈
Her(A) and b, d ∈ Her−(A) cannot be written as such a sum with respect to a, b, c, d
unless the ∗-algebra is commutative (like C).
Since the self-adjoint elements of C are the elements of R, the self-adjoint elements of
an ∗-algebra is the “R-part” of the algebra.
Since

Her(A) ∩Her−(A) = {0} (1)

and the above analysis is unique, then

A = Her(A)⊕Her−(A)

In general, Nor(A) is not a subalgebra of A, though it is ∗-closed and x ∈ Nor(A)→
λx ∈ Nor(A). It is trivial to see that:

(i) for two normal elements their sum and product are normal iff each one commutes
with the conjugate of the other, and
(ii) an element of A is normal iff its real (x+x

∗

2
) and complex part (x−x

∗

2i
i) commute.

(iii) Nor(A) is subalgebra of A iff Nor(A) = A12

Unitary elements of A generalize the most important subset of C after R, the unit circle
(the complex numbers ‖z‖ = 1). The elements of the unit circle satisfy

‖z‖ = 1↔ zz = zz = 1

If A is a B∗-algebra and x is unitary element of A then

xx∗ = x∗x = 1→ ‖z‖ = 1

12We use (1) and the fact that Her(A) and Her−(A) are subsets of Nor(A).
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since ‖xx∗‖ = ‖x‖2 = 1, therefore ‖x‖ = 1. Generally, the inverse does not hold.
So, in the theory of BA, which we consider as an abstract version of C we find that
Banach algebras do not behave like C all the time.
This relation of closeness and distance between the theory of BA and C is shown by
the following example:

If T is a bounded operator T : H → H on a Hilbert space H, then

T is unitary iff T is an isometrical isomorphism of H onto itself.

Let A be a B∗-algebra and u a unitary element of A, so that ‖u‖ = 1. If we consider
again the mapping

u 7→ Lu Lu(x) = xu

we see that
‖Lu(x)‖ = ‖xu‖ ≤ ‖u‖ ‖x‖ = ‖x‖

Since Lu∗ ◦ Lu = Lu∗u = L1 and L1(x) = x, then

‖x‖ = ‖L1(x)‖ = ‖Lu∗ ◦ Lu‖ = ‖Lu∗(Lu(x))‖ ≤ ‖Lu∗‖ ‖Lu(x)‖ = ‖Lu(x)‖

since, as we shall see later
‖Lx‖ = ‖x‖

therefore,
‖Lu∗‖ = ‖u∗‖ = 1

So, we proved that
‖Lu(x)‖ = ‖x‖

i.e., Lu is an isometry whenever u is unitary.
Also, Lu is an isomorphism, since

(i) Lu is 1-1, since it is an isometry.
(ii) Lu is onto A, since Lu(u

∗x = u(u∗x) = x.

The inverse though, does not hold i.e.,

Lu may be an isometrical isomorphism without u being a unitary element.

If A is a B∗-algebra and Lu is an isometrical isomorphism of A onto itself, then Lu is
not unitary (L∗u = Lu∗), since, generally, the norm of A is not generated by an inner
product, as in the B(H)-case.
We see that Banach algebras is an evolved way to talk about C or B(H), without being
though, a simple generalization.

Comment 7: The mapping x 7→ Lx is an isometrical isomorphism of A on a Banach
subalgebra of B(A). the bounded operators on A since,

‖Lx(y)‖ = ‖xy‖ ≤ ‖x‖ ‖y‖

therefore Lx is bounded and ‖Lx‖ ≤ ‖x‖. Also, since Lx(1) = x1 = x and ‖1‖ = 1 we
take the inverse inequality

‖Lx(1)‖ = ‖x‖ ≤ sup{‖Lx(y)‖| ‖y‖ = 1} = ‖Lx‖

11



In that way we may identify the abstract Banach algebra A with a concrete Banach
algebra of operators on A. This is a first but quite trivial representation theorem for A
It is trivial since B(A) is also an abstract Banach algebra, which does not give informa-
tion on A. If we compare this representation with the Gelfand-Naimark representation
we shall see the difference. In the commutative case we enter into C(K,C), where K is a
compact Hausdorff space, while in the general case we enter into B(H) for some Hilbert
space H. Of course, in order to do this it is necessary to represent only C∗-algebras.
The L-representation is not an essential representation the way the Gelfand-Naimark
representation is.

Comment 8: Property ‖xy‖ ≤ ‖x‖‖y‖ of a normed algebra guarantees that multipli-
cation is jointly continuous with respect to x, y, namely

(xn → x ∧ yn → y)⇒ xnyn → xy

since

‖xnyn − xy‖ = ‖xnyn + xny − xny − xy‖ = ‖xn(yn − y) + (xn − x)y‖

≤ ‖xn(yn − y)‖+ ‖(xn − x)y‖ = ‖xn‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖

since ‖xn‖ is bounded.
If the involution is isometric, then ‖x∗‖ = ‖x‖ guarantees the continuity of the involu-
tion ∗. Namely, we wish to show

xn → x⇒ x∗n → x∗

which is obvious, since

‖x∗n − x∗‖ = ‖(xn − x)∗‖ = ‖xn − x‖

Moreover, in that case ∗ is a homeomorphism since ∗−1 is ∗ itself.

Comment 9: In the next proposition we show that a B∗-algebra is a special kind of
C∗-algebra.

Proposition 3.1: If A is B∗-algebra, then the elements of A satisfy the following
properties:

(i) ‖x∗‖ = ‖x‖
(ii) ‖x∗x‖ = ‖x∗‖‖x‖ (i.e., the C∗-condition)
(iii) if x is a normal element of A, then ‖x2‖ = ‖x‖2

Proof: (i) Using the B∗-condition and the normed algebra inequality we get ‖x‖2 =
‖x∗x‖ ≤ ‖x∗‖ ‖x‖, so

‖x‖ ≤ ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖

(ii) Because of (i), the B∗-condition ‖x∗x‖ = ‖x‖2 becomes ‖x∗x‖ = ‖x∗‖ ‖x‖, which
is exactly the C∗-condition.
(iii) From the normed algebra condition we get ‖x2‖ ≤ ‖x‖2. For the inverse inequality
we use the B∗-condition :

‖x∗‖2‖x‖2 = (‖x∗‖‖x‖)2 = ‖x∗x‖2 = ‖(x∗x)∗x∗x‖
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= ‖x∗xx∗x‖ = ‖x∗x∗xx‖ = ‖(x2)∗x2‖ = ‖(x2)∗‖ ‖x2‖

= ‖(x∗)2‖ ‖x2‖ ≤ ‖x∗‖2‖x2‖

Therefore ‖x‖2 ≤ ‖x2‖.
We are now in position to put more clearly the relation between R and Her(A) and to
give even simpler proofs to the generalizations of the following two propositions on the
operators of a Hilbert space:

(H1) The self-adjoint operators of B(H) is a closed real subspace of B(H), therefore it
is a real Banach space, which contains the identity.
(H2) The set of normal operators of B(H) is a closed subset of B(H) (which contains
Her(A)).

Proposition 3.2: If A is normed ∗-algebra such that ‖x∗‖ = ‖x‖ (or with a continuous
involution), then:

(A1) Her(A) is a closed R-subspace of A. So, if A is a Banach algebra (like B(H)),
then Her(A) is a real Banach space.
(A2) Nor(A) is a closed subset of A.

Proof: (i) If xn ∈ Her(A) and xn → x, then x∗n → x∗ and since xn = xn, then x∗ = x.
(ii) If xn ∈ Nor(A) and xn → x, then x∗n → x∗ and x∗nxn → xnx

∗
n. Since multiplication

is continuous x∗nxn → x∗x and xnx
∗
n → xx∗ we get x∗x = xx∗.

Comment 10: The non-commutative Gelfand-Naimark theorem connects an abstract
C∗-algebra to a concrete C∗-algebra. Every C∗-algebra is isomorphic (with respect to
the whole of its structure) to a C∗-subalgebra of B(H) for some Hilbert space H.

Note that if xn a sequence in A which satisfies the C∗-condition, such that xn
‖.‖→ x,

then x also satisfies the C∗-condition.
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4 Examples

The following examples of Banach algebras belong to different areas of mathematical
analysis, which are unified in the theory of BA. Generally, there are three kinds of
examples depending on the way which the multiplication is defined.

(I) Operator Algebras: Multiplication is defined as composition. Unit 1 is always
the identity operator I.
Let X be a normed space. The set B(X) of linear and bounded operators T , where

‖T‖ = sup{‖Tx‖ | x ∈ X ∧ ‖x‖ ≤ 1}

is a normed algebra since,

‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖

⇒‖TS‖ ≤ ‖T‖ ‖S‖

Also, since ‖Ix‖ = ‖x‖ ≤ ‖x‖, then ‖I‖ ≤ 1 and since ‖x‖ = ‖Ix‖ ≤ ‖I‖ ‖x‖, then
1 ≤ ‖I‖.
B(X) is a Banach algebra iff X is a Banach space.
If X = Kn, where K = R or C, then B(X) = Kn×n, since every linear mapping from
Kn to Kn is continuous (i.e., bounded) and these mappings are isomorphic to the n×n
matrices with K-entries.

If H is a Hilbert space, then B(H) is a Banach algebra. To show that B(H) is an
∗-algebra we use the representation theorem of Riesz.

Riesz representation theorem: F is a bounded linear functional on a Hilbert space
H (F ∈ H∗) iff there exists a unique vector z in H such that F (x) = Fz(x) = < x, z >,
x ∈ H, where <,> is the inner product in H. Also, ‖F‖ = ‖z‖.
Let T ∈ B(H). If we fix y ∈ H, then the linear mapping

x 7→ < Tx, y >

is a functional on H. By Riesz representation theorem there is a unique z such that

< Tx, y > = < x, z >

. We define then T ∗ : H → H, the adjoint of T , by T ∗y = z and the pervious equality
becomes

< Tx, y > = < x, T ∗y >,

the definitional equality of T ∗. This natural definition of T ∗ cannot be given in an
abstract Banach space the norm of which does not come from an inner product. B(H)
is C∗-algebra since the following hold:

Proposition 4.1: (i) ‖T ∗‖ = ‖T‖.
(ii) ‖T ∗T‖ = ‖T‖2.
Proof: (i)

‖T ∗x‖2 = < T ∗x, T ∗x > = < TT ∗x, x > ≤ ‖TT ∗x‖ ‖x‖
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(using the Cauchy-Schwarz inequality

| < x, y > | ≤ ‖x‖ ‖y‖

and the fact that< TT ∗x, x > = ‖T ∗x‖2 ≥ 0). And since, ‖TT ∗x‖ ‖x‖ ≤ ‖T‖ ‖T ∗‖ ‖x‖
we get ‖T ∗x‖ ≤ ‖T‖ ‖x‖ i.e, ‖T ∗‖ ≤ ‖T‖. Using the ∗-property

T ∗∗ = T

and applying the last inequality we get

‖T ∗∗‖ = ‖T‖ ≤ ‖T ∗‖.

(ii) From the normed algebra inequality and the (i) case

‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ = ‖T‖2.

The inverse inequality is proved as in the (i) case.

‖T ∗x‖2 = < T ∗x, T ∗x > = < TT ∗x, x > ≤ ‖TT ∗x‖ ‖x‖ ≤ ‖TT ∗‖ ‖x‖2

Since ‖T ∗x‖2 ≤ ‖T ∗‖2 ‖x‖2 we get ‖T ∗‖2 = ‖T‖2 ≤ ‖TT ∗‖.
(II) Function Algebras: Multiplication is defined pointwisely and the unit is “essen-
tially” the constant function 1.

(A) If X is a non-empty set, then l∞(X,F ) is the set of all bounded functions f : X →
F , which becomes a Banach algebra with

‖f‖ = sup{|f(x)| |x ∈ X}

We can see l∞(X,F ), or simpler l∞(X), in a more general setting.
If (X,F , µ) is a measure space and f : X → F is a measurable function, then we define
the essential supremum of f by

‖f‖∞ = inf{r| r ∈ [0,+∞] : µ({x ∈ X | |f(x)| > r}) = 0}.

The term is justified by the fact that the set of the elements of X for which f is not
bounded by ‖f‖∞ is of zero measure. f is called essentially bounded iff ‖f‖∞ < ∞.
Let L∞(µ) be the set of essentially bounded measurable functions. Then, L∞(µ) is
an algebra with ‖f‖∞ as a semi-norm, since ‖f‖∞ = 0 9 f = 0 (just take a function
being 0 everywhere, except a subset of measure 0 on which it is constant). Defining the
equivalence relation f ∼ g ↔ f = g µ-a.e., the quotient L∞(µ) = L∞(µ)/ ∼ becomes
a Banach algebra with ‖[f ]‖ = ‖f‖∞. It is easy to see that ‖[f ]‖ is well defined
and it is actually a norm. That L∞(µ) is a Banach space is a special case of Riesz-
Fischer theorem for Lp(µ) spaces, 1 ≤ p ≤ ∞. On the other hand, the normed algebra
properties are straightforward.
Unit is the class [1]. To show

‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞

we work as follows.

‖f‖∞ = infF F = inf{r1| r1 ∈ [0,+∞] : µ({x ∈ X | |f(x)| > r1}) = 0}
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‖g‖∞ = infG G = inf{r2| r2 ∈ [0,+∞] : µ({x ∈ X | |f(x)| > r2}) = 0}

‖fg‖∞ = infF ◦G F ◦G = inf{r| r ∈ [0,+∞] : µ({x ∈ X | |f(x)g(x)| > r}) = 0}

Since F,G are subsets of positive reals infF infG = infFG. It suffices to show

r1 ∈ F, r2 ∈ G⇒ r1r2 ∈ F ◦G⇒ infF ◦G ≤ infFG = infF infG.

If r1 ∈ F , then µ(F1) = 0, where

F1 = {x ∈ X : |f(x)| > r1}.

If r2 ∈ G, then µ(G2) = 0, where

G2 = {x ∈ X : |g(x)| > r2}.

In order r1r2 belongs to F ◦G we must show that

µ({x ∈ X | |f(x)g(x)| > r1r2}) = 0.

Let x ∈ X such that |f(x)g(x)| > r1r2. Necessarily then, x belongs either to F1 or to
G2 (otherwise |f(x)| < r1 and |g(x)| < r2). So, {x ∈ X | |f(x)g(x)| > r1r2} ⊆ F ∪G,
therefore it is of measure 0 and r1r2 belongs to F ◦G.

If (X,F , µ) = (X,P(X), ν) where ν(A) is n, if A has n elements and ν(A) is ∞, if A is
infinite, then

L∞(ν) = L∞(ν) = l∞(X)

and the L∞(µ)-case is a generalization of the l∞(X)-case. To see this let f : X → F be
a measurable function. Then,

‖f‖∞ = inf{r| r ∈ [0,+∞] : ν({x ∈ X | |f(x)| > r}) = 0}.

But,
ν({x ∈ X | |f(x)| > r}) = 0⇔ {x ∈ X | |f(x)| > r} = ∅

⇔ (∀x) x ∈ X |f(x)| ≤ r

So, when f is essentially bounded, then f is bounded. Also,

‖f‖∞ = inf{r| r ∈ [0,+∞] : |f(x)| ≤ r, ∀x ∈ X} = sup{|f(x)| | x ∈ X}.

To show that mathcalL∞(ν) = L∞(ν) it suffices to show that [f ] = {f}. But

ν({x ∈ X : f(x) 6= g(x)}) = 0⇔ {x ∈ X : f(x) 6= g(x)} = ∅ ⇔ f = g.

(B) Let X be a topological space. The space Cb(X) of continuous and bounded func-
tions f : X → K is a closed subalgebra of l∞(X), therefore it is a Banach algebra. As
we shall show later Cb(X) is actually C(βX), where βX is the Stone-C̆ech compactifi-
cation of X (without loss of generality X is considered to be compact Hausdorff space).
If X is a singleton, then Cb(X) is C (if K is C).

(C) The space C1[a, b] of continuously differentiable functions f : [a, b]→ K is a Banach
space, where

||f || = ||f ||∞ + ||f ′||∞.
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It is also a Banach algebra since,

||fg|| = ||fg||∞ + ||(fg)′||∞ = ||fg||∞ + ||fg′ + f ′g||∞ ≤

||f ||∞||g||∞ + ||fg′||∞ + ||f ′g||∞ ≤
||f ||∞||g||∞ + ||f ||∞||g′||∞ + ||f ′||∞||g||∞ ≤

||f ||∞||g||∞ + ||f ||∞||g′||∞ + ||f ′||∞||g||∞ + ||f ′||∞||g′||∞ = ||f ||||g||.
Also,

||1|| = ||1||∞ + ||1′||∞ = ||1||∞ = 1.

(D) Example of a Banach algebra without a unit: Let X is a locally compact,
not compact, Hausdorff space and

C0(X) = {f | f ∈ C(X), f vanishes at infinity},

where “f vanishes at infinity” means that ∀ε > 0,∃K, K is a compact subset of X
such that, |f(x)| < ε, for each x in X −K. If X∞ is the one-point compactification of
X, then f vanishes at infinity iff limx→∞f(x) = 0. Thus,

C0(X) = {f | f ∈ C(X∞), f(∞) = 0}.

C0(X) is a closed subalgebra of C(X∞), therefore a Banach algebra, without a unit.
To show this we view C0(X) as a maximal ideal of C(X∞). We know that if K is a
compact Hausdorff space, then the sets

Mx = {f | f ∈ C(K), f(x) = 0}

are maximal ideals of C(K). Hence,

C0(X) = M∞

i.e., C0(X) is a maximal ideal of C(X∞), which is an algebra with a unit, therefore, the
ideal of the ring C(X∞) is also an ideal of the algebra C(X∞). Of course M∞ has no
unit, since limx→∞1(x) = 1 6= 0.
C0(X) is closed in C(X∞), since, if (fn)n is a sequence in C0(X) and fn → f with
respect to ||.||∞, then fn → f pointwisely. Thus, fn(∞)→ f(∞), therefore, f(∞) = 0
13.
The unitization of C0(X) is obviously C(X∞) 14 and we get the “identification”

C(X∞) = {f | f ∈ C(X), ∃limx→∞f(x)}.
13We may prove that M∞ is closed as follows: M∞ is a maximal ideal of C(X∞), which is a Banach

algebra with a unit. The closure of M∞ is also an ideal, of which we do not know if it is proper. It
can be proved though, that if A is a Banach algebra with 1 and M is a proper ideal of A, then M is
also proper. Thus, M∞ is proper and maximal, therefore, it is closed.

14C(X∞) and C0(X)×K are actually the “same”. We define

e : C0(X)×K → C(X∞),

where
(f, k) 7→ f̃ + k1,

and f̃ : X∞ → K, such that f̃ |X = f . e is a ring (and algebras) isomorphism such that

e(0, 1) = 0̃ + 11 = 1

and the two norms are equivalent.
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N is a locally compact, non-compact Hausdorff space, for which

C0(N) = {f | f : N→ K, limn→∞f(n) = 0} = c0,

and
C(N∞) = {f | f : N→ K, ∃limn→∞f(n)} = c.

Proposition 4.2: C0(X) has a unit such that ||1|| = 1 iff X is compact.

Proof: Let C0(X) has such a unit. Since C0(X) is a maximal (proper) ideal of C(X∞),
having a unit makes it identical to C(X∞), therefore X = X∞.
If X is compact, then taking K = X, |f(x)| < ε, for each x in ∅ = X −X. Therefore,
1 is trivially in C0(X).

(E) If A is the algebra of all complex polynomials in [0, 1] i.e.,

p(x) =
N∑
n=0

anx
n, an ∈ C, x ∈ [0, 1],

with the sup norm, then A is a commutative normed algebra with a unit, which is not
complete.

(F) Let D = {z| z ∈ C : ||z|| ≤ 1}. Then,

H(D) = {f | f ∈ C(D) : f |Do is holomorphic}

is a subalgebra of C(D). Combining Cauchy-Goursat and Morera’s theorem we get
that a uniform limit of holomorphic functions is holomorphic, therefore H(D) is closed
in C(D), i.e., it is a Banach algebra, and it is called the disc algebra.

If in examples (II) (A)-(C) K = C, then an involution f 7→ f ∗ is defined, where
f ∗(x) = f(x). H(D) is not closed under ∗, since z 7→ z is not holomorphic. In H(D)
we define the following involution

f ∗(z) = f(z).

Also, if K = C, algebras L∞(µ) and Cb(X) are C∗-algebras, but C1[a, b] and H(D) are
not15, satisfying though the weaker condition ||f ∗|| = ||f ||.
Next algebra is on {0, 1}. Each Boolean algebra “is” a Boolean ring i.e., a ring with
unit, such that x2 = x, for each x. Multiplication is automatically commutative and by
defining

||x|| =
{

1 , if x 6= 0
0 , if x = 0

and x∗ = x, it becomes a C∗-algebra.

(III) Group Algebras: Multiplication is the operation of convolution. These algebras
do not always have a unit.
(A) If G = {g1, g2, ..., gn} is a finite group, we define

L1(G) = {f | f : G→ C}.
15Consider for example f(t) = t− a for C1[a, b], and f(z) = z + i for H(D).
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Addition and multiplication are defined pointwisely. With the norm

||f || =
n∑
i=1

|f(gi)|

L1(G) becomes a Banach space.
The definition of convolution is understood if we see an element f of L1(G) as a sum

n∑
i=1

aigi, ai = f(gi).

In that way we define

(
n∑
i=1

aigi)(
n∑
j=1

bjgj) =
n∑
k=1

ckgk,

where
ck =

∑
gigj=gk

aibj.

I.e., the coefficient of gk, the value of convolution of two functions on gk, is the sum of
all products aibj for which gigj = gk. Thus, we define the convolution of f and g to be

(f ∗ h)(gk) =
∑

gigj=gk

f(gi)h(gj).

Since gigj = gk, gi = gkg
−1
j , and (f ∗ h)(gk) is written

(f ∗ h)(gk) =
n∑
j=1

f(gkg
−1
j )h(gj).

Convolution is defined so that G “enters” L1(G). Each element gi of G can be seen as
the following element of L1(G):

f(gk) =

{
0 , if k 6= i
1 , if k = i

By that way e : G→ L1(G) is established, where gi 7→ e(gi) and e(gi)(gk) is defined as
above.
It is easy to see that

e(gigj) = e(gi)e(gj)

and if gi0 is the identity element of G, then e(gi0) is the unit of L1(G) with respect to
∗. Obviously, every element of G has norm 1 as an element of L1(G), therefore its unit
has also norm 1. Also,

||f ∗ h|| =
n∑
k=1

|(f ∗ h)(gk)| =

n∑
i=1

|
∑

gigj=gk

f(gi)h(gj)| ≤
n∑
k=1

∑
gigj=gk

|f(gi)h(gj)| ≤
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n∑
k=1

∑
gigj=gk

|f(gi)||h(gj)| ≤ ||f ||||h||.

Therefore, L1(G) is a Banach algebra.

(B) If G = Z, then

L1(Z) = {f | f : Z→ C :
∑
k∈Z

|f(k)| <∞}.

L1(Z) is a commutative Banach algebra with norm

‖f‖ =
∑
k∈Z

|f(k)|

and multiplication the convolution operation

(f ∗ g(n)) =
∑
k∈Z

f(n− k)g(k).

(C) If in L1(λ), the set of Lebesgue-integrable functions, we define the convolution to
be

(f ∗ g)(x) =

∫
f(x− y)g(y)dλ(y),

∀x ∈ R for which the mapping

y 7→ f(x− y)g(y)

is λ-integrable, and f ∗ g = 0, for all the rest x ∈ R, which are of Lebesgue measure 0,
then L1(λ) becomes an algebra Banach.

(D) If G is a locally compact Hausdorff topological group and µ is a left Haar measure
on G, then L1(G), the set of all classes of complex Borel-measurable functions on G,
such that ∫

G

|f |dµ <∞,

then L1(G) is a Banach space with operations pointwisely defined and with norm

||f || =
∫
G

|f |dµ.

With multiplication

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dµ(y),

it becomes a Banach algebra, known as “group algebra”, which generally has no unit
and it is not commutative. L1(G) is central to harmonic analysis.
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5 Spectrum

We know that if λ ∈ R and |λ| < 1, then the geometric series
∞∑
n=0

λn

converges, and
∞∑
n=0

λn =
1

1− λ
.

The above fact is generalized in Banach algebras.

Proposition 5.1: If A is a Banach algebra and a ∈ A, such that ||a|| < 1, then 1− a
is invertible, the series

∞∑
n=0

an

converges, and
∞∑
n=0

an = (1− a)−1.

Proof: Since
∞∑
n=0

||an|| ≤
∞∑
n=0

||a||n

and ||a|| < 1 the series converges absolutely, and since A is a Banach space, it converges.
Also,

(1− a)
∞∑
n=0

an =
∞∑
n=0

an −
∞∑
n=1

an = a0 = 1.

Similarly,
∞∑
n=0

an(1− a) = 1.

Therefore, the needed equality is proved.

Many of the following results rest on the previous fact, in which the completeness of a
Banach space was crucial.

Proposition 5.2: If A is a Banach algebra and

U(A) = {a| a ∈ A, a is invertible},
then U(A) is an open set of A.

Proof: Proposition 5.1 is equivalent to

||1− a|| < 1⇒ a ∈ U(A)

i.e., the ball of the unit with radius 1 is a subset of U(A). Let a0 ∈ U(A) 16. Consider
the ball with center a0 and radius 1

||a−1
0 ||

. Then,

||a− a0|| <
1

||a−1
0 ||

16U(A) is non-empty, since invertibility presupposes the existence of a unit, which is trivially in
U(A).
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implies that
||a−1

0 a− 1|| = ||a−1
0 (a− a0)|| ≤ ||a−1

0 ||||a− a0|| < 1.

Therefore, a−1
0 a ∈ U(A). But then a ∈ U(A), since a = a0(a

−1
0 a) i.e., since a is written

as the product of two invertible elements.

Proposition 5.3: If A is a normed algebra, then the operation −1 : U(A) → U(A),
where a 7→ a−1, is continuous.

Proof: (i) Let A be a Banach algebra.
We show first that −1 is continuous at 1.
If ε > 0, we need to find δ > 0 such that ||a− 1|| < δ ⇒ ||a−1 − 1|| < ε. If δ ≤ 1, then

||a− 1|| < δ ⇒ a−1 =
∞∑
n=0

(1− a)n.

Therefore,

||a−1 − 1|| = ||
∞∑
n=1

(1− a)n|| ≤
∞∑
n=1

||(1− a)n|| ≤

∞∑
n=1

||(1− a)||n <
∞∑
n=1

δn =
δ

1− δ
= ε,

if we choose δ = ε
1+ε

.
Let a 6= 1 in U(A) and an → a, where an ∈ U(A). Then,

ana
−1 → 1⇒ (ana

−1)−1 → 1⇔ aa−1
n → 1⇒

a−1(aa−1
n )→ a−1 ⇔ a−1

n → a−1.

(ii) If A is a normed algebra, then −1 is the restriction of −1 on U(A) to U(A), where
A is the completion A. Therefore −1 is continuous.
Also, since −1 is identical to its inverse, it is also a homeomorphism of the topological
group U(A) onto itself.

If a is invertible in A does not entail that it is invertible in every subalgebra of A.
Likewise, a non-invertible element of a subalgebra of A may be invertible in A. E.g.,
if P [0, 1] is the algebra of polynomials on [0, 1] with complex values, then p(x) = x+ 1
is not invertible in P [0, 1] but it is in C[0, 1], which includes P [0, 1]. There are certain
non-invertible elements of a normed algebra A though, which remain non-invertible in
each normed algebra which contains A. Such elements are the topological divisors of
zero.
An element z of a normed algebra A is called a topological divisor of zero iff there is
sequence (zn) of elements of A, such that ||zn|| = 1 and znz → 0 or zzn → 0. Obviously,
a divisor of zero is a topological divisor of zero. If

Z(A) = {z| z ∈ A, z is a topological divisor of zero}

and
S(A) = {a| a ∈ A, a is not invertible},

then
Z(A) ⊆ S(A).
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To show this we suppose that a topological divisor of zero z is in U(A). Since

znz → 0⇒ (znz)z−1 → 0⇔ zn → 0,

||zn|| cannot be 1. Thus, a topological divisor of zero is a non-invertible element of
A and it is also a topological divisor (hence a non-invertible element) of any normed
algebra containing A.

Proposition 5.4: If M is a maximal ideal of a Banach algebra A, then M is closed
in A.

Proof: It suffices to show that M is not A. If that was true, then there would be
a sequence (xm) in M , such that xn → 1. By the aforementioned reformulation of
Proposition 5.1, all elements xn, for which ||xn − 1|| < 1, are invertible, which is
absurd, since M is a proper ideal of A.

If a is an element of an algebra A the spectrum of a is the set

sp(a) = {λ| λ ∈ K, a− λ1 is not invertible}.

Spectrum depends on algebraA, so if necessary spA(a) may be used. If B is a subalgebra
of A, then, obviously,

spA(a) ⊆ spB(a),

where a ∈ B.

Example 1: Consider the algebra B(X), where dim(X) < ∞. If f ∈ B(X), then
λ ∈ sp(f) iff f − λ1 is not invertible iff f − λ1 is not 1 − 1 iff Ker(f − λ1) 6= {0} iff
∃x 6= 0 : f(x) = λx. I.e., the spectrum of f is the set of eigenvalues of f , which is
exactly the set of roots of the characteristic polynomial of f . Therefore, sp(f) is finite.
If K = C, then the fundamental theorem of algebra implies that sp(f) 6= ∅. If K = R,
then sp(f) may be empty. E.g., matrix

in R2×2 has x2 + 1 as characteristic polynomial, therefore it has no eigenvalues.

Example 2: If dim(X) < ∞ and f ∈ B(X), then f may be 1 − 1 but not onto X,
i.e., there may exist spectrum values which are not eigenvalues. E.g., the shift operator
S ∈ B(l2), where

S(x1, x2, ..., xn, ...) = (0, x1, x2, ..., xn, ...),

is an isometry (||S(x)|| = ||x||), therefore it is 1 − 1, but it is not onto l2, since
(1, 0, 0, ..., 0, ...) /∈ S(l2). Moreover, it is easy to see that S has not eigenvalues at
all, while17

λ ∈ sp(S)⇔ |λ| ≤ 1.

Thus, the spectrum of an operator may be infinite, while, even in the complex case, its
set of eigenvalues is empty.

Example 3: If f ∈ Cb(X), then λ /∈ sp(f) ⇔ 1
f−λ1

is defined everywhere and it is

bounded⇔ ∃M > 0 ∀x ∈ X 1
|f(x)−λ| ≤M ⇔ ∃ε > 0 ∀x ∈ X |f(x)− | ≥ ε⇔ λ /∈ f(X).

Thus,
sp(f) = f(X).

17These facts hold in both real and complex l2.

23



If X is compact, then
sp(f) = f(X).

Hence, if f ∈ H(D), then sp(f) = f(D), and if f ∈ C[a, b], then sp(f) = f([a, b]).

Example 4: This example shows the dependence of the spectrum on the algebra. From
the maximum principle, if f is in H(D), then

||f ||∞ = max{|f(z)| | |z| = 1}.

We then define,
T : H(D)→ C(∂D), f 7→ f |∂D.

T is an isometric embedding, therefore H(D) is identical to a closed subalgebra of
C(∂D). Considering the identity function on D, f(z) = z, then f ∈ H(D), and

spH(D)(f) = f(D) = D

while,
spC(∂D)(f) = f(∂D) = ∂D.

The term spectrum derives from Physics. In quantum mechanics observables are rep-
resented by self-adjoint operators on a Hilbert space. The spectrum of an operator is
interpreted as the set of values which result from the measurement of a magnitude, such
as energy. The measurement of energy, because of formulas like

E = hν,

is reduced to measurements of frequency of some transmitted radiation. The view we
get from the study of radiations is called spectrum and shows in which frequencies we
get radiation.

Proposition 5.5: If A is a Banach algebra and a ∈ A, then sp(a) is a compact subset
of K.

Proof: Since
sp(a) = {λ| λ ∈ K, a− λ1 ∈ A− U(A)},

sp(a) is the inverse image of a closed set under the continuous function λ 7→ a − λ1,
therefore it is closed. It is also bounded, since

λ ∈ sp(a)⇒ |λ| ≤ ||a||.

If |λ| > ||a||, then ||λ−1a|| < 1, therefore 1− λ−1a is invertible, i.e., a− λ1 is invertible,
which is absurd.

In non-complete algebras all the above results fail. As we have already mentioned,
(P [0, 1], ||.||∞) is a non-complete normed algebra. Since

U(P [0, 1]) = {λ1| λ ∈ K− {0}},

U(P [0, 1]) has an empty interior, hence it is not open. If p(t) = t
2
, then ||p||∞ = 1

2
< 1,

but 1− p is not invertible. If degp ≥ 1, then sp(p) = C, which is unbounded.

Next proposition refers exclusively to complex normed algebras.
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Proposition 5.6: If A is a complex normed algebra and a ∈ A, then

sp(a) 6= ∅.

Proof: We shall need the following generalization of Liouville’s theorem:

Lemma: If X is a complex normed space and f : C → X holomorphic and bounded,
then f is constant.

Proof of Lemma: Suppose that f is not constant. I.e., there are λ, µ ∈ C such
that f(λ) 6= f(µ). By Hahn-Banach theorem there is ϕ∗ ∈ X∗: ϕ(f(λ)) 6= ϕ(f(µ)).
Obviously, ϕ◦f : C→ C is holomorphic and bounded, therefore, by Liouville’s theorem,
constant, which contradicts our hypothesis.

Going back to the proof of Proposition 5.6, suppose that sp(a) = ∅. We then define
f : C→ A

f(λ) = (a− λ1)−1.

It suffices to show that f is holomorphic and bounded (because then, it must be con-
stant, which is absurd, since f is 1− 1).
We show first that f is holomorphic.

f(λ)− f(λ0)

λ− λ0

=
(a− λ1)−1 − (a− λ01)−1

λ− λ0

=

(a− λ1)−1(a− λ01)−1 (a− λ01)− (a− λ1)

λ− λ0

=

(a− λ1)−1(a− λ01)−1 (λ0 − λ)

λ− λ0

1 =

(a− λ1)−1(a− λ01)−1 λ→λ0→ (a− λ01)−2.

The above route is similar to the calculation of the derivative at λ0 of f : C−{0} → C,
f(λ) = 1

a−λ . Thus,

lim
λ→λ0

f(λ)− f(λ0)

λ− λ0

= (a− λ01)−2,

using the continuity of function −1. Hence, f is holomorphic.
Also, since

lim
λ→∞

f(λ) = lim
λ→∞

(a− λ1)−1 =

lim
λ→∞

[λ(λ−1a− 1)]−1 = lim
λ→∞

λ−1(λ−1a− 1)−1 = 0,

since limλ→∞ λ
−1 = 0 and limλ→∞ λ

−1a− 1 = 0, therefore, limλ→∞(λ−1a− 1)−1 = −1.
Thus, for each ε > 0 there is K compact subset of C such that for each λ ∈ C−K
|f(λ)| < ε. I.e., f is bounded in C−K. But since f is holomorphic, it is also continuous,
therefore f(K) is a bounded set. Hence, f is bounded.

There are elementary, though longer, proofs of the above result avoiding Liouville’s
theorem, the involvement of which seems mysterious. But this is not true. Proposition
5.6 is the generalization of the well known fact that each complex matrix has eigenvalues,
which is proved through the fundamental theorem of algebra, the shortest proof of which
is through Liouville’s theorem!
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Proposition 5.7 (Gelfand-Mazur): If A is a complex division normed algebra, then
A is isometrically isomorphic to C.

Proof: If a ∈ A, then sp(a) 6= ∅. I.e., there is λ ∈ C such that a− λ1 = 0. Thus,
a = λ1. The mapping

λ 7→ λ1

is an isometric isomorphism from C into A. Actually, it is the unique homomorphism
of C-algebras from C into A. I.e., the identification between A and C is natural.

We also write down without proof the real analogue to the Gelfand-Mazur theorem.

Proposition 5.8: If A is a division real normed algebra, then A is algebraically iso-
morphic to R,C or H, where H is the algebra of quaternions.
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6 Spectral radius

If A is a complex Banach algebra and a ∈ A, then the spectral radius of a is

r(a) = sup{|λ| | λ ∈ sp(a)}.

Obviously, the concept of spectral radius is well defined by the non-emptiness of the
spectrum and its compactness. Of course,

r(a) ≤ ||a||,

as we have seen in the proof of Proposition 5.5.
Our aim is to prove a formula about spectral radius (Proposition 6.1). Although there
is an elementary proof of that, the use of the theory of holomorphic functions valued
in a Banach space is more enlightening. This theory, at the extent needed here, is a
simple generalization of classical complex analysis.
Its methods are basically two: either we repeat classical proofs replacing the absolute
values with norms or we combine the classical result with Hahn-Banach theorem gen-
eralizing it in Banach spaces. We have already encountered an example of the second
case in the lemma of Proposition 5.6. The reason that Hahn-Banach theorem plays
such a role is that, if G ⊆ C, open, X is a complex Banach space and f : G → C,
holomorphic, then for each ϕ ∈ X∗, ϕ ◦ f : G→ C is holomorphic.
Also, if γ : [a, b]→ C a C1 closed curve and f : γ([a, b])→ X continuous, then for each
ϕ ∈ X∗, ϕ ◦ f : γ([a, b])→ C is continuous and∫

γ

(ϕ ◦ f)(z)dz = ϕ(

∫
γ

f(z)dz).

Obviously, ∫
γ

f(z)dz

is the limit of the following Riemann sums

n∑
i=1

f(γ(ξi))(γ(ti)− γ(ti−1)),

where {a = t0 < t1 < ... < tn = b} is a partition of [a, b] and ξi a selection of intermediate
points. The limit is taken as max{ti − ti−1 | i = 1, 2, ..., n} → 0.
Another example of the above method is the following:
If G ⊆ C, open, X is a complex Banach space and f : G → C is holomorphic, and
γ : [a, b] → C a curve on which classical Cauchy theorem is applicable, then for each
ϕ ∈ X∗,

ϕ(

∫
γ

f(z)dz) =

∫
γ

(ϕ ◦ f)(z)dz = 0,

therefore ∫
γ

f(z)dz = 0.

Using the above methods we can show the following results:
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(I) If X is a complex Banach space, (an) a sequence of elements of X and z0 ∈ C, then
the radius of convergence of the power series

∞∑
n=0

an(z − z0)
n

is
R = (limsup||an||

1
n )−1,

where 0,∞ are inverse of each other. Function f : B(z0, R)→ X with

f(z) =
∞∑
n=0

an(z − z0)
n

has derivative of every order, and for each n, an = f (n)(z0)
n!

. This implies that f is
uniquely represented as a power series.

(II) If X is a complex Banach space, G ⊆ C open, and f : G → C holomorphic, then
f is representable as a power series in G i.e., for each z0 ∈ G, for each r > 0 such that
B(z0, r) ⊆ G, there is a sequence (an) in X, such that

f(z) =
∞∑
n=0

an(z − z0)
n,

for each z ∈ B(z0, r). Hence, applying (I) on f , f has derivative of each order and the
coefficients an are uniquely determined.

Proposition 6.1: If A is a complex Banach algebra and a ∈ A, then

limn→∞||an||
1
n

exists, and
r(a) = limn→∞||an||

1
n = infn≥1||an||

1
n .

Proof: We need the following lemma:

Lemma: If A is an algebra, a ∈ A, λ ∈ sp(a) and n ∈ N, then λn ∈ sp(an).

Proof: Since
an − λn1 = (a− λ1)(an−1 + λan−2 + ...+ λn−1)

= (an−1 + λan−2 + ...+ λn−1)(a− λ1),

then, if an − λn1 was invertible, a− λ1 would be invertible too, which is absurd, since
λ ∈ sp(A).

Continuing the proof of Proposition 6.1, if λ ∈ sp(a), then λn ∈ sp(an), hence, |λn| ≤
||an|| i.e., |λ| ≤ ||an|| 1n . Therefore, r(a) ≤ infn≥1||an||

1
n ≤ liminf ||an|| 1n . So, it suffices

to show that
limsup||an||

1
n ≤ r(a).

Then, limn||an||
1
n exists, since liminf ||an|| 1n = limsup||an|| 1n and actually limn||an||

1
n =

r(a).
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By result (I) though, limsup||an|| 1n = 1
R

, where R is the radius of convergence of power
series

∞∑
n=0

anzn.

Thus, it suffices to show that 1
R
≤ r(a). But, if ||za|| < 1,

∞∑
n=0

anzn =
∞∑
n=0

(za)n = (1− za)−1.

Function
z 7→ (1− za)−1

is defined on the open set G = {z| z ∈ C : 1− za ∈ U(A)} and it is holomorphic (this
can be proved in the same way we proved that λ 7→ (a− λ1)−1 was holomorphic in
Proposition 5.6). So, by result (II) it is representable by power series in B(0, r), for
each r > 0 such that B(0, r) ⊆ G. This power series is

∑∞
n=0 a

nzn, due to uniqueness
mentioned in result (I). I.e., if |z| < r, then

∑∞
n=0 a

nzn converges. Hence, B(0, r) ⊆ G
implies that r ≤ R. Consequently, if R < r, then B(0, r) ( G, i.e., there is z with
|z| < r and z /∈ G. Then, z 6= 0 and if λ = 1

z
, then λ ∈ sp(a), since

z /∈ G⇔ (1− za)−1 /∈ U(A)⇒ za− 1 /∈ U(A)⇒ a− 1

z
1 /∈ U(A).

Thus, |λ| ≤ r(a), and since by hypothesis |z| < r, 1
r
< 1
|z| = |λ| i.e., 1

r
< r(a).

So, we have shown that for each r > R, 1
r
< r(a). Taking the limit rn → R, where

rn > R, we reach
1

R
= limn

1

rn
≤ r(a). �

By its definition the spectral radius of a is the radius of the smallest closed circular disc
in C, with 0 as its center, which contains sp(a). By Proposition 6.1 we see that r(a) is
computed independently from sp(a).
Another important feature of the formula

r(a) = limn→∞||an||
1
n

is that it connects the algebraic structure of A, within which sp(a) and r(a) are defined,
with the metric structure of A, since its right hand part depends on the norm structure
of A. Obviously, the quantity

limn→∞||an||
1
n

is the same for all norms which define a Banach algebra-structure on A.
Also, the r(a) formula shows that spectral radius, contrary to spectrum, does not
depend on the algebra in which a is contained. I.e., if A is a complex Banach algebra
and B a closed subalgebra of A such that a ∈ B, then

rA(a) = rB(a).

It is also possible that a 6= 0 and r(a) = 0. Equivalently, a 6= 0 and sp(a) = {0}. E.g.,

a =

(
0 1
0 0

)
6= 0

and sp(a) = {0}. If r(a) = 0, then a is called generalized nilpotent. Obviously, if a is
nilpotent i.e., there is some n such that an = 0, then r(a) = 0.
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7 Hermitian and Symmetric algebras

First, we prove some properties of the spectrum.

Proposition 7.1: If a, b belong to an algebra A, then

sp(ab) ∪ {0} = sp(ba) ∪ {0}.

Proof: It suffices to show that sp(ba)− {0} ⊆ sp(ab)− {0} i.e., if ab−λ1 is invertible,
then ba−λ1 is invertible, or equivalently, if ab−1 is invertible, then ba−1 is invertible,
or equivalently, if 1− ab is invertible, then 1− ba is invertible.
If ||ab|| < 1 and ||ba|| < 1, then

(1− ab)−1 = Σ∞n=0(ab)
n = 1 + ab+ abab+ ababab+ ...

(1− ba)−1 = Σ∞n=0(ba)n = 1 + ba+ baba+ bababa+ ...

= 1 + b(1a) + b(ab)a+ b(abab)a+ ...

= 1 + b(1 + ab+ abab+ ...)a

= 1 + b(1− ab)−1a.

It is really trivial to check that if 1−ab is invertible, then 1+ b(1−ab)−1a is the inverse
of 1− ba.�
It is natural to ask for examples of algebras for which the equivalence

0 ∈ sp(ab)⇔ 0 ∈ sp(ba)

holds and of algebras for which doesn’t.
If A,B ∈ Kn×n, then 0 /∈ sp(AB) ⇔ A is right-invertible and B is left-invertible ⇔
A,B are invertible ⇔ BA is invertible ⇔ 0 /∈ sp(BA).
On the other hand, if S is the shift operator in l2,

S(x1, x2, ..., xn, ...) = (0, x1, x2, ..., xn, ...)

and S∗ its conjugate,

S∗(x1, x2, ..., xn, ...) = (x2, x3, ..., xn, ...),

then
SS∗(x) = (0, x2, x3, ..., xn, ...)

S∗S(x) = (x1, x2, ..., xn, ...) = I(x).

Hence, since S∗S is invertible, 0 /∈ sp(S∗S), while 0 ∈ sp(SS∗), since SS∗ is not
invertible.

Proposition 7.2: If A is an algebra and a ∈ A, then

sp(a+ λ1) = sp(a) + λ.
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Proof: Obviously, if µ ∈ sp(a), then µ+ λ ∈ sp(a+ λ1) and if µ ∈ sp(a+ λ1), then
µ− λ ∈ sp(a).�
Proposition 7.3: If A is a complex Banach algebra and λ 6= 0, then there are no
a, b ∈ A such that

ab− ba = λ1.

Proof: If there were such a and b, then, by Proposition 7.2, sp(ab) = sp(ba) + λ,
which is absurd by Proposition 7.1 and the compactness and the non-emptiness of the
spectrum.�
Proposition 7.3 derives from physics. In Quantum Mechanics observables position and
momentum are described as operators P and Q, respectively, on a complex Hilbert
space, satisfying Heisenberg’s relation

QP − PQ = i}I,

where } = h
2π

and h is Planck’s constant. Proposition 7.3 shows that P and Q are not
elements of a Banach algebra, therefore, they cannot be both bounded.

Proposition 7.4: If A is Banach algebra, B a closed subalgebra of A and a ∈ B, using
the symbols

α = spA(a) β = spB(a),

then
∂β ⊆ ∂α ⊆ α ⊆ β.

Proof: We only need to show that ∂β ⊆ ∂α. If λ ∈ ∂β, then λ ∈ β and there exists a
sequence (λn) in C− β such that λn → λ. But if (λn) ∈ C− β, then (λn) ∈ C− α. So,
in order to show that λ ∈ ∂α it suffices to show that λ ∈ α. Suppose that λ /∈ α i.e.,
a− λ1 ∈ U(A). Since λn → λ and −1 is continuous, then

(a− λn1)−1 → (a− λ1)−1,

where (a−λn1)−1 is a sequence of elements of B and (a− λ1)−1 ∈ B, since B is closed,
which is absurd, since λ ∈ β.�.
We see that the spectrum of an element of an algebra Banach B is shortened when
we compute it with respect to a larger Banach algebra A containing B. Its boundary
though, does not vanish, only it is shortened, it is as if a hole is being created. As we
have seen in Example 4 of Section 5,

H(D) � C(∂D)

and if a = id, then α = ∂D, β = D, while ∂α = ∂D and ∂β = ∂D.
By Proposition 7.4, if intβ = ∅, then ∂β = ∂α = α = β. E.g., if β ⊆ R, then α = β,
since intβ = ∅ in C (of course here A and B are considered to be complex Banach
algebras). Additionally, if β is a countable set, then intβ = ∅ and again α = β.

Proposition 7.5: If A is complex Banach algebra and a ∈ A, then for each closed
subalgebra B of A with a ∈ B

spA(a) = spB(a)⇔ C− spA(a) is connected.
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Proof: We shall only prove the (⇐) direction since the other one is more difficult and
we wont use it here.
Suppose that B is a closed subalgebra of A, a ∈ B and spA(a) ( spB(a). Since
C − spB(a) is open, it suffices to show that spB(a) − spA(a) is open, reaching then an
absurdity. Suppose λ ∈ β − α. By Proposition 7.4, λ /∈ ∂β. Hence,

β − α = intβ − α = intβ ∩ (C− α),

which is, of course an open set.�
We see that if A = C(∂D) and B = H(D), then spA(id) = ∂D. But C− spA(id) is not
connected, which is compatible with the known fact spB(id) 6= spA(id).
Also, if α ⊆ R or α is a finite set, then C−α is arcwise connected, therefore connected,
which gives again the left part of the above equivalence.

Proposition 7.6: If A is an algebra and B is a closed subalgebra of A, then

U(B) = U(A) ∩B ⇔ ∀a ∈ B, spA(a) = spB(a).

Proof: (⇒) If λ ∈ spB(a)− spA(a), then (a− λ1) /∈ U(B) which is equivalent to
(a− λ1) ∈ U(B)

′
, where U(B)

′
= U(A)

′ ∪B′ , therefore (a− λ1) ∈ U(A)
′
, which is

absurd.
(⇐) Generally, U(B) ⊆ U(A) ∩B. Suppose b ∈ (U(A) ∩B)− U(B). Then b =
(b+ λ1)− λ1 ∈ U(A), hence λ /∈ spA(b+ λ1). Also, (b+ λ1)− λ1 /∈ U(B), therefore
λ ∈ spB(b+ λ1), which is absurd.�
Proposition 7.7: If A is a ∗-algebra and B is a ∗-subalgebra of A, the following are
equivalent:

(i) If a ∈ B and a is invertible in A, then a is also invertible in B.
(ii) If a ∈ B and λ ∈ spB(a), then λ ∈ spA(a).
(iii) If a ∈ B and a∗ = a, where a is invertible in A, then a is invertible in B.
(iv) If a ∈ B, a∗ = a and λ ∈ spB(a), then λ ∈ spA(a).

Proof: By Proposition 7.6 it suffices to show the implication (iii) ⇒ (i). Suppose
a ∈ B. Then by the hypothesis of (i)a−1 is in A. a∗a is self-adjoint and belongs to
B. Also, (a∗)−1 is in A, since (a∗)−1 = (a−1)∗. Thus, (a∗a)−1 is in A and therefore
(a∗a)−1 is in B. Moreover (a∗a)−1 = a−1(a−1)∗. Since a ∈ B, a(a−1a−1)∗ ∈ B, therefore
(a−1)∗ ∈ B and consequently a−1 ∈ B.�

If A is a complex ∗-algebra, then A is called Hermitian iff for each a ∈ A such that
a∗ = a,

sp(a) ⊆ R.
The following examples motivate the above definition:

If A = C, then a∗ = a⇔ sp(a) ⊆ R⇔ a ∈ R.
If A = Cb(X), then f ∗ = f ⇔ f(X) ⊆ R⇔ f(X) ⊆ R⇔ sp(f) ⊆ R.
If A = B(X), then if T ∗ = T , then it is easy to see that the set of eigenvalues of T is
a subset of R and less easily that the spectrum of T is a subset of R. More generally,
we have the following result.

Proposition 7.8: Every complex C∗-algebra is Hermitian.

Proof: Suppose A is a complex C∗-algebra, a ∈ A, hermitian, and λ+ µi ∈ sp(a),
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where µ 6= 0. Then, λ+ (µ+ n)i ∈ sp(a+ ni1) for each n in Z. Hence, by Proposition
7.5,

|λ+ (µ+ n)i|2 ≤ ||a+ ni1||2 = ||(a+ ni1)∗(a+ ni1)||

= ||a2 + n21|| ≤ ||a||2 + n2.

I.e., λ2 + µ2 + n2 + 2µn ≤ ||a||2 + n2, i.e., λ2 + µ2 + 2µn ≤ ||a||2, which is absurd, since
µ 6= 0.�
If we consider the algebra H(D), then if f(z) = z, f ∗ = f and sp(f) = D ( R. This
does not contradict the last result, since H(D) is not a C∗-algebra.

Proposition 7.9: If A is a complex ∗-algebra, the following are equivalent:

(i) A is Hermitian.
(ii) For each a in A such that a∗ = a, i /∈ sp(a).
(iii) For each a in A such that a∗ = a, a2 + 1 is not invertible.

Proof: (i) ⇒ (ii) is trivial.
(ii)⇒ (iii): If i /∈ sp(a), then i = −i /∈ sp(a) (we use here the obvious equality sp(a∗) =
sp(a)). a2 + 1 can be written as a2 + 1 = (a− i1)(a+ i1). Since a− i1, a+ i1 ∈ U(A),
a2 + 1 ∈ U(A) too.
(iii) ⇒ (ii): Since (a− i1), (a + i1) commute and a2 + 1 ∈ U(A), then a− i1, a+ i1 ∈
U(A) too.
(ii)⇒ (i): If λ ∈ R− {0}, since λ−1 ∈ Her(A), λ−1 − i1 ∈ U(A), therefore, λλ−1 − i1 =
a− λi1 ∈ U(A)⇔ λi /∈ sp(a). If µ+ λi ∈ sp(a), then λi ∈ sp(a− µ1), which is absurd,
since a− µ1 ∈ Her(A).�
Proposition 7.10: If A is a complex Banach ∗-algebra and B a closed ∗-subalgebra
of A, then, if A is Hermitian, then B is Hermitian too, and for each a in B:

spA(a) = spB(a).

Proof: Just use our second remark following Proposition 7.5 for the implication in
question, while Proposition 7.7 suffices for the equality of the spectrums.�
Proposition 7.11: If A is a complex Banach C∗-algebra and B a closed ∗-subalgebra
of A, then B, which is of course a C∗-algebra too, satisfies

spA(a) = spB(a),

for each a in B.

Proof: Proposition 7.10 is enough, since every complex C∗-algebra is Hermitian.�
If A is a complex ∗-algebra, an element a of A is called positive iff there exists b in A
such that

a = b∗b.

This only one among the definitions of element positivity that can be found in the
literature.
If A is a complex ∗-algebra, A is called symmetric iff

sp(a) ⊆ [0,+∞),
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for each positive element of A.
The following examples motivate the above definition:

If A = C, then a is positive ⇔ a ≥ 0⇔ sp(a) ⊆ [0,+∞).
IfA = Cb(X), then f is positive⇔ f(X) ⊆ [0,+∞)⇔ f(X) ⊆ [0,+∞)⇔ sp(f) ⊆ [0,+∞).
If A = B(X), then it can be proved (less easily) that T is positive iff < Tx|x > ≥ 0,
for each x ∈ H iff T is normal and sp(T ) ⊆ [0,+∞).

Proposition 7.12: If A is a complex ∗-algebra the following are equivalent:

(i) A is symmetric.
(ii) For each a in A, −1 ∈ sp(a∗a).
(iii) For each a in A, 1 + a∗a ∈ U(A).

Proof: (i) ⇒ (ii) and (ii) ⇔ (iii) are trivial.
(ii) ⇒ (i): From (iii) of Proposition 7.9 we get that sp(a∗a) ⊆ R. Therefore, it suffices
to show that for each λ > 0, −λ /∈ sp(a∗a). Since λ−1a∗a is positive λ−1a∗a+ 1 ∈ U(A),
hence λ(λ−1a∗a+ 1) = a∗a+ λ1 ∈ U(A) ⇔ −λ /∈ sp(a∗a).�
It is obvious that in previous proof we of the fact that Proposition 7.12 (iii) gives Propo-
sition 7.9 (iii). I.e., the following is proved:

Proposition 7.13: If A is a complex ∗-algebra, then if A is symmetric, it is also Her-
mitian.

Proposition 7.14: If A is a complex Banach ∗-algebra and B is a closed ∗-subalgebra
of A, then, if A is symmetric, B is also symmetric and

spA(a) = spB(a),

for each a in B.

Proof: From the second remark following Proposition 7.5, spA(a∗a) ⊆ R+, hence
spB(a∗a) = spA(a∗a) ⊆ [0,+∞).
Equality is proved by Proposition 7.10,since a symmetric algebra is also Hermitian.

Obviously, H(D) is not symmetric algebra, since it is not Hermitian.

In 1943 Gelfand and Naimark proved the non-commutative representation theorem for
symmetric C∗-algebras. They conjectured though, that the symmetric property must
be proved from the rest axioms of a C∗-algebra. Actually, Fukamiya (1952), Kelly -
Vaught (1953), Kaplansky (1953) proved that:

a C∗-algebra is symmetric.

Also, in 1970 Shirali - Ford proved that, if A is a complex Banach ∗-algebra, then if A
is Hermitian, it is also symmetric.
Later (Proposition 9.3), we shall show that if A is a complex commutative Banach
∗-algebra, then if A is Hermitian, it is also symmetric.
In 1973 Wichmann found a complex Hermitian ∗-algebra (obviously not Banach) which
is not symmetric.
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8 Ideals

As we have already said at the beginning, a subset J of an algebra A is called an
ideal of A iff it is an ideal of the corresponding ring. Then,

j ∈ J, λ ∈ K ⇒ λj = (λ1)j ∈ J

i.e., J is a subalgebra and the quotient A/J is an algebra.
Also, if X is a normed space and Y a close subspace of X, then the quotient X/Y
becomes a normed space with norm

||[x]|| = inf{||x+ y||, y ∈ Y },

where [x] is the equivalence class of x. If X is a Banach space, X/Y is also a Banach
space.

If A is a normed algebra and J a closed ideal of A, the quotient A/J is a normed space
and also an algebra. Moreover, if J is proper, then A/J is also a normed algebra, since

||[x]|| ||[y]|| = inf{||x+ z||, z ∈ J}inf{||y + w||, w ∈ J} =

inf{||x+ z|| ||y + w||, z, w ∈ J} ≥
inf{||(x+ z)(y + w)||, z, w ∈ J} =

inf{||xy + zy + xw + zw||, z, w ∈ J} ≥
inf{||xy + z||, z ∈ J} =

||[x][y]||.
Also,

||[1]|| = inf{||1 + z||, z ∈ J} ≤ ||1 + 0|| = 1

and
||[1]|| = ||[1]2|| ≤ ||[1]||2 ⇒ 1 ≤ ||[1]||.

Note that J was considered proper because if it wasn’t A/J would be {0}, while we
defined a normed algebra to include always a unit.
If J is an ideal of A, then its closure is also an ideal and if A is a Banach algebra and
J is proper, then J is also proper, since

J ⊆ A− U(A)⇒ J ⊆ A− U(A).

In that we way we get another proof of the fact that a maximal ideal in a Banach
algebra is closed (Proposition 5.4).

If A is a commutative Banach algebra and J a maximal ideal of A, then the quotient
A/J is a Banach algebra and also a field. Recall that if A is a commutative ring with
a unit, then an ideal J of A is maximal iff A/J is a field. Hence, if A is a complex
algebra, then A/J is isomorphic to C, by Gelfand-Mazur theorem (Proposition 5.7).

If A is a C-algebra, then an ideal J of A is called a C-ideal iff A/J is isomorphic
(as a C-algebra) to C. Obviously, then there is a unique isomorphism of C-algebras
between A/J and C. Recall that if A is a C-algebra, there is a unique homomorphism
of C-algebras from C to A

λ 7→ λ1,
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and this homomorphism is unique iff it is onto A.
A C-ideal is maximal, since if A is a ring with a unit and J a proper ideal of A, then
J is maximal iff A/J is a simple ring i.e., it has one only proper ideal, and, of course,
a field is a simple ring.

A character of A is a homomorphism of C-algebras

ϕ : A→ C.

Since ϕ(A) is a C-algebra, ϕ is an epimorphism (the only, non-trivial subalgebra of C
is C). Hence its kernel, J = Kerϕ, is a C-ideal (A/Kerϕ ∼= Imϕ = C).
If Φ(A) denotes the set of all characters of A and MC(A) the set of all C-ideals of A,
the mapping Ker

Ker : Φ(A)→MC(A)

Ker(ϕ) = kerϕ,

is 1− 1 and onto MC(A).

(1− 1): Suppose Kerϕ = Kerϕ
′
. The mappings ϕ : A/kerϕ→ C and ϕ

′
: A/kerϕ

′ →
C, where

ϕ(a+ kerϕ) = ϕ(α), ϕ′(a+ kerϕ
′
) = ϕ

′
(α)

are equal, since the kernels are equal and the homomorphism of C-algebras from A/kerϕ
to C is unique. Therefore, ϕ and ϕ

′
are also equal.

(onto MC(A)): suppose J ∈ MC(A). Then there exists an isomorphism ϕ : A/J → C,
so, if we define ϕ : A→ C

ϕ(a) = ϕ(a+ J),

we get a character of A with J as its kernel.

Therefore, we have established a natural identification between characters and C-ideals
of A.
if M(A) denotes the set of all maximal ideals of A, then

MC(A) ⊆M(A).

The well-known theorem on the existence of maximal ideals guarantees that

M(A) 6= ∅.

As we have already seen, if A is commutative complex Banach algebra, then

MC(A) =M(A).

It is possible though, that MC(A) is empty, even if A is a complex Banach algebra (of
course, non-commutative). E.g., if we consider A = C2×2, then it suffices to show that
{0} is a maximal ideal of C2×2, while it is not a C-ideal i.e., there is no character of A.
Note that if ϕ is in MC(A) and a in A, then

ϕ(a) ∈ sp(a),

since, if ϕ(a) = λ, then ϕ(a− λ1) = 0, hence a − λ1 is not invertible. So, if A is a
Banach algebra, then

|ϕ(a)| ≤ ||a||
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i.e., ϕ is a continuous functional such that ||ϕ|| ≤ 1. Moreover, since ϕ(1) = 1,

||ϕ|| = 1.

Proposition 8.1: If A is a commutative complex Banach algebra and a ∈ A, the
following are equivalent:

(i) a is not invertible.
(ii) The ideal generated by a is proper.
(iii) There exists a maximal ideal M , such that a ∈M .
(iv) There exists a character ϕ of A, such that ϕ(a) = 0.

Proof: All the steps of the proof are elementary. Note that the implication (ii) ⇒ (iii)
makes use of Zorn’s lemma and the equivalence (iii) ⇔ (iv) uses the mapping Ker.�
Proposition 8.2: If A is a commutative complex Banach algebra and a ∈ A, then

sp(a) = {ϕ(a) | ϕ ∈M(A)}.

Proof: We have already shown that if ϕ ∈ M(A), then ϕ(a) ∈ sp(a). If λ ∈ sp(a),
a− λ1 is not invertible, therefore, by Proposition 8.1, there exists a character ϕ of A,
such that ϕ(a− λ1) = 0 i.e., ϕ(a) = λ.�
If A is a commutative complex Banach algebra, a ∈ A and ϕ ∈ M(A), then ϕ(a) ∈
sp(a). Hence,

ϕ ∈
∏
a∈A

sp(a)

I.e.,

M(A) ⊆
∏
a∈A

sp(a),

while
∏

a∈A sp(a) is equipped with the product topology, the smallest topology which
turns the projection mappings

πa :
∏
a∈A

sp(a)→ sp(a)

into continuous functions, and M(A) is equipped with the relative topology. Equiva-
lently, the product topology of

∏
a∈A sp(a) is the weak topology defined by all mappings

πa. Likewise, the topology of M(A) is the weak topology defined by the family of all
projection mappings â, a ∈ A,

â :M(A)→ C,

where â is the restriction of πa on M(A). Since the product topology is the topology
of pointwise convergence, if (ϕi)i∈I is a net in M(A) and ϕ ∈M(A), then

ϕi → ϕ⇔ ϕi(a)→ ϕ(a),

for each a in A.

sp(a) is a compact T2 space, for each a in A, therefore, by Tychonoff’s theorem,∏
a∈A sp(a) is a compact, and of course, T2 space.
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M(A) is a closed subspace of
∏

a∈A sp(a), since, if (ϕi)i∈I is a net inM(A) and ϕi → ϕ,
then ϕ ∈M(A), since e.g.,

ϕ(a+ b) = limiϕi(a+ b) = limi(ϕi(a) + ϕi(b))

= limiϕi(a) + limiϕi(b) = ϕ(a) + ϕ(b).

Therefore, M(A) is a compact T2 space.

For each ϕ in M(A), ϕ is a continuous mapping from A to C, hence we may view
M(A) as a subset of A∗, the dual space of A. In that way the topology just defined on
M(A) is the weak star topology w∗. By this compactness ofM(A) is closely connected
with

Alaoglou’s theorem: The closed unit ball of A∗ is w∗-compact.

Indeed, the proof of the compactness of M(A) we gave is completely analogous to
the proof of Alaoglou’s theorem. Moreover the compactness of M(A) is derived from
Alaoglou’s theorem, if we view M(A) as a w∗-closed subset of the closed unit ball of
A∗.
We can define onM(A) another natural topology which we shall study first in a more
general setting.

In subsequent Propositions 8.3-8.8 A is a commutative ring with a unit and if M(A)
is its set of maximal ideals and a ∈ A, we define

F (a) = {M | M ∈M(A), a ∈M}.

M(A) becomes a topological space if we consider the family

(F (a))a∈A

as a base for its closed sets. (F (a))a∈A can be considered first as a subbase for the
closed sets of some topology. Since though,

F (a1) ∪ ... ∪ F (an) = F (a, ..., an)

i.e., the finite unions of elements of the family belong to the family, (F (a))a∈A is also a
base for the closed sets of a topology. (F (a))a∈A is called the structure space of A and
the above topology is called Stone or Zariski topology.

Proposition 8.3: If X ⊆M(A), then the closure of X within the Zariski topology is

X = {M | M ∈M(A), M ⊇
⋂

X}.

Proof: Obviously,

{M | M ∈M(A), M ⊇
⋂

X} =
⋂
a∈X

F (a),

therefore {M | M ∈ M(A), M ⊇
⋂
X} is a closed set which contains X. We show

now that it is the smallest closed set containing X. If there is a closed set F such that
X ⊆ F (

⋂
a∈X F (a), then F itself is written within Zariski topology as

F =
⋂
b∈B

F (b).
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By hypothesis, there exists b ∈ B such that b /∈
⋂
X . But for each M

′
in X

M
′ ∈ F (b)⇔ b ∈M ′ ⇔ b ∈

⋂
X,

which is absurd.�
Proposition 8.4: If X ⊆M(A), then X is dense inM(A) within the Zariski topology
iff ⋂

X =
⋂
M(A).

Proof: X is dense in M(A) iff X = M(A) iff
⋂
a∈X F (a) = M(A) iff for each a in⋂

X, F (a) = M(A) iff
⋂
X ⊆

⋂
M(A). Since

⋂
X ⊇

⋂
M(A) always holds we get

the needed equality.�.
If S ⊆ A, the set

{M | M ∈
⋂
M(A),M ⊇ S}

is called hull of S, while the set ⋂
X

is called kernel of X. So, the closure of X is the hull of the kernel of X. That’s why
Zariski topology is sometimes called the hull-kernel topology.

Proposition 8.5: M(A) is a T1 space.

Proof:
{M} = {M ′ | M ′ ∈M(A),M

′ ⊇
⋂
{M}} =

{M ′ | M ′ ∈M(A),M
′ ⊇ {M}} = {M}. �

Proposition 8.6: M(A) is a T2 space iff for each pair M,M
′

of distinct maximal
ideals of A there exist a, a

′
in A, such that, a /∈M , a

′
/∈M ′

and aa
′ ∈
⋂
M(A).

Proof: Recall that a space Y is T2 iff for each y1, y2 ∈ Y there exist F1, F2 closed in Y
such that y1 /∈ F1, y2 /∈ F2 and F1 ∪ F2 = Y .
(⇒): Suppose that for a pair M,M

′
of distinct maximal ideals of A there exist F, F

′

closed in M(A) such that M /∈ F , M
′
/∈ F ′ and F ∪ F ′ =M(A). Equalities

F =
⋂
b∈B

F (b), F
′
=
⋂
d∈D

F (d)

show that B ⊆ M , D ⊆ M
′

and B ∪D ⊆ M
′′
, for each M

′′ ∈ M(A). There exist
though b in B such that b /∈ D and d ∈ D such that d /∈ B, therefore, b ∈M and b /∈M ′

,
while d ∈M ′

and d /∈M . But, bd ∈
⋂
M(A), since F (bd) = F (b) ∪ F (d) =M(A).

(⇐): If aa
′ ∈

⋂
M(A) then aa

′ ∈ M and aa
′ ∈ M

′
, hence, a

′ ∈ M and a ∈ M
′
,

since every maximal ideal is also prime. Thus, M /∈ F (a) and M
′
/∈ F (a

′
), but

F (a) ∪ F (a
′
) = F (aa

′
) =M(A).�

Space M(Z) with the Zariski topology is not T2, since Z is a semi-simple ring i.e.,⋂
M(Z) = {0}

and an integral domain. Thus, it cannot be T2 (a /∈M , a
′
/∈M ′

, but aa
′ ∈
⋂
M(Z) =

{0}, thus a = 0 or a
′
= 0, therefore, a ∈M or a

′ ∈M ′
, reaching a contradiction).
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Proposition 8.7: Suppose B ⊆ A. Then,⋂
(F (b))b∈B = ∅ ⇔ J(B) = A,

where J(B) is the ideal generated by B. Moreover, if J(B) = A, then there exists a
finite subfamily of (F (b))b∈B with a finite intersection too.

Proof: (⇒): Since, ⋂
b∈B

F (b) = {M | M ∈M(A), M ⊇ B} = ∅,

J(B) = A, otherwise J(B) would be contained in a maximal ideal by Zorn’s lemma.
(⇐): It is trivial.
If J(B) = A, then 1 ∈ J(B) i.e., there exist r1, ..., rn ∈ A and b1, ..., bn ∈ B such that
1 = r1b1 + ...+ rnbn, since A is a commutative ring with a unit. Then

J({b1, ..., bn}) = A ⇒
n⋂
i=1

F (bi) = ∅. �

Proposition 8.8: Every family of closed sets inM(A), satisfying the finite intersection
property, has a non-empty intersection. In other words,M(A) with the Zariski topology
is a compact space.

Proof: Suppose (Fi)i∈I is a family of closed sets in M(A). For each i ∈ I,

Fi =
⋂
b∈Bi

F (b).

By hypothesis (Fi)i∈I satisfies the finite intersection property. Suppose
⋂
i∈I Fi = ∅. If

we consider the family
(F (b))b∈Bi, i∈I ,

then ⋂
b∈Bi, i∈I

F (b) = ∅.

Then, by Proposition 8.7, there exists a subfamily F (bi1), ..., F (bin), with bi1 ∈ Bi1 , ..., bin ∈
Bin such that

n⋂
j=1

F (bij ) = ∅.

But,
n⋂
j=1

F (bij ) ⊇
n⋂
j=1

Fij = ∅,

which is absurd, since the family (Fi)i∈I satisfies the finite intersection property.�

It now arises the natural question on the relation between the w∗-topology initially
defined onM(A), where A is a complex commutative Banach algebra, and the Zariski
topology defined on M(A).
Consider the abstract basic closed set of the Zarisiki topology

F (a) = {M | M ∈M(A), a ∈M} = {ϕ| ϕ ∈ Φ(A), ϕ(a) = 0}.
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F (a) though is closed in w∗-topology, since, if (ϕi)i∈I is a net in F (a) and ϕi → ϕ, then

ϕi(a)→ ϕ(a)⇔ ϕ(a) = 0.

Thus, ϕ ∈ F (a), and the Zariski topology is weaker than the w∗-topology.
In special cases the two topologies are equal. As an example of this we prove the fol-
lowing proposition.

Proposition 8.9: If the complex commutative Banach algebra in question is A =
C(X), where X is a compact T2 space, then the Zariski topology and the w∗-topology
on M(A) are equal.

Proof: We shall establish a homeomorphism between X and Φ(C(X)) equipped with
both topologies, therefore M(C(X)), or Φ(C(X)), with the Zariski topology is home-
omorphic to Φ(C(X)) with the w∗-topology.

Consider first Φ(C(X)) with the w∗-topology. We define the following mapping

ϕ : X → Φ(C(X))

p 7→ ϕp,

where ϕp is a fixed character of C(X) i.e.,

ϕp(f) = f(p),

for each f ∈ C(X). ϕ is 1−1 and onto Φ(C(X)), since all characters on C(X) are fixed,
if X is a compact T2 space. Also, ϕ is continuous, since, if pi → p then f(pi) → f(p),
for each f in C(X), iff ϕpi

(f) → ϕp(f), for each f in C(X), iff ϕpi
→ ϕp, in the w∗-

topology. Since ϕ is a continuous 1 − 1 function from a compact space (X) onto a T2

space (Φ(C(X))), it is a homeomorphism.
We consider now Φ(C(X)) equipped with the Zariski topology. We define again ϕ :
X → Φ(C(X)), p 7→ ϕp. Then,

ϕ−1(F (f)) = ϕ−1({ϕp| ϕp(f) = f(p) = 0})

= {p| p ∈ X, f(p) = 0} = f−1({0}).

Hence, ϕ is a continuous function. In order to be a homeomorphism we have to prove
that the Zariski topology on Φ(C(X)) turns it to a T2 space. By Proposition 8.6 it
suffices to show that for each pair Mr,Mq of distinct maximal ideals, r 6= q, such that,
there exist f, g in C(X), such that, f /∈Mr, g /∈Mq and

fg ∈
⋂
p∈X

Mp

⇔ (fg)(p) = 0, ∀p ∈ X ⇔ fg = 0.

We see that if X is a compact T2 space, C(X) is semi-simple, since⋂
p∈X

Mp =
⋂
M(C(X)) = {0}.
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Since X is T2 there exist open sets Gp, Gq such that p ∈ Gp, q ∈ Gq and Gp ∩Gq = ∅.
But X is also a T3 1

2
, therefore there exist continuous functions f, g : X → [0, 1], such

that
f(q) = f(X −Gp) = 0, f(p) = 1,

g(p) = g(X −Gq) = 0, g(q) = 1.

Obviously, fg = 0.�
Next, we give an example of an algebra in which the Zariski topology is strictly weaker
than the w∗-topology.

Proposition 8.10: H(D) equipped with the Zariski topology is not T2, therefore it
cannot be equal to the w∗-topology, which is T2. Hence, since the Zariski topology is
always weaker than the w∗-topology, the Zariski topology in this case is strictly weaker
than the w∗-topology.

Proof: We show that H(D) is an integral domain i.e.,

ab = 0 ⇒ a = 0 ∨ b = 0

and semi-simple i.e., ⋂
M(H(D)) = {0}.

Then, by Proposition 8.6, H(D) cannot be T2, since if for each pair M,M
′

of distinct
maximal ideals of H(D) there exist a, a

′
in H(D), such that, a /∈ M , a

′
/∈ M

′
, then

it cannot be the case that aa
′ ∈

⋂
M(H(D)), because a /∈ M , a

′
/∈ M

′
mean that

a, a
′ 6= 0, while the semisimplicity of H(D) implies that if aa

′ ∈
⋂
M(H(D)), then, by

the integral domain property of H(D), aa
′
= 0 ⇒ a = 0 ∨ a′ = 0, which is, of course,

absurd.

H(D) is an integral domain: By the Identity Principle, if Ω ⊆ C is open and connected,
f : Ω→ C holomorphic and

Z(f) = {z| z ∈ Ω, f(z) = 0}

has an accumulation point in Ω, then f = 0.
Then, if f : Ω→ C holomorphic and f 6= 0, then Z(f) is a discrete space and countable.
Suppose f, g ∈ H(D). If f, g 6= 0, then f ◦, g◦ 6= 0, where f ◦ = f |D◦, since D = D◦

−
.

If fg = 0, then f ◦g◦ = 0. I.e., Z(f ◦g◦) = D◦, or Z(f ◦) ∪ Z(g◦) = D◦, which is absurd,
since Z(f ◦), Z(g◦) are countable. Therefore, f ◦ = 0 ∨ g◦ = 0, hence f = 0 ∨ g = 0.
H(D) is semi-simple: H(D) can be seen as a subalgebra of C(∂D). ∂D is a compact
T2 space, hence its space of maximal ideals is the space of its fixed maximal ideals,

M(C(∂D)) = {Md| d ∈ ∂D},

where
Md = {f | f ∈ C(∂D), f(d) = 0}.

It is clear that the sets

Md ∩H(D) = {f | f ∈ H(D), f(d) = 0}
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are the fixed maximal ideals of H(D). Later we shall show that these are exactly the
maximal ideals of H(D). But,⋂

d∈∂D

(Md ∩H(D)) = (
⋂
d∈∂D

Md) ∩H(D) = {0}.

Since, ⋂
d∈∂D

(Md ∩H(D)) ⊇
⋂
M(H(D)),

H(D) is semi-simple.�
If A is a commutative complex Banach algebra, A is called completely regular iff the
Zariski topology on M(A) equals the w∗-topology on M(A). We prove now the fol-
lowing simple characterization of a completely regular algebra.

Proposition 8.11: If A is a commutative complex Banach algebra, then A is com-
pletely regular iff the Zariski topology on M(A) is T2.

Proof: (⇒): Trivially, since the w∗-topology is T2.
(⇐): We consider the identity map

id : (M(A), w∗)→ (M(A), Z)

ϕ 7→ ϕ,

where Z denotes the Zariski topology on M(A). Since,

Z ⊆ w∗,

id is continuous, 1 − 1 and onto the T2 space, by hypothesis, (M(A), Z). Since
(M(A), w∗) is compact, id is a homeomorphism. Hence, id is open and w∗ ⊆ Z.
Therefore,

w∗ = Z. �

We see now how some of the above results apply on Boolean algebras.

A Boolean algebra B is a complemented distributive lattice. In a Boolean algebra the
complement of ana element is unique. A Boolean ring R is a ring with a unit in which
each element is idempotent i.e.,

a2 = a, ∀a ∈ R.

It is easy to see that in a Boolean ring

a+ a = 0,
ab = ba.

There is also a natural correspondence between Boolean algebras and Boolean rings
(isomorphic categories).
Many results of the theory of Boolean algebras can be seen as special cases of the theory
of Banach algebras. E.g., the following proposition can be proved trivially.

Proposition 8.12 (Mazur theorem for Boolean rings): If a Boolean ring is a
division ring (therefore, a field), then it is isomorphic to {0, 1}.
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Since a Boolean ring is a commutative ring with a unit, we can study its structure
space.
Proposition 8.13: If R is a Boolean ring, then

M ∈M(R)⇔ R/M ∼= {0, 1}.

Proof: The (⇒) direction uses the Mazur theorem for Boolean rings, while the (⇐)
direction is trivial, since {0, 1} is a field.�
By Proposition 8.13 in the theory of Boolean algebras the concepts of maximal ideal
and {0, 1}-ideal are identical.
A character ϕ of a Boolean ring R is a homomorphism of Boolean rings

ϕ : R→ {0, 1}.

Clearly, a character is an epimorphism. Since there is a unique isomorphism between
R/M and {0, 1}, the mapping

Ker : Φ(R)→M(R)

expresses the natural identification between the characters of R and its maximal {0, 1}-
ideals.
We may view a Boolean ring as an algebra over {0, 1} and then

sp(0) = {0}, sp(1) = {1}, sp(a) = {0, 1}, ∀a /∈ {0, 1}.

Obviously,
ϕ(a) ∈ sp(a)

and since for a Boolean ring R the following are equivalent:

(i) a 6= 1.
(ii) The ideal generated by a is proper.
(iii) There exists a maximal ideal which contains a.
(iv) There exists a character ϕ of R such that ϕ(a) = 0,

then
sp(a) = {ϕ(a)| ϕ ∈ Φ(R)}.

If R is considered with the discrete norm, ϕ is continuous and we may define on∏
a∈R

sp(a)

the product topology, or equivalently the w∗-topology and thenM(R) is a closed subset
of
∏

a∈R sp(a), therefore, it is a compact T2 space.
On M(R) we may define the Zariski topology Z.
Proposition 8.14: If R is a Boolean ring, then (M(R), Z) is a T2 space.

Proof: Obviously

M ∈M(R)⇔ ∀a ∈ R, a ∈M Y a
′ ∈M,

where a
′

is the complement of a. Then the criterion of Proposition 8.6 is trivially
satisfied.�

44



Hence, the identity map

id : (M(R), w∗)→ (M(R), Z)

ϕ 7→ ϕ

is a homeomorphism i.e.,
w∗ = Z.

In the next section we shall study the analogy between the Gelfand transform and the
Stone transform.
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9 The Gelfand transform

If A is complex commutative Banach algebra, the Gelfand transform of A is the
mapping

G : A→ C(M(A))

a 7→ â,

where
â(ϕ) = ϕ(a).

M(A) is equipped with the w∗-topology and by its definition it is obvious that â ∈
C(M(A)). G is, obviously, a homomorphism of C-algebras. Also

||â||∞ = sup{|ϕ(a)| | ϕ ∈M(A)}.

Therefore, G is continuous.
The Gelfand transform is analogous to the Alaoglou transform

A : X → C(SX∗ , w
∗)

x 7→ x̂,

where X is a normed space and

x̂(x∗) = x∗(x).

The Alaoglou transform is directly connected to the natural imbedding of X into X∗∗,
and it is a linear isometric imbedding. A expresses the fact that a normed space is
imbedded in C(K), where K is a compact Hausdorff space.
The analogy is stronger between the Gelfand transform and the Stone transform. If R
is a Boolean ring, the Stone transform of R is the mapping

S : A→ C(M(R))

a 7→ â,

where
â(ϕ) = ϕ(a),

and C(M(R)) is C(M(R), 2). If we consider R as an algebra over 2 = {0, 1} with the
discrete norm, then the Stone transform is also an isometry.

If A is a commutative algebra, the radical of A is

RadA =
⋂
M(A).

Obviously, A is semi-simple iff RadA = {0}.
If A is a complex commutative Banach algebra, then

kerG = RadA.

Obviously, G is 1− 1 iff A is semi-simple.

We examine now when G is a homeomorphic imbedding i.e., G is 1− 1 and G−1 is also

46



continuous.

Proposition 9.1: The following are equivalent:

(i) G is a homeomorphic imbedding.
(ii) G is 1− 1 and G(A) is closed.
(iii) G is 1− 1 and G(A) is a Banach space.
(iv) The mapping

r : A→ R

a 7→ r(a),

where r(a) is the spectral radius of a, is a norm on A, equivalent to its norm ||.||.
(v) r is a complete norm on A.
(vi) ∀a ∈ A, ∃M > 0 : ||a|| ≤Mr(a).
(vii) ∀a ∈ A, ∃K > 0 : ||a||2 ≤ K||a2||.
Proof: ((i)⇒(ii)) is trivial.
(ii)⇒(iii) is also trivial since C(M(A)) is a Banach algebra.
(iii)⇒(i): By the open mapping theorem.
(i)⇒(iv): It is obvious, since r(a) = ||â|| and by the continuity of G−1 we take the
unknown inequality for the equivalence of the two norms.
(iv)⇒(v): It is obvious, since completeness is preserved when the space is a Banach
space.
(v)⇒(i): G is 1 − 1, since r is a norm, and G−1 is continuous by the open mapping
theorem.
(iv)⇒(vi) is trivial.
(vi)⇒(vii): By Proposition 6.1 we get

||a|| ≤M ||a2||
1
2 ⇒ ||a||2 ≤M2||a2||

i.e., K = M2.
(vii)⇒(vi): We can easily see that

||a||2n ≤ K2n−1||a2n|| ⇒ ||a|| ≤ K
2n−1
2n ||a2n||

1
2n .

Therefore,
||a|| ≤ Kr(a).

(vi)⇒(iv): Obviously, r is a norm and it is equivalent to ||.||.�
Proposition 9.2: G is an isometric imbedding iff

||a2|| = ||a||2, ∀a ∈ A.

Proof: (⇒) is obvious, since the above property holds in C(M(A)).
(⇐): We can easily see that

||a2n|| = ||a||2n

.

Therefore,
||â|| = r(a) = lim||an||

1
n = lim||a2n||

1
2n = ||a||. �

We include here without proof the following classical theorems:
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The real Stone-Weierstrass Theorem (RSW): If X is a compact space and A a
subalgebra of C(X,R) which separates its points i.e.,

∀x, y ∈ X, x 6= y ⇒ ∃f ∈ A : f(x) 6= f(y),

then A is dense in C(X,R) with respect to ||.||∞.

The complex Stone-Weierstrass Theorem (CSW): If X is a compact space and
A a subalgebra of C(X,C) which separates its points and it is closed with respect to
∗, then A is dense in C(X,C) with respect to ||.||∞.

Let A be a complex commutative Banach algebra. Since G is a homomorphism of
algebras G(A) is a subalgebra of C(Φ(A)). Also, G(A) separates points, since if ϕ, ψ ∈
Φ(A) and ϕ 6= ψ, then there is an element a of A such that ϕ(a) 6= ψ(a) iff â(ϕ) 6= â(ψ).
In order to apply the complex case of Stone-Weierstrass theorem we need G(A) to be
closed with respect to ∗. That is satisfied if A is ∗-algebra and G preserves ∗. Next
proposition shows when G preserves ∗.
Proposition 9.3: Let A be a complex commutative Banach ∗-algebra. The following
are equivalent:
(i) G preserves ∗ i.e., â∗ = â∗, for each a in A.
(ii) For each ϕ in Φ(A) and a in A, ϕ(a∗) = ϕ(a).
(iii) For each ϕ in Φ(A) and a in Her(A), ϕ(a) ∈ R.
(iv) For each a in Her(A), sp(a) ⊆ R i.e., A is hermitian.
For each a in A 1 + a∗a is invertible i.e., A is symmetric.
If one (i)-(v) holds, then G(A) is ∗-closed, therefore

G(A) = C(C(A)).

Proof: The equivalence between (i) and (ii) is obvious. Likewise for the implication
(ii) ⇒ (iii). For the inverse consider a ϕ in M(A) and an a in A. Then, a =
a1 + ia2, a1, a2 ∈ Her(A) and

ϕ(a∗) = ϕ(a1)− iϕ(a2) = ϕ(a1) + iϕ(a2) = ϕ(a).

The equivalence between (iii) and (iv) derives from the fact that sp(a) = {ϕ(a) | ϕ ∈M(A)}
for the algebra A of our hypothesis. Implication (v) ⇒ (iv) is Proposition 7.13, while
the inverse expresses the fact that if A is a complex commutative and hermitian Banach
∗-algebra it is also it is also symmetric. We show this through (ii) i.e., (ii)⇒ ((v):

ϕ(1 + a∗a) = 1 + |ϕ(a)|2 > 0,

for each ϕ i.e., 1 + a∗a does not belong to any maximal ideal, therefore it is invertible.

Proposition 9.4: Let A be a complex commutative Banach algebra. Then G is an
isometrical isomorphism onto C(M(A)) iff there is ∗ : A → A which turns A into a
C∗-algebra (then G also preserves ∗).
Proof: (⇒) Obviously, this property holds on C(M(A)).
(⇐) Since A is commutative, each element of A is normal. Then, by Proposition 3.1,
||a2|| = ||a||2 for each a. Thus, G is an isometrical embedding, hence G(A) is closed in
C(M(A)). By Proposition 7.8 A is hermitian. Therefore, by Proposition 9.3,

G(A) = G(A) = CM(A). �
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Thus, we have arrived to the desired representation theorem.

Proposition 9.5 (Commutative Gelfand-Naimark theorem): A complex Banach
algebra A is isometrically isomorphic to the algebra C(K,C), for some compact Haus-
dorff space K, if and only if it is commutative and there is an involution defined on A
which turns it to a C∗-algebra.

Using the following theorem of Gelfand and Kolmogorov (1939):

If X, Y are compact T2 spaces

C(X,C) ∼= C(Y,C)⇒ X ∼= Y

i.e., the isomorphism of the rings of continuous functions implies the homeomorphism
of the corresponding spaces.

we see that the compact T2 space K is unique up to homeomorphism. Hence, we can
take K to be M(A) and G as the isometric isomorphism, which also preserves ∗.
We may formulate Proposition 9.5 in the following form.

Proposition 9.6: A complex Banach algebra A is isometrically isomorphic to the
algebra C(K,C), for some compact Hausdorff space K, if and only if it is commutative
and there is a norm and an involution defined on A which turn A into a C∗-algebra.

The above formulation is purely algebraic, since we do not refer to a norm given from
the beginning, but to the existence of an appropriate norm.
Let A be an algebra satisfying the above conditions. If ||.|| is a norm satisfying the
desired properties, then for each a

||a|| = sup{|ϕ(a)| | ϕ ∈M(A)}.

I.e., ||.|| is uniquely determined by the algebraic structure, sinceM(A) is defined alge-
braically. Also, if ∗ is an appropriate involution, then for each a and each ϕ

ϕ(a∗) = ϕ(a).

This equality uniquely determines ∗, since A is semi-simple i.e., ∗ is also determined
by the algebraic structure.
Both of these remarks show that if T : A→ C(K,C) is an isomorphism of C∗-algebras,
than T preserves the norm (i.e., T is an isometry) and the involution ∗. I.e., with
algebraic hypotheses on the algebras A and C(K,C) we get strong analytical results
for the C∗-algebras A and C(K,C).

As an application of the Gelfan-Naimark theorem we prove the existence of the Stone-
Cech compactification of a topological space.

If X is a topological space, a free compact T2 space on X is a pair (K, e), where K is a
compact T2 space, e : X → K continuous, and for each f in Cb(X) there is a unique f̃
in C(K) such that

f̃ ◦ e = f.

We give without proof the following proposition.

Proposition 9.6: If (K, e) is a free compact T2 space on X, then:
(i) e(X) = K.
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(ii) (K, e) is essentially unique.
(iii) (K, e) is the Stone-Cech compactification of X i.e., e is a homeomorphic embedding
iff X is T3 1

2
and T1.

We shall now construct the above pair (K, e). We consider

K =M(Cb(X))

and e : X → K such that x 7→ ex, where

ex(f) = f(x).

By the way w∗ is defined on M(Cb(X)) e is continuous. The unique object having the
property of f̃ is G(f), where G is the Gelfand transform

G : Cb(X)→ C(K) f 7→ f̂ .

Trivially,
f̂ ◦ e = f.

As it is known Cb(X) is a commutative C∗-algebra. Therefore, G is is an isometric
embedding onto C(K). The uniqueness of f̂ is now derived directly as follows.
Suppose h̃ in C(K) such that h̃ ◦ e = f. By the above, there is h in Cb(X) such that

h̃ = ĥ,

and
ĥ ◦ e = h = f ⇒ ĥ = f̂ ⇒ h̃ = f̂ .

It is easy to see that e is a homeomorphism iff X is compact and T2 space.
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10 Wiener’s lemma

As we have already said in Paragraph 4, L1(Z) is the group algebra of functions f :
Z→ C such that ∑

k∈Z

|f(k)| <∞.

L1(Z) is a commutative Banach algebra with norm

‖f‖ =
∑
k∈Z

|f(k)|

and multiplication the convolution operation

f ∗ g(n) =
∑
k∈Z

f(n− k)g(k).

The multiplication unit is 1 = χ{0} = ω0, the characteristic function of {0}, and it
is clear that ‖ω0‖ = 1. To see that f ∗ g ∈ L1(Z) we use a discrete form of Fubini’s
theorem: ∑

n∈Z

|(f ∗ g)(n)| =
∑
n∈Z

|
∑
k∈Z

f(n− k)g(k)|

≤
∑
n∈Z

∑
k∈Z

|f(n− k)||g(k)|

=
∑
k∈Z

∑
n∈Z

|f(n− k)||g(k)|

=
∑
k∈Z

|g(k)|
∑
n∈Z

|f(n− k)|

=
∑
k∈Z

|g(k)| ‖f‖ = ‖f‖ ‖g‖.

Since f ∗ g ∈ L1(Z) is established, the above result expresses the validity of the normed
algebra inequality

‖f ∗ g‖ ≤ ‖f‖ ‖g‖

of L1(Z).
Obviously, every function on Z with finitely many values is in L1(Z). The elements ωn
of L1(Z), where ωn is the characteristic function of n ∈ Z, satisfy the following obvious
properties:

(i) ωn = ωn1 = ω1 ∗ ω1 ∗ ... ∗ ω1︸ ︷︷ ︸
n

.

(ii) If f ∈ L1(Z), then

f =
∑
k∈Z

f(k)ωk.

(iii) ‖ωk‖ = 1.
(iv) ωn ∗ ωk = ωn+k.

We prove now an equivalent description of ML1(Z) in order to use it in the Gelfand
transform on L1(Z).
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Proposition 10.1: The maximal ideal space of the Banach algebra L1(Z) is homeo-
morphic to the unit circle T.

Proof: We define the following mapping Φ : T→ML1(Z)

z 7→ ϕz, ϕz : L1(Z)→ C,

where
ϕz(f) =

∑
k∈Z

f(k)zk.

Trivially, ϕz is linear. It is also bounded, since

|ϕz(f)| = |
∑
k∈Z

f(k)zk| ≤
∑
k∈Z

|f(k)| |zk| =
∑
k∈Z

|f(k)| <∞

and non-trivial, since ϕz(1) = ϕz(ω0) = z0 = 1. Using Fubini again, we show that ϕz is
actually an algebra homomorphism.

ϕz(f ∗ g) =
∑
k∈Z

(f ∗ g)(k)zk =
∑
k∈Z

∑
n∈Z

f(k − n)g(n)zk

=
∑
k∈Z

zk
∑
n∈Z

f(k − n)g(n) =
∑
k∈Z

znzk−n
∑
n∈Z

f(k − n)g(n)

=
∑
n∈Z

zng(n)
∑
k∈Z

f(k − n)zk−n = ϕz(g)ϕz(f).

Φ is 1-1, since ϕz1 = ϕz2 → ϕz1(ω1) = ϕz2(ω1)↔ z1 = z2, since

ϕz(ω1) =
∑
k∈Z

ω1(k)zk = z1 = z.

Φ is ontoML1(Z), since for each ϕ ∈ML1(Z) we can find z0 ∈ T, such that ϕ(f) = ϕz0(f),
∀f ∈ L1(Z). We find this z0 using the above properties of ωk.

ϕ(f) = ϕ(
∑
k∈Z

f(k)ωk) =
∑
k∈Z

f(k)ϕ(ωk) =
∑
k∈Z

f(k)ϕ(ω1)
k =

∑
k∈Z

f(k)zk0 = ϕz0(f)

therefore,
z0 = ϕ(ω1).

In the above equalities we have used the obvious property ϕ(ωk) = ϕ(ωk1) = φ(ω1)
k and

the equality

ϕ(
∑
k∈Z

f(k)ωk) =
∑
k∈Z

f(k)ϕ(ωk),

which is justified by a simple continuity argument.
To show that Φ is a homeomorphism it suffices to show that Φ is continuous, since
ML1(Z) is a compact T2-space and Φ is already 1 − 1 and onto ML1(Z). Continuity of
Φ is established in a standard way, considering a sequence (zm) and z in T such that
zm → z and showing that Φ(zm) → Φ(z), observing that ϕz(f) =

∑
k∈Z f(k)zk is the

uniform limit in z of the continuous functions
∑N

k=−N f(k)zk.�
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Thus, we may identify ML1(Z) with T and then C(ML1(Z)) with C(T), and then, the
Gelfand transformˆ: L1(Z)→ C(ML1(Z)) becomes

ˆ: L1(Z)→ C(T),

where
f̂(z) = f̂(ϕz) = ϕz(f) =

∑
k∈Z

f(k)zk, and
∑
k∈Z

|f(k)| <∞.

ˆis not onto C(T), since

f(z) =
∞∑
n=1

einlogn

n
zn

is absolutely non-convergent.
ˆ is not 1 − 1, since, by Proposition 9.2, it suffices to find an element f of L1(Z) such
that ||f 2|| = ||f ∗ f || 6= ||f ||2. Just consider for that the function f which is zero except
f(1) = 1 and f(2) = 2. It is easy to see that if

f̂(z) =
∑
k∈Z

f(k)zk,

then f(k) are the Fourier coefficients of f̂ i.e.,

f(k) =
1

2π

∫ 2π

0

f̂(eit)e−iktdt.

Proposition 10.2 (Wiener’s lemma): If f is in C(T) that has an absolutely conver-
gent Fourier series and never vanishes, then its reciprocal 1

f
has such a Fourier series

too.

Proof: By hypothesis there exists g in L1(Z) such that f = ĝ. Since ĝ 6= 0, then
0 /∈ sp(g). Suppose 0 ∈ sp(g). Then, 0 = ϕ(g), for some ϕ. But ϕ = ϕz, therefore
0 = ϕz(g). This contradicts our hypothesis ĝ(z) = ϕz(g) 6= 0.
Thus, g is invertible in L1(Z), with inverse 1

g
. Then,

g ∗ 1

g
= ω0 ⇒

ˆ
g ∗ 1

g
= ω̂0 ⇒ ĝ

1̂

g
= 1

⇔ f
1̂

g
= 1⇒ 1̂

g
=

1

f
.

Hence, 1
f

has absolutely convergent Fourier series.�

For a classical, more involved, proof Wiener’s lemma through Fourier analysis see [Zyg-
mund 1959] pp.245-6.
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11 The Continuous Function Calculus (CFC)

The CFC is an application of the commutative Gelfand-Naimark theorem according
to which we can talk in a “functional” way about the elements of C∗(a), the C∗-
algebra generated by a normal element of a general C∗-algebra A. As we shall see a
continuous function on sp(a) determines an element of C∗(a) and each element of C∗(a)
is determined by such a function.
If A is a general (not necessarily commutative) C∗-algebra, then

C∗(a) = {p(a, a∗)| p ∈ C[x, y]},

where a is a normal element of A, is a commutative C∗-algebra, since a, a∗ commute.
So, we may apply the commutative Gelfand-Naimark theorem on C∗(a)

∧ : C∗(a)→ C(MC∗(a))

where MC∗(a) is actually sp(a), since the mapping

e :MC∗(a) → sp(a)

ϕ 7→ ϕ(a)

is 1-1, onto sp(a) and, therefore, a homeomorphism.
If we define τ to be the inverse function of ∧, then

τ : C(sp(a))→ C∗(a)

τ(idsp(a)) = a

is an isometric ∗-isomorphism. Actually, τ is the unique mapping with the above
properties, since an element f of C(sp(a)) with f(z) = p(z, z∗) necessarily goes to
p(a, a∗) and each other element f of C(sp(a)) goes to an element of C∗(a), which we
are entitled to denote by f(a). Thus,

C∗(a) = {f(a)| f ∈ C(sp(a))}

So, a is idsp(a)(a), since τ(idsp(a)) = a.

So, a normal element of a general C∗-algebra A can be seen as a continuous function.
In that way, concepts and results on continuous functions are transferred to A. Also,
properties of the complex numbers are transferred to functions, since their operations
are defined pointwisely. In that way, properties of complex numbers are found in A.
This is the spirit of the following two propositions.

Proposition 11.1: If a is a normal element of a general C∗-algebra A, then:

(i) (Spectral mapping theorem) sp(f(a)) = f(sp(a)).
(ii) a∗ = a (a is hermitian) ⇔ sp(a) ⊆ R.
(iii) a∗ = a and a2 = a (a is a projection) ⇔ sp(a) ⊆ {0, 1}.
(iv) a∗a = aa∗ = 1 (a is unitary) ⇔ sp(a) ⊆ S1.

Proof: (i) Since spectrum is algebraically determined, the “same” elements of “same”
algebras have the same spectrum. Thus, since f 7→ f(a), then

sp(f(a)) = sp(f) = f(sp(a)).
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(ii) (⇒) Every C∗-algebra is Hermitian.
(⇐) If sp(a) ⊆ R, then

idsp(a) = id∗sp(a) ↔ τ(id) = τ(id∗)↔ a = a∗

(iii) Since
a2 = a↔ τ(id2) = τ(id)↔ id2 = id,

then for each λ ∈ sp(a)

id2(λ) = id(λ)↔ λ2 = λ↔ λ ∈ {0, 1}

(iv) Since a∗a = aa∗ = 1, then (id∗)(id) = (id)(id∗) = 1, where 1 is the constant
function 1 on sp(a). So, for each λ ∈ sp(a)

λλ− = λ−λ↔ |λ|2 = 1↔ |λ| = 1.

Proposition 11.2: f(g(a)) = (f ◦ g)(a)

Proof: In the first place, from the spectral mapping theorem the above equality is
meaningful. We fix a function g in C(sp(a)). Then we have the following two mappings:

τ : C(sp(g(a))→ C∗(g(a))

τ(f) = f(g(a))

and
τ
′
: C(sp(g(a)))→ C∗(a)

τ
′
(f) = (f ◦ g)(a)

Since τ and τ
′

are continuous morphisms of ∗-algebras (in fact C∗(g(a)) � C∗(a)) and
send idsp(g(a)) to g(a), then they are identical (uniqueness of the CFC). Therefore,

τ(f) = τ
′
(f)↔ f(g(a)) = (f ◦ g)(a).
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12 Representations of C∗-algebras

Our final aim is to prove the general representation theorem of C∗-algebras, namely that
each C∗-algebra is isomorphic (with respect to all of its structure) to a C∗-subalgebra
of B(H), for some Hilbert space H.
As we have already explained our C∗-algebra has essentially always a unit, since if
it has not one, then the representation of its unitization leads to a representation of
the original C∗-algebra. In what follows we give a general description of what follows
without proofs.
If A is a C∗-algebra and H a Hilbert space, a representation of A into H is a mapping

π : A→ B(H)

which preserves the algebraic structure (including ∗ and 1). The representation is called
faithful iff it is 1− 1.
As we prove later, any representation is continuous. Furthermore, if it is faithful, it
is an isometry. According to these definition the general Gelfand-Naimark theorem is
formulated as follows:

“Any C∗-algebra has a faithful representation in a Hilbert space.”

We see first how a representation is constructed in a special and familiar C∗-algebra,
C([0, 1]). We wish to see the elements of C([0, 1]) as operators on some Hilbert space.
It is well known that a continuous function f acts as an operator when it acts multi-
plicatively i.e.,

g 7→ fg.

The Hilbert space closer to C([0, 1]) is L2([0, 1]). We then define

π : C([0, 1])→ B(L2([0, 1])) f 7→ π(f),

where
π(f)g = fg, ∀g ∈ L2([0, 1]).

It is easy to see that π is a faithful representation of C([0, 1]).
The general construction which gives the representation of a general C∗-algebra mimics
the above special construction. Although the general construction is far more compli-
cated, it is a natural and necessary extension of the above simple construction.
Let’s see how the above method works in the C(K)-case, where K is a compact Haus-
dorff space.
We need to find a Hilbert space which is as close to C(K) as L2([0, 1]) is to [0, 1]. Hence,
we need to find a measure on K. But we know that a measure on K essentially is a
positive linear form on C(K) i.e., a linear form ϕ such that

f ≥ 0⇒ ϕ(f) ≥ 0.

To be more specific, if µ is a regular measure on K and if we define

ϕ(f) =

∫
fdµ,

then ϕ is a positive linear form on C(K). By Riesz theorem the inverse is also true.
I.e., if ϕ is a positive linear form on C(K), then there is a unique regular measure on
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K such that ϕ(f) =
∫
fdµ, for each f in C(K).

We work with positive linear forms instead regular measures since that is the concept
which is generalized in general C∗-algebras.
Having a positive linear form ϕ on C(K) we need to construct the needed Hilbert space.
We first note that L2([0, 1]) is the completion of C([0, 1]) with respect to the obvious
inner product defined on C([0, 1]). Thus, we shall try to define an inner product on
C(K) and then by completion to get a Hilbert space. If µ is the measure corresponding
to ϕ, the most natural definition is

< f, g > =

∫
fg∗dµ = ϕ(fg∗).

Unfortunately, this operatin is not an inner product, since it is possible that < f, f > =
0 and f 6= 0. The solution to this problem is standard. We consider the quotient with
respect to the set of all problematic elements, here

I = {f |f ∈ C(K), < f, f > = 0}.

J is a subspace of C(K) and on the quotient space C(K)/J the operation

< [f ], [g] > = < f, g >

is well defined and an inner product. We then define

L2(K,ϕ) = ˜C(K)/J ,

where ˜C(K)/J is the completion of C(K)/J . Thus, a Hilbert space is constructed. In
complete analogy to our first simple representation we define

π : C(K)→ B(L2(K,ϕ)) f 7→ π(f),

where
π(f)g = fg, ∀g ∈ C(K).

π(f) is well defined, since J is an ideal of C(K). Here we defined π, not on L2(K,ϕ),
but on its dense subspace C(K)/J . But, since it is continuous, it extends uniquely on
L2(K,ϕ). We can show that π is a representation of C(K), though it is not generally
1− 1, since by taking the quotient we reduced dramatically the size of the constructed
Hilbert space H. As a result C(K) may not be embedded into B(H) in a 1 − 1 way.
We discuss the solution to this problem at the end.
If A is a general C∗- algebra, trying to generalize the construction in the C(K)-case
we face two problems. First we cannot talk from the beginning about positive linear
forms. In order to do that we define a concept of order on A. A second problem is that
generally A is not commutative. Then previous technics applicable in the commutative
case have to be transformed.
A definition of an order on A, or of a positive element of A has to generalize the
corresponding definitions in C∗- algebras where there is an order on them. E.g., in
C(K)

f ≥ 0⇔ f(x) ≥ 0, ∀x ∈ K.
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Of course this definition depends on the specific (functional) nature of the elements of
C(K). Equivalently we may write

f ≥ 0⇔ ∃g ∈ C(K) : f = g∗g.

The above condition overcomes the specific nature of the elements of A. Also, in B(H)
we define

T ≥ 0⇔ < Tx, x > ≥ 0, ∀x ∈ H.

It can be shown that
T ≥ 0⇔ ∃S ∈ B(H) : T = S∗S.

So, we have found a similar condition which describes positivity in both special cases.
Thus, it is natural to define positivity on A as follows:

a ≥ 0⇔ ∃b ∈ A : a = b∗b.

Of course we have to show that the above order is compatible to the algebraic structure
of A. We may define then a linear form to be positive iff

a ≥ 0⇒ ϕ(a) ≥ 0.

Let ϕ be a linear form in A. We define

< a, b > = ϕ(b∗a),

while in C(K)
< f, g > = ϕ(fg∗) = ϕ(g∗f).

Here we generalize the second equality in order to avoid an inversion. Again <,> is
not generally an inner product, but if

J = {a| a ∈ A, < a, a > = 0},

J is a subspace and A/J becomes an inner product space. Then we take the Hilbert
space H = A/J . We then define

π : A → B(H) a 7→ π(a),

where
π(a)[b] = [ab], ∀b ∈ A.

π(a) is well defined since I is now a left ideal. Again π is a representation of A which,
generally, is not 1− 1.
With the help of an appropriate construction we can enlarge our Hilbert space in order
π becomes 1− 1.
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13 Order in C∗-algebras

From now on A is a C∗-algebra. With the aid of Continuous function calculus we
may see an elements of A as a continuous function. In that way concepts and results
on continuous functions apply to A. Also, properties of complex numbers are also
transferred in A, since operations are defined pointwisely.

Proposition 13.1: Let a ∈ A such that a∗a = aa∗ and f ∈ C(sp(a)). Then:
(i) (Spectral mapping theorem) sp(f(a)) = {f(λ) : λ ∈ sp(a)}.
(ii) a∗ = a⇔ sp(a) ⊆ R.

Proof: We shall use the isomorphism between C(sp(a)) and C∗(a), the C∗-algebra
generated by a.
(i) Because of the isomorphism, an element is invertible in one algebra iff it is invertible
in the other. Therefore, sp(f(a)) = sp(f). But sp(f) = {f(λ) : λ ∈ sp(a)}, since
t ∈ sp(f) iff f − t1 is not invertible in C(sp(a)) iff ∃λ ∈ sp(a) : (f − t1)(λ) = 0 ⇔
∃λ ∈ sp(a) f(λ) = t.
(ii) Using the isomorphism id 7→ a, a∗ = a⇔ id∗ = id⇔ id(λ) ∈ R.�
The self-adjoint (a∗ = a) elements of A stand for A the way the elements of R stand
for C. The above proposition shows that the real elements of A are its normal elements
(a∗a = aa∗) with real spectrum. We define the positive elements of A to be its normal
elements with positive spectrum. Later we show that this definition is equivalent to the
definition we talked about in previous paragraph.

We define an element a of A to be positive iff a∗a = aa∗ and sp(a) ⊆ R+. By Proposition
13.1, a is positive iff a∗ = a and sp(a) ⊆ R+.

Hypothesis a∗a = aa∗ cannot be avoided by our definition. E.g., the matrix

M =

(
0 1
0 0

)
in C2×2 has spectrum {0} ⊆ R+, but M∗M 6= MM∗.

Now we have to prove that the positivity relation just defined is compatible to the
algebraic structure of A.

An ordered vector space on R is a pair (V,≤), where V is a vector space and ≤ is an
order in V such that, for each a, b, c ∈ V :
(i) a ≤ b⇒ a+ c ≤ b+ c.
(ii) a ≤ b and λ ≥ 0, then λa ≤ λb

The positive cone V + of (V,≤) is the set

V + = {a| a ∈ V a ≥ 0}.

Clearly,

(i)a, b ∈ V + ⇒ a+ b ∈ V +.
(ii) a ∈ V + ∧ λ ∈ R+ ⇒ a+ b ∈ V +.
(iii) a,−a ∈ V + ⇒ a = 0.
(iv) a ≤ b⇔ b− a ∈ V +.

Properties (i) and (ii) show that V + is also convex. V + determines the whole order.
Namely, if V is real vector space and V + a non-empty subset of V satisfying (i)-(iii),
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then ≤ is defined through (iv). Then, it is easy to see that (V,≤) is an ordered vector
space and V + = {a| a ∈ V a ≥ 0}. I.e., an ordered vector space is defined through its
positive cone.
It is straightforward that if a ≤ b and λ ≤ 0, then λa ≥ λb. As a special case, a ≤ 0⇔
−a ≤ 0.

Returning to A we define
A+ = {a| a ∈ A a ≥ 0}.

If we set
Ah = {a|a ∈ A a∗ = a},

Ah is a real Banach space. If we define then in Ah, a ≤ b⇔ b− a ∈ A+, then (Ah,≤) is
an ordered vector space. If A = C, then Ah = R and A+ = R+. By order in A we mean
the order in Ah, which is not a total order (it is if A = C), since any two functions are
not generally comparable with respect to the order. If A = C(K), then Ah is a lattice,
since for real continuous functions f, g, f ∨g, f ∧g exist and they are continuous. Thus,
if A is commutative, then Ah is a lattice, since A is then isomorphic to some C(K).
The inverse can also be proved i.e., if Ah is a lattice , then A is commutative.
Someone could expect that ≤ would be compatible to the algebraic structure of A
through

a, b ∈ A+ ⇒ ab ∈ A+.

But, for a, b ∈ A+, ab ∈ A+ ⇔ ab = ba. This makes sense, since the product of self-
adjoint elements is self-adjoint iff the elements commute.

Proposition 13.2: If a ∈ A, a∗ = a and λ ∈ R, λ ≥ ||a||, then

a ≥ 0⇔ a− λ1 ≤ λ.

Proof: (⇒) ||a− λ1|| = sup{|t| | t ∈ sp(a− λ1)} = sup{|t− λ| | t ∈ sp(a)} ≤ λ, since
if t ∈ sp(a), then |t| ≤ λ. But t ≥ 0 therefore, |t− λ| = λ− t ≤ λ.
(⇐) We want sp(a) ⊆ R+. Let t ∈ sp(a). Then t− λ ∈ sp(a− λ1). Hence, |t− λ| ≤ λ.
I.e., −t ≤ t− λ ≤ λ. By the first inequality we get t ≥ 0.�
Proposition 13.3: (i)a, b ∈ A+ ⇒ a+ b ∈ A+.
(ii) a ∈ A+ ∧ λ ∈ R+ ⇒ a+ b ∈ A+.
(iii) a,−a ∈ V + ⇒ a = 0.
(iv) A+ is closed.

Proof: (i) Obviously, (a+ b)∗ = a+ b. Since a ≥ 0, then applying Proposition 13.2
with λ = ||a|| we get ||a− ||a||1|| ≤ ||a||. Likewise, ||b− ||b||1|| ≤ ||b||. There-
fore, ||a+ b− (||a||+ ||b||)1|| ≤ ||a− ||a||1||+ ||b− ||b||1|| ≤ ||a||+ ||b||. Thus, with
λ = ||a||+ ||b|| ≥ ||a+ b||, we get a+ b ≥ 0.
(ii) (λa)∗ = λa and sp(λa) = {λt| t ∈ sp(a)} ⊆ R+.
(iii) a ≥ 0⇒ sp(a) ⊆ R+.
−a ≥ 0⇒ sp(−a) ⊆ R+ ⇒ sp(a) ⊆ R−.
Thus, sp(a) = {0}, therefore ||a|| = sup{|λ| | λ ∈ sp(a)} = 0 i.e., a = 0.
(iv) Let an ∈ A+ and an → a. We need to show that a ∈ A+. By the continuity of ∗,
a∗ = a. Also, ||a− ||a||1|| = lim||an − ||an||1|| ≤ lim||an|| = ||a||. Hence, a ∈ A+.�
Proposition 13.4: Let a ∈ A, a∗ = a and f ∈ C(sp(a)). Then,
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(i) f(a) ≥ 0⇔ f ≥ 0.
(ii) −||a||1 ≤ a ≤ ||a||1.
(iii) ∃a+, a− ∈ A such that a = a+ − a−, a+, a− ≥ 0, a+a− = a−a+ = 0 and
||a|| = max{||a+||, ||a−||}.
Proof: (i) (⇒) Obviously, sp(f(a)) = sp(f), so sp(f(a)) ⊆ R+. Therefore, sp(f(a)) ⊆ R+ ⇔
sp(f) ⊆ R+ ⇔ {f(λ) | λ ∈ sp(a)} ⊆ R+ ⇔ f ≥ 0.
(⇐) We need to show that f(a)∗ = f(a), if f ≥ 0. Indeed, f(a)∗ = f ∗(a) = f(a).
(ii) We need to show ||a||1± a ≥ 0. Let f±(t) = ||a|| ± t, t ∈ sp(a). Obviously, f± ≥ 0.
Hence, ||a||1± a = f±(a) ≥ 0.
(iii) a = id(a). Since a∗ = a, sp(a) ⊆ R and so id is a real function, hence id =
id+ − id−, id+, id− ≥ 0, id+id− = id−id+ = 0 and ||id|| = max{||id+||, ||id−||}. We set
a+ = id+ and a− = id− and we get the desired properties.�
Let a in A. We write

a =
a+ a∗

2
+ i

a− a∗

2i
= Rea+ iIma,

where a+a∗

2
is the real part of a and a−a∗

2i
the complex part of a. Also, (Rea)∗ = Rea and

(Ima)∗ = Ima and we get directly that the analysis a = u+ iv , where u∗ = u, v∗ = v is
unique. Also, u = u+ − u−, v = v+ − v− therefore, a = u+ iv = u+ − u− + iv+ − iv−
i.e., each element a is written a linear combination of four elements of A+.

We prove now the equivalence between the two definitions of positivity.

Proposition 13.5: Let a in A. The following are equivalent:
(i) a ≥ 0.
(ii) ∃h ≥ 0 : h2 = a.
(iii) ∃b ∈ A : b∗b = a.

Proof: ((i)⇒ (ii)) We consider the function

f(t) = t
1
2 , t ∈ sp(a).

f is well defined since sp(a) ⊆ R+. We set h = f(a). Then, h2 = a and since f ≥ 0,
then by Proposition 13.4(i), h = f(a) ≥ 0.
((ii)⇒ (iii)) We take b = h.
((ii) ⇒ (i)) Obviously, a∗ = a. If sp(h) ⊆ R, then sp(a) = {λ2| λ ∈ sp(h)} ⊆ R+. We
have used only that h∗ = h i.e., not the fact that h ≥ 0. This will be used later.

The proof of the direction ((iii)⇒ (i)) is rather technical and we shall use the following
two propositions as lemmas.

Proposition 13.6: Let a in A and −a∗a ≥ 0, then a = 0.

Proof: It suffices to show that a∗a ≥ 0. We set a = u+ iv, u∗ = u, v∗ = v. Then,

a∗a = u2 + v2 + i(uv − vu),

aa∗ = u2 + v2 + i(vu− uv).

Hence, a∗a = 2u2 + 2v2 + (−a∗a), since 2u2, 2v2 ≥ 0, because (−aa∗)∗ = −aa∗ and by
Proposition 7.1

sp(−aa∗) ∪ {0} = sp(−a∗a) ∪ {0} ⊆ R+. �
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Proposition 13.7: If a is in A and there is k ∈ N such that ak = 0 i.e., a is nilpotent,
and a∗a = aa∗, then a = 0.

Proof: If n ≥ k, then an = 0. Since a is normal

||a|| = r(a) = limn→∞||an||
1
n = 0.

Therefore, a = 0.�
Proof of ((iii) ⇒ (i)) of Proposition 13.5: Let a = b∗b. Obviously a∗ = a. We
may write a = a+ − a−. It suffices to prove that a− = 0. We set c = ba−. Then,
c∗c = a−b∗ba− = a−(a+ − a−)a− = −(a−)3. Since a− ≥ 0, (a−)3 ≥ 0. Hence, −c∗c =
(a−)3 ≥ 0, thus, by Proposition 13.6, c = 0. So, (a−)3 = 0 and by Proposition 13.7,
a− = 0.�
If a ∈ A+, then a

1
2 is called the square root of a, where

a
1
2 = f(a), f(t) = t

1
2 , t ∈ sp(a).

Obviously, (a
1
2 )2 = a.

Proposition 13.8: Let H be a Hilbert space and T ∈ B(H). Then

T ≥ 0⇔ < Tx, x > ≥ 0, ∀x ∈ H,

where T ≥ 0 refers to the general definition of order in C∗-algebras.

We need the following lemma for the proof of this proposition.

Proposition 13.9: T = 0⇔ < Tx, x > = 0, ∀x ∈ H.

Proof: By polarization identity,

< Tx, y > =
1

4

3∑
n=0

in < T (x+ iny), x+ iny > = 0, ∀x, y ∈ H.

Therefore, T = 0.�
Direct consequences of Proposition 13.9 are the following:

S = T ⇔ < Sx, x > = < Tx, x >, ∀x ∈ H.

T ∗ = T ⇔ < Tx, x > ∈ R, ∀x ∈ H.

Proof of Proposition 13.8: (⇒) Since there is S in B(H) such that T = S∗S,
< Tx, x > = < S∗Sx, x > = < Sx, Sx > ≥ 0.
(⇐) Since < Tx, x > ∈ R, for each x in H, then, by Proposition 13.9, T ∗ = T . We may
write T = T+ − T−. We need to show that T− = 0.
Since for each y in H 0 ≤ < Ty, y >, then

0 ≤ < T (T−x), T−x > = < (T+ − T−)T−x, T−x >

= − < (T−)2x, T−x > = − < (T−)3x, x > ≤ 0,

since T− ≥ 0. Thus, by Proposition 13.9, (T−)3 = 0 i.e., T = 0.�
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14 The Gelfand-Naimark-Segal construction

A linear form ϕ in A is called positive iff

a ≥ 0⇒ ϕ(a) ≥ 0.

Equivalently, due to linearity, iff ϕ preserves the order.

In C(K) the positive linear forms “are” the regular measures on K. E.g., if x ∈ K, the
positive linear form

δx(f) = f(x)

corresponds to the Dirac measure with respect to x.
If H is a Hilbert space and x ∈ H, then

ωx(T ) = < Tx, x >

is a positive linear form in B(H).

If ϕ is a positive linear form in A, we define

< a, b > = ϕ(b∗a).

Proposition 14.1: (I)<,> is a “semi-inner product” i.e.,
(i) It is a linear form with respect to the first variable while it is anti-linear with respect
to the second.
(ii) < a, a > ≥ 0, ∀a ∈ A i.e., ϕ(a∗a) ≥ 0.
(iii) < a, b > = < b, a >, ∀a, b ∈ A i.e., ϕ(b∗a) = ϕ(a∗b). Especially, ϕ(a∗) = ϕ(a).
(II) (Cauchy-Schwarz inequality) | < a, b > |2 ≤ < a, a >< b, b >, ∀a, b ∈ A i.e., |ϕ(b∗a)|2 ≤
ϕ(a∗a)ϕ(b∗b).
(III) ϕ is continuous with ||ϕ|| = ϕ(1).

Proof: (I)(i) is trivial.
(ii) Since a∗a ≥ 0, then < a, a > = ϕ(a∗a) ≥ 0.
(iii) Using only (i) we can prove the “polarization identity”

< a, b > =
3∑

n=0

in < x+ iny, x+ iny >.

Using < a, a > ∈ R, after simple calculations we reach < a, b > = < b, a >.
(II) Obviously,

0 ≤ < a+ λb, a+ λb > = |λ|2 < b, b > +2Re(λ < a, b >)+ < a, a >. (∗)

Case (1): < b, b > 6= 0. In (∗) we set

λ = − a, b >

< b, b >
,

and we get the inequality (II).
Case (2): < a, a > 6= 0. We interchange a, b and we use Case (1).
Case (3): < a, a > = < b, b > = 0. Then (∗) becomes 2Re(λ < a, b >) ≥ 0. We set λ =
− < a, b >. Then, −2| < a, b > |2 ≥ 0 therefore, | < a, b > |2 = 0 ≤ < a, a >< b, b >.
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(III) ||ϕ|| = ϕ(1) is expected, since in case our algebra is C(K), if we see ϕ as a measure,
then

|ϕ(f)| = |
∫
fdµ| ≤ ||f ||µ(K)

and ϕ(1) =
∫
dµ = µ(K). Hence, ||ϕ|| = ϕ(1).

By Cauchy-Schwarz inequality,

|ϕ(a)|2 = |ϕ(1∗a)|2 ≤ ϕ(1∗1)ϕ(a∗a) = ϕ(1)ϕ(a∗a).

Therefore, since |ϕ(a)|2 ≤ ϕ(1)2||a||2, it suffices to show

ϕ(a∗a) ≤ ϕ(1)||a∗a||

i.e., it suffices to show that ϕ is bounded for self-adjoint a. I.e., we need to show
ϕ(a) ≤ ϕ(1)||a||, for each a∗ = a. Then, ϕ(a) ∈ R, since ϕ(a) = ϕ(a∗)ϕ(a), therefore,
we need −ϕ(1)||a|| ≤ ϕ(a) ≤ ϕ(1)||a|| i.e., ϕ(−||a||1) ≤ ϕ(a) ≤ ϕ||a||(1), which holds,
since −||a||1| ≤ a ≤ ||a||1|, by Proposition 13.4(ii).�
We set

J = {a| a ∈ A, ϕ(a∗a) = 0}.

By Cauchy-Schwarz inequality we get

J = {a| a ∈ A, ϕ(b∗a) = 0, ∀b ∈ A}.

Proposition 14.2: J is a closed (with respect the ||.||-topology) left ideal.

Proof: J is closed as the inverse image of {0} under the continuous function a 7→
ϕ(a∗a).
Obvious calculations show that J is a subspace. It is also a left ideal i.e.,

a ∈ I, b ∈ A⇒ ba ∈ J ,

since ϕ((ba)∗ba) = ϕ(a∗b∗ba) = ϕ((b∗ba)∗a) = 0.�
It is easy to see that in the vector space A/J the operation

< [a], [b] > = < a, b >

is well-defined and an inner product. We set H = A/J . If a ∈ A, we define the
operation

π0(a) : A/J → A/J

π0(a)[b] = [ab].

Proposition 14.3: The operation π0(a) is well-defined, linear and continuous. There-
fore, π0(a) has a unique extension:

π(a) : H → H.

In that way we define
π : A → B(H)

a 7→ π(a).
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Mapping π is a representation of A.

Proof: π0(a) is well-defined: b ∼ c⇒ b− c ∈ J ⇒ a(b− c) ∈ J , by Proposition 14.2,
and hence, ab ∼ ac.
Linearity of π0(a) is trivial.
π0(a) is bounded: We show that

||π0(a)|| ≤ ||a||.

I.e., for each b ∈ A
||π0(a)b|| ≤ ||a||||b||.

I.e., we want
||[ab]|| ≤ ||a||||b|| ⇔ < ab, ab > ≤ < b, b > ||a||2

⇔ ϕ((ab)∗ab) ≤ ϕ(b∗b)||a||2 ⇔ ϕ(b∗(a∗a)b) ≤ ϕ(b∗b)||a∗a||.

This expression suggests that we have to set

ϕb(c)ϕ(b∗cb).

ϕc is a positive linear form (ϕc(a
∗a) = ϕ((ab)∗ab) ≥ 0), therefore, ||ϕc|| = ϕc(1) i.e.,

ϕ(b∗(a∗a)b) ≤ ϕ(b∗b)||a∗a||, which is exactly what we wanted to show.
Obviously, π(a) ∈ B(H) with

||π(a)|| = ||π0(a)|| ≤ ||a||.

Clearly, π is linear, multiplicative and π(1) = I. Also, it is continuous, since ||π(a)|| ≤
||a||.
Also

π(a∗) = π(a)∗,

since for each b, c ∈ A

< π(a)∗[b], [c] > = < [b], π(a)[c] > = < [b], [ac] > = ϕ((ac)∗b)

= ϕ(c∗(a∗b)) = < [a∗b], [c] > = < π(a∗)[b], [c] >.

I.e., π(a∗), π(a)∗ are equal on the dense subspace A/J , therefore they are equal.�
The general situation that we study here is the following: We have a C∗-algebra A and
a positive linear form ϕ on A. As a special case A can be B(H), where H is a Hilbert
space and positive linear form ωξ, where ξ ∈ H and

ωξ(T ) = < Tξ, ξ >.

The construction we described above sends A to some B(H), but not only that. As we
show in the next proposition, it sends ϕ to some ωξ, and in a sense this representation
is essentially unique.

Proposition 14.4: If A is a C∗-algebra and ϕ is a positive linear form on A, then
there is a Hilbert space H, a vector ξ ∈ H and a representation π : A → B(H) such
that:
(i) The set {π(a)ξ| a ∈ A} is dense in H. Then, ξ is called a cyclic vector for π and a
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representation with a cyclic vector is called cyclic.
(ii) For each a in A, ϕ(a) = ωξ(π(a)) i.e., π also “preserves” ϕ.
(iii) If there are H

′
, ξ
′
, π
′

with the same properties, then π, π
′

are unitarily equivalent
i.e., there is isomorphism U : H → H

′
of Hilbert spaces (i.e., linear isometry, onto H

′
)

such that for each a in A
π
′
(a) = Uπ(a)U−1.

Proof: Let H, ξ, π the Hilbert space and the previously constructed representation.
We set ξ = [1]. Then:
(i) π(a)ξ = [a1] = [a]. Hence, {π(a)ξ| a ∈ A} = {[a]| a ∈ A} = A/J , which is dense in
H.
(ii) ωξ(π(a)) = < π(a)ξ, ξ > = < [a], [1] > = ϕ(1∗a) = ϕ(a).
(iii) Let H

′
, ξ
′
, π
′

with the same properties. We need to find an isomorphism U : H →
H
′
. The most natural mapping is the one which sends π(a)ξ (i.e., [a]) to π(a)

′
ξ
′
. Then

we define:
U0 : A/J → H

′

U0[a] = π
′
(a)ξ

′
.

We show that U0 is well defined by showing that it is an isometry.

||π′(a)ξ
′ ||2 = < π

′
(a)ξ

′
, π
′
(a)ξ

′
> = < π

′
(a)∗π

′
(a)ξ

′
, ξ
′
> =

< π
′
(a∗a)ξ

′
, ξ
′
> = ϕ(a∗a) = < π(a∗aξ, ξ > = ||π(a)ξ||2.

U0 is well defined:

a ∼ b⇒ ||π′(a)ξ
′ − π′(b)ξ′ || = ||π′(a− b)ξ′ || = ||[a− b]|| = 0.

Therefore, π
′
(a)ξ

′
= π

′
(b)ξ

′
.

Clearly U0 is linear. Hence, since

U0(A/J ) = {π′(a)ξ
′| a ∈ A}

is dense in H
′
, U0 is extended to U : H → H

′
, linear isometry, onto H

′
.

In order to show that π
′
(a) = Uπ(a)U−1, it suffices to show that for each b ∈ A

U−1π
′
(a)U [b] = π(a)[b]⇔ U−1π

′
(a)π

′
ξ = [ab]

⇔ U−1π
′
(ab)ξ = [ab]⇔ U [ab] = π

′
(ab)ξ,

which holds.�
The above procedure of generation of a representation of A given a positive linear form
on A is called Gelfand-Naimark-Segal (GNS)construction.
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15 The general Gelfand-Naimark theorem

The representation we described in previous paragraph is not generally 1 − 1. I.e., it
is possible to have a 6= 0 and π(a) = 0. But if ϕ(a∗a) > 0, then [a] 6= 0, therefore
π(a)[1] 6= 0 i.e., π(a) 6= 0. We shall prove that for each a 6= 0 we can find such an ϕ.
The corresponding representation will have π(a) 6= 0. “Summing” all Hilbert spaces so
constructed and the corresponding representations, we find a faithful representation.

Proposition 15.1: For each a in A, if a 6= 0, then there exists a positive linear form
ϕ such that

ϕ(a∗a) > 0.

Proof: We consider the real Banach space Ah. A+ is a closed and convex subset of
Ah. If a 6= 0, then a∗a ∈ A+, hence, −a∗a /∈ A+. By the second geometric form of
Hahn-Banach theorem there is linear f : Ah → R and there is x ∈ R such that

f(−a∗a) < x < f(b), ∀b ∈ A+,

where x < f(0) = 0. f is positive i.e., b ≥ 0 ⇒ f(b) ≥ 0, since if f(b) < 0, then for
λ = − x

f(b)
> 0, we get λb ∈ A+ and f(λb) = x, which is absurd. Also, f(−a∗a) < x < 0,

hence f(a∗a) > 0.
If we define ϕ : A→ C

ϕ(u+ iv) = f(u) + if(v),

then ϕ is linear and positive, since b ∈ A+ ⇒ ϕ(b) = f(b) ≥ 0. Also, ϕ(a∗a) = f(a∗a) >
0.�
Proposition 15.2 (general Gelfand-Naimark theorem, 1943): Each C∗-algebra
has a faithful representation in a Hilbert space.

Proof: For each a 6= 0 in A we choose ϕa positive linear form such that

ϕa(a
∗a) > 0.

Then a Hilbert space Hα is constructed and a representation πa : A → B(Ha). Let
A0 = A− {0}. We set

H =
⊕
a∈A0

Ha,

the direct sum of the Hilbert spaces Ha (see Appendix for its definition). We define

π : A → B(H),

π(x) = ⊕a∈A0πa(x).

πa(x) is a bounded linear operator Ha → Ha with ||πa(x)|| ≤ ||x||. Then, as we show
in the Appendix, π(x) is a bounded linear operator H → H, with ||π(x)|| ≤ ||x||.
Clearly, π is linear, multiplicative and π(1) = I. Also π(x∗) = π(x)∗, since

π(x∗) = ⊕a∈A0πa(x
∗) = ⊕a∈A0πa(x)∗ = π(x)∗.

The last equality holds since, if we set Ta = πa(x), T = π(x), then

T = ⊕a∈A0Ta ⇒ T ∗ = ⊕a∈A0T
∗
a .
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Finally, π is 1 − 1, since if a 6= 0, then ϕx(x
∗x) > 0. Hence [x]x 6= 0, [x]x ∈ Hx,

therefore, πx(x)[1]x = [x]x 6= 0 i.e., πx(x) 6= 0, so π(x) = ⊕a∈A0πa(x) 6= 0.�
Especially π is an isometry too, due to the following proposition.

Proposition 15.3: If A,B are C∗-algebras and π : A → B an algebraic structure
preserving mapping, then:
(i) π is continuous and ||π|| = 1.
(ii) If π is 1− 1, then it is an isometry.

Proof: (i) Since π(1) = 1, it suffices to show that ||π(x)|| ≤ ||x||. It is easy to see that if
an element is invertible in A, then its image is invertible in B. Then, sp(π(x)) ⊆ sp(x).
Thus,

||π(x)||2 = ||π(x∗x)|| = sup{|λ| λ ∈ sp(π(x∗x))}

≤ sup{|λ| λ ∈ sp(x∗x)} = ||x∗x|| = ||x||2.

For the proof of (ii) we need the following proposition.

Proposition 15.4: If a is in A, x∗ = x and f ∈ C(sp(x)), then π(f(x)) = f(π(x)).

Proof: If f is a polynomial, then the equality is obvious. Since x∗ = x, polynomials
are dense in C(sp(x)). Let (pn) a sequence of polynomials such that pn → f . Then,
π(f(x)) = π(limpn(x)) = limπ(pn(x)) = limpn(π(x)) = f(π(x)).�
Proof of (ii) of Proposition 15.3: It suffices to show that the only inequality which
appears in the sequence of equalities in the proof of (i), it is also an equality. I.e., it
suffices to show that sp(π(x)) = sp(x), knowing that sp(π(x)) ⊆ sp(x). Suppose that
sp(π(x)) 6= sp(x). Then, there is an f 6= 0 in C(sp(x)) such that f |sp(π(x)) = 0 and
f 6= 0 ⇒ f(x) 6= 0 ⇒ π(f(x)) 6= 0. But, f |sp(π(x)) = 0 ⇒ f(π(x)) = 0, which is absurd,
by Proposition 15.4.�
The defect of the above method is that the constructed Hilbert space H is too large.
E.g., as an uncountable sum of non-trivial Hilbert spaces it is always non-separable.
Also, the constructed π often is not the natural representation which may fit A. E.g., if
A = B(H), π is not the identity! In some cases the size of the representation π can be
reduced. E.g., if if we have a faithful representation it suffices to sum the representations
πi which derive from a family of positive linear forms (ϕi)i∈I such that

∀x ∈ A x 6= 0 ∃i ∈ I : ϕi(x
∗x) > 0.

Then, the method of the proof of Proposition 15.2 applies and gives the desired “faith-
fulness”. Thus, if there is ϕ such that ϕ(x∗x) > 0, ∀x 6= 0, then ϕ itself suffices. E.g.,
if A = C([0, 1]) form ϕ which corresponds to Lebesgue measure has this property. The
corresponding Hilbert space is, of course, L2([0, 1]) and we get our initial example.
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16 Appendix: the direct product of Hilbert spaces

Let (Hi)i∈I a family of Hilbert spaces. The algebraic direct sum of Hi is the set

H0 = {(xi)i∈I | xi ∈ Hi ∧ {i ∈ I : xi 6= 0} is finite},

equipped with addition and multiplication by complex number defined pointwisely and
with the following inner product:

< x, y > =
∑
i∈I

< xi, yi >,

where x = (xi)i∈I and y = (yi)i∈I . It is easy to see that <,> is well defined and H0 is
an inner product space.
The (Hilbert) direct sum of Hi is the Hilbert space⊕

i∈I

Hi = H̃0.

Let Ti : Hi → Hi be linear operators. We set T0 : H0 → H0 with

T0(xi)i∈I = (Tixi)i∈I .

Obviously, T0 is a linear operator. If Ti are bounded with sup||Ti|| <∞, then

||T0(xi)i∈I ||2 =
∑
i∈I

||Tixi||2 ≤ (supi∈I ||Ti||)2
∑
i∈I

||xi||2

= (supi∈I ||Ti||)2||(xi)i∈I ||2.

I.e., T0 is bounded with
||T0|| ≤ supi∈I ||Ti||

Hence, T0 is extended uniquely to the bounded linear operator

⊕i∈ITi :
⊕
i∈I

Hi →
⊕
i∈I

Hi,

|| ⊕i∈I Ti|| = ||T0|| ≤ supi∈I ||Ti||.

Finally we show that
⊕i∈I(T ∗i ) = (⊕i∈ITi)∗.

It suffices to show that these operators are identical on the dense subspace H0. If
(xi)i∈I , (yi)i∈I ∈ H0, then

< ⊕i∈I(T ∗i )(xi)i∈I , (yi)i∈I > = < (T ∗i xi)i∈I , (yi)i∈I >

=
∑
i∈I

< T ∗i xi, yi > =
∑
i∈I

< xi, Tiyi >

= < (xi)i∈I , (Tiyi)i∈I > = < (xi)i∈I , (⊕i∈ITi)(yi)i∈I >

= < (⊕i∈ITi)∗(xi)i∈I , (yi)i∈I >.
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