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Heine-Borel Covering Theorem



The Heine-Borel Covering Theorem

Theorem (Heine-Borel)

Any open covering (Un)n∈N of [0, 1] has a finite subcover, i.e.,

[0, 1] ⊆
∞⋃
n=0

Un =⇒ (∃m ∈ N) [0, 1] ⊆
m⋃

n=0

Un.

I The Theorem counts as computable in computable analysis
and as non-constructive in constructive analysis.

I How can this difference be explained?
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The Heine-Borel Covering Theorem

Theorem (Friedman’s and Simpson’s reverse mathematics 1983)

Using recursive comprehension RCA0 and using second-order
arithmetic and classical logic the Heine-Borel Theorem is
equivalent to Weak Kőnig’s Lemma WKL0.

Theorem (Ishihara’s constructive reverse mathematics 1990)

Using intuitionistic logic (and countable and dependent choice) the
Heine-Borel Theorem is equivalent to Weak Kőnig’s Lemma WKL
and to the Lesser Limited Principle of Omniscience LLPO.
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[0, 1] ⊆
∞⋃
n=0

Un =⇒ (∃m ∈ N) [0, 1] ⊆
m⋃

n=0

Un.

Formalize this as

I HBT0 :⊆ O([0, 1])N ⇒ N, (Un)n 7→ {m : [0, 1] ⊆
⋃m

n=0 Un},
I dom(HBT0) := {(Un)n : [0, 1] ⊆

⋃∞
n=0 Un}.

Proposition

HBT0 is computable.

Proof. Just use the classical Heine-Borel Theorem and search for
a suitable m ∈ N. �
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The Heine-Borel Covering Theorem

Theorem (Heine-Borel - contrapositive form)

(∀m ∈ N) [0, 1] 6⊆
m⋃

n=0

Un =⇒ [0, 1] 6⊆
∞⋃
n=0

Un.

Formalize this as

I HBT1 :⊆ O([0, 1])N ⇒ [0, 1], (Un)n 7→ [0, 1] \
⋃∞

n=0 Un,

I dom(HBT1) := {(Un)n : (∀m) [0, 1] 6⊆
⋃m

n=0 Un}.

Proposition

HBT1≡sW WKL.

Proof. We obtain HBT1≡sW C[0,1]≡sW WKL. �

I Note that this statement makes a stronger claim than the
mere classical reverse mathematics result in that it is uniform
and resource sensitive.
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Varieties of Constructivism and Computability

I Reverse mathematics in the Friedman-Simpson style is neither
uniform nor resource-sensitive. For instance, products and
compositions are allowed. Since classical logic is used,
theorems and their contrapositive forms are equivalent.

I Constructive mathematics in Bishop’s style is uniform since
intuitionistic logic is used, but even less resources sensitive
than reverse mathematics since countable and dependent
choice is allowed. Certain computable operations are not
allowed (Markov’s principle, BD-N, etc.).

I Computable analysis in the Weihrauch lattice is fully uniform
and resource sensitive. All computable operations are allowed.

resource
sensitivity

uniformity

constructive analysis

reverse mathematics

computable analysis



Vitali Covering Theorem



Vitali Covering Theorem

I A point x ∈ R is captured by a sequence I = (In)n of open
intervals, if for every ε > 0 there exists some n ∈ N with
diam(In) < ε and x ∈ In.

I I is a Vitali cover of A ⊆ R, if every x ∈ A is captured by I.

I I eliminates A, if the In are pairwise disjoint and
λ(A \

⋃
I) = 0 (where λ denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If I is a Vitali cover of [0, 1], then there exists a subsequence J of
I that eliminates [0, 1].
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Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)

Over RCA0 the Vitali Covering Theorem is equivalent to Weak
Weak Kőnig’s Lemma WWKL0.

I Weak Weak Kőnig’s Lemma is Weak Kőnig’s Lemma
restricted to trees whose set of infinite paths has positive
measure.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the
Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s
Lemma WWKL.



Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)

Over RCA0 the Vitali Covering Theorem is equivalent to Weak
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Vitali Covering Theorem

I I is called saturated, if I is a Vitali cover of
⋃
I =

⋃∞
n=0 In.

Definition (Contrapositive versions of the Vitali Covering Theorem)

I VCT0: Given a Vitali cover I of [0, 1], find a subsequence J
of I that eliminates [0, 1].

I VCT1: Given a saturated I that does not admit a subsequence
that eliminates [0, 1], find a point that is not covered by I.

I VCT2: Given a sequence I that does not admit a subsequence
that eliminates [0, 1], find a point that is not captured by I.

I VCT0 : (A ∧ B)→ C ,

I VCT1 : (B ∧ ¬C )→ ¬A,

I VCT2 : ¬C → ¬(A ∧ B).
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Vitali Covering Theorem

Proof.

I The proof of computability of VCT0 is based on a construction
that repeats steps of the classical proof of the Vitali Covering
Theorem (and is not just based on a waiting strategy).

I The proof of VCT1≡sW WWKL is based on the equivalence
chain VCT1≡sW PC[0,1]≡sW WWKL.

I We use a Lemma by Brown, Giusto and Simpson on “almost
Vitali covers” in order to prove VCT2≤sW WWKL× CN. The
harder direction is the opposite one for which it suffices to
show CN × VCT2≤sW VCT2 by an explicit construction:

0 1x2 x3 x4 x5 ... xn ...

xn xn + 2jxn − 2j

an bnan,j+1bn,j+1an,j bn,j ...
�



CN as the Weihrauch Lattice Counterpart of IΣ0
1

I IΣ0
n (Σ0

n–induction) corresponds to the least number principle
LΠ0

n over a very weak system (Hájek, Pudlák 1993).

I LΠ0
1 directly translates into the problem:

minc :⊆ NN → N, p 7→ min{n ∈ N : (∀k) p(k) 6= n}

I It is easy to see that CN≡sW minc.

I Hence C
(n)
N can be seen as the Weihrauch lattice counterpart

of IΣ0
n+1.



Vitali Covering Theorem in the Weihrauch Lattice

CR ≡sW WKL× CN

CN

HBT1 ≡sW C[0,1] ≡sW WKL

VCT2 ≡sW PCR ≡sW WWKL× CN

VCT1 ≡sW PC[0,1] ≡sW WWKL

ACT≡sW ∗-WWKL

VCT0



Epilogue



Should we Consider Countable or Arbitrary Covers?

I Constructive and computable versions of covering theorems
usually deal with countable covers, not arbitrary covers.

I However, this is not an artefact caused by codings.

I Most relevant spaces in analysis are actually (heriditarily)
Lindelöf spaces, i.e., any open cover has a countable subcover.

I Hence classically the “countable cover” and “arbitrary cover”
versions are equivalent for such spaces.

I There is an ontological problem in giving a meaning to an
expression such as “given an arbitrary open cover”.

I While type-2 objects, even though infinite, can still be
presented in a concrete way, type-3 objects are rather elusive.

I This difference is the common reason for using countable
covers and codings and one is not a consequence of the other.

I This discussion can help to identify such subtle points, but
one should not jump to conclusions too quickly.
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Lindelöf spaces, i.e., any open cover has a countable subcover.

I Hence classically the “countable cover” and “arbitrary cover”
versions are equivalent for such spaces.

I There is an ontological problem in giving a meaning to an
expression such as “given an arbitrary open cover”.

I While type-2 objects, even though infinite, can still be
presented in a concrete way, type-3 objects are rather elusive.

I This difference is the common reason for using countable
covers and codings and one is not a consequence of the other.

I This discussion can help to identify such subtle points, but
one should not jump to conclusions too quickly.



Should we Consider Countable or Arbitrary Covers?

I Constructive and computable versions of covering theorems
usually deal with countable covers, not arbitrary covers.

I However, this is not an artefact caused by codings.

I Most relevant spaces in analysis are actually (heriditarily)
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