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Abstract

This thesis is dedicated to the question: (How) Is a relativistic quantum theory with
interaction possible? We discuss the problems of quantum field theories, especially
the non-existence of dynamics, which lead us to consider alternative approaches.
Multi-time wave functions are identified as the basic objects in relativistic quantum
mechanics. Focusing on models with constant particle number, we present several
possibilities how interaction can be achieved. We give an overview of the current
state of research concerning relativistic quantum theory, followed by a number of
own contributions.
For one method of implementing interaction, namely by boundary conditions, we
present a model of N identical mass-less particles moving in one dimension. The
multi-time wave function satisfies a system of N Dirac equations with boundary
conditions on the space-time configurations where two particles meet, which leads
to a relativistic contact interaction. Lorentz invariance as well as probability con-
servation are proven rigorously and the unique solution of this model is obtained
by a generalized method of characteristics. The effective potential, which features
δ-functions of the particle distances, is derived by self-adjoint extensions of the Dirac
Hamiltonian for several particles.
Another promising way of generating interaction is the use of integral equations. As
an example, we consider the Bethe-Salpeter equation, a multi-time integral equation
supposed to describe bound states in quantum electrodynamics. Problems connected
with this equation such as the lacking gauge invariance and the “abnormal solutions”
are explained and some ideas to resolve them are mentioned. Lastly, we perform the
non-relativistic limit of the Bethe-Salpeter equation in position space and thereby
derive the Breit equation in a new way.
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Part I

Possibilities for relativistically
interacting quantum theories

1 Introduction and overview
“So one of my missions in life is to get people to see that if they want to talk about
the problems of quantum mechanics – the real problems of quantum mechanics –
they must be talking about Lorentz invariance.” - John Bell

There are two extremely deep insights about our world that were unraveled by physicists
in the last century. The first one is relativity, the insight that the concept of space-time
ought to replace the separate entities of space and time. The second fact is non-locality
in the sense of Bell’s theorem, instantaneous causal connections that carry over arbitrary
distances without any attenuation.
Alas, there is a profound tension between these two concepts. There are well-established
physical theories for both of them separately, Einstein’s theory of relativity on the one
hand and quantum mechanics on the other hand. But finding a combination of re-
lativity and quantum mechanics is a tough business. If we follow the guideline that
a physical theory ought to be conceptually clear and mathematically well-defined, all
reputed solutions to the problem, especially quantum field theories, are not fully sat-
isfactory. Alternative attempts without conceptual or mathematical flaws have been
made, but they are so far only able to describe systems without interaction, so the real
Bell correlations can not yet be explained1. Any new theory that is invented should
be judged according to its ability to unite the relativistic space-time structure with the
quantum-mechanical entanglement and non-locality.
The question asked here is therefore one of today’s most important questions in funda-
mental physics: (How) Is a relativistic quantum theory with interaction possible?
Of course, it is impossible to conclusively answer this question in this master’s thesis.
Still, many thoughts are presented that may be helpful for the search. Many theoretical
physicists all over the world try to find a theory of quantum gravity today, with little
success so far. Every one of the various approaches has some value and we do not claim
that our approach is the only one that can lead to a relativistically interacting quantum
theory. What we do claim is that it is worthwhile to take a step back from the rather
intricate approaches that are mostly discussed in the literature and start from the basic
consideration what we wish for from a fundamental theory. If the aims of conceptual
and mathematical clarity guide our search, the ideas in this thesis arise from natural

1To some extent, Bell correlations can be reproduced by a non-interacting theory if one assumes a
suitable initial state (e.g. a singlet state) and then utilizes some measurement formalism. But this is of
course an unfinished picture since the initial state often arises through interaction that is not described
by that theory and also the measurement should be describable on a fundamental level by interactions
of matter.
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trains of thought. However, there are always other promising paths and we have to leave
aside approaches such as non-linear models, rigorous quantum field theory and others in
this thesis.
In part I, we investigate some general possibilities for relativistically interacting quan-
tum theories. We start with clarifying the concepts in sec. 2 and are thus able to discuss
in sec. 3 whether or not quantum field theory qualifies as the kind of theory we are
aiming at. If we only call theories with well-defined dynamics interacting, it becomes
clear that we cannot be satisfied with quantum electrodynamics or other theories of
the Standard Model. The search for alternatives starts from non-interacting relativis-
tic quantum theories in section 4, where we identify the concept of multi-time wave
functions as constitutive for relativistic quantum theories. Therefore, the subsequent
sec. 5 treats approaches to interaction in the multi-time picture of relativistic quantum
mechanics. Since interaction potentials make the equations inconsistent, several other
possibilities to obtain interaction are listed and discussed. The two most promising of
them, boundary conditions and integral equations, are then discussed at length in the
subsequent parts of this thesis.
In part II, based on the article [1] which is collaborate work with Matthias Lienert, we
generalize a model by Lienert [2] which is to our knowledge the first rigorous, interacting
multi-time model where probability conservation and Lorentz invariance are ensured. In
our generalization, it describes N identical Dirac particles with mass m = 0 in 1 + 1
dimensions. Interaction is generated by boundary conditions for the multi-time wave
function on configurations where two particles meet. We prove probability conservation
and Lorentz invariance of the model and show the existence of a unique solution, which
can, in this simple case, be constructed explicitly by a generalized method of characteris-
tics. Furthermore, we derive that the interaction generated by the boundary conditions
can be effectively described by δ-function potentials of the particle distances. It is then
discussed whether the model can be generalized and it becomes clear that in higher
spatial dimensions, the boundary conditions do not realize interaction. Therefore, one
cannot hope to describe realistic physics with such a model, but it can serve as a first
step in order to understand the interplay of the involved mechanisms.
Part III of this thesis finally treats the Bethe-Salpeter equation as an example for a multi-
time integral equation. After explaining how it comes about as an equation that should
describe bound states in quantum electrodynamics, we discuss several open problems
such as gauge invariance, current conservation and divergences in the Bethe-Salpeter
equation. The context of multi-time wave functions discussed in this thesis gives rise
to new ideas how some of the issues with the equation can be resolved. Besides, we
derive the non-relativistic limit of the Bethe-Salpeter equation in position space in or-
der to demonstrate how non-relativistic equations with potential terms may arise from
relativistic multi-time integral equations.
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2 Clarification of the concepts
The necessity of clarifying the notions and concepts under consideration is often only
appreciated in philosophical works, albeit it is impossible to discuss certain aspects of
fundamental physical theories without establishing a consensus about what the words
one uses are supposed to mean. By the way, explicating what your theory is about, clar-
ifying its connection to reality is indeed a task for physicists and should not be foisted
on the philosophers, following the guideline: do not leave your mess for others.
This thesis is about relativistic interactions in quantum theories. Therefore, we illumi-
nate in the next three subsections how the terms relativistic, interaction and quantum
theory should or could be understood.

2.1 What is relativistic?

We will always use the word relativistic in the sense of special relativity (SR) in this
thesis. In the original formulation by Einstein [3], special relativity was based on two
postulates:

• The relativity principle: The physical laws are independent of the inertial frame
that is used.

• c = const.: The velocity of light (in vacuum) is independent of the relative motion
of the light sources.

In Einstein’s argumentation, the velocity of light must then also be the same for all
observers because it comes out of a physical law, so the relativity principle applies.
Two years later, Minkowski laid the foundation of a formulation of special relativity with
the help of a 4-dimensional Lorentzian manifold called space-time. This formulation is
purely geometric and introduces coordinate systems only as a secondary concept. It
looks quite elegant and natural, and this was surely one of the reasons for the success
of SR. It was also acknowledged by Einstein that the most natural way to think about
relativity is in terms of space-time structure [4, p. 34]. Known relativistic theories such
as electrodynamics can be formulated in a geometric (or covariant) way, only using
the structures of Minkowski space-time. Therefore, it seems well motivated to define a
relativistic theory like Maudlin did in [5]:

“[A] theory is compatible with Relativity if it can be formulated without ascribing to
space-time any more or different intrinsic structure than the [...] relativistic metric.”

This rule implies Lorentz invariance in all aspects of the theory. Understood in this sense,
Lorentz invariance is a secondary concept related to changes of coordinate systems on a
manifold and a necessary condition for theories to be compatible with Minkowski space-
time. This seems a more natural point of view than starting with Lorentz invariance
because, as Maudlin formulates nonchalantly [5], “coordinate systems do not, in any
deep sense, exist”.
The above definition of a relativistic theory might nevertheless be too restrictive and
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make it impossible to find a relativistic quantum theory. A weaker requirement that is
surely necessary for a theory to be compatible with experience is the Lorentz invariance
of predictions of experimental outcomes. Hence, the right way to obtain a new physical
theory might still be to relax the relativity postulate and to go back to some notion
of absolute space or a preferred frame of reference. There are no known methods how
to discriminate one inertial frame from another, so a theory with additional space-time
structure should at least be constructed in such a way that this structure cannot be
detected. A good example to study this are the Hypersurface-Bohm-Dirac models which
assume a preferred foliation of space-time, but for observers and detectors, this foliation
is invisible [6, 7]. This is related to the Lorentz ether theory which is empirically equiv-
alent to Einstein’s SR but declares one frame of reference to be the “true” one (the rest
frame of the aether) and the other frames measure, in some sense, wrong effects that
have to be corrected by Lorentz transformations [8, p. 188 ff.]2. It seems to be extremely
difficult to formulate a realistic, deterministic relativistic quantum theory without addi-
tional space-time structure [5].
General relativity shows that the geometric formulation of SR is very powerful and al-
lows for generalization, which is a good argument for taking the structure of Minkowski
space-time seriously and rejecting additional structures. On the other hand, there are
space-times in general relativity that are, by themselves, endued with a kind of preferred
frame that might be used for a Hypersurface-Bohm-Dirac theory, for example the co-
moving coordinates in a Friedmann universe (compare [9, p. 715]).
Let us briefly summarize the points discussed above: Although weaker requirements
could be necessary, our desire is a fully relativistic theory, which means that it can be
formulated geometrically in Minkowski space-time. Ultimately, it is a difficult open ques-
tion if this requirement can be fulfilled in a realistic quantum theory (with interaction).

2.2 What is interaction?

Even though this question sounds as if it should be easy to answer, it is not; and there
is little literature about the general concept of interaction. In our description, it does
not include cases where one particle is subject to an external force or field, effective
treatments in which back-reactions are neglected.
In Newtonian physics, one would naturally say that two particles or bodies interact if and
only if there is a force acting between them. Newton’s third law “action equals reaction”
ensures that every action, every force appearing in classical physics is an inter-action,
there cannot be an action of A on B that does not re-act on A. According to Newton’s
first law, a non-interacting particle can be recognized by its movement on a straight line
with constant velocity.
But in a new theory, even free particles might behave in another way. This becomes
apparent, for example, in the quantum mechanical description of free identical fermions3.
The mere fact that there is a fermion “there” occupying a state already implies that

2The important difference is, of course, that the particle world-lines for which the foliation is needed
have an extremely high explanatory value while the Lorentzian aether does not have any.

3The term free is usually used, like here, as a synonym for non-interacting.
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another fermion cannot be in that state. This mechanism of Pauli’s exclusion principle
is usually not called interaction.
The usual quantum mechanical way to talk about interaction is to divide the Hamiltonian
into two parts, Ĥ = Ĥ0 + Ĥint, where Ĥ0 is the free part. A system is interacting if the
interaction part Ĥint is different from zero. The form of the free Hamiltonian can be
restrained by symmetry arguments which implement what it means to be non-interacting
(compare [10, §17]). This way of defining interaction can of course not be applied in
theories which are not in Hamiltonian form, like the multi-time theories presented in
parts II and III. But since there is still a wave function in such a theory, there is a
method of generalization: In the paper by Matthias Lienert [2] that will be discussed and
generalized in part II, a model is defined to be interacting iff there are wave functions
that are initially product states and become entangled with time. We can motivate
this criterion by applying it to a two-particle wave function in non-relativistic quantum
mechanics. Assume we have a wave function obeying a Schrödinger equation

i
∂ψ(x1,x2, t)

∂t
= Ĥ(x1,x2, t)ψ(x1,x2, t), (2.1)

and let the Hamiltonian be such that there is no interaction in the sense that every
initial product state stays a product state during time evolution. So there are solutions

ψ(x1,x2, t) = f1(x1, t)f2(x2, t), (2.2)

which can be inserted above:

∂f1(x1, t)
∂t

f2(x2, t) + f1(x1, t)
∂f2(x2, t)

∂t
= −iĤ(x1,x2, t)f1(x1, t)f2(x2, t) (2.3)

The left side is a product of functions of x1 and x2. This directly implies that the right
side can only be such a product, too. Therefore, the Hamiltonian may not contain any
functions (potentials) depending on both x1 and x2 that are not in product form. It
may still contain a term depending explicitly on the time t, according to our comment
above that external fields do not correspond to interaction. Therefore, we conclude
that the criterion gives reasonable results in non-relativistic Schrödinger theory and is
a sensible definition of interaction. So, as long as we consider theories where the term
entanglement is meaningful, we may use the criterion from [2], bearing in mind that it
might be provisional.

2.3 What is quantum?

It seems difficult to state clearly which aspects are essential for a theory to be called a
quantum theory. Still, there are some counterexamples, different formulations of quan-
tum mechanics, that show which aspects are surely not essential or fundamental: all
terms like measurement, observables, operators. A theory that uses words like this in its
fundamental formulation is doomed to be ambiguous and cannot be made conceptually
precise because there is no strict way in which measurement can be defined (compare
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[11]). Luckily, there are formulations of quantum mechanics that do not need any of
those suspicious words in their axioms. One of several examples is Bohmian mechanics,
a theory in which it becomes clear in a very insightful way how operators as observables
arise in special situations like the real measurements performed in laboratories [12].
Furthermore, we do not consider Hilbert spaces as too important, they are only mathe-
matically helpful because they allow for a simple treatment of solutions to the Schrödinger
equation and the application of the powerful methods of functional analysis. One can
also do quantum mechanics without reference to Hilbert spaces and consider only strong
(i.e. differentiable) solutions to the Schrödinger equation, compare [13].
So what is quantum? Historically, the starting point of quantum mechanics was the
mixture of classical concepts with quantization rules as in the Bohr model of the atom.
In the formulation used today, these rules are automatically encoded in the Schrödinger
equation. The formulation of quantum theory with the help of a wave function, a func-
tion on configuration space, connects to the notion of entanglement. The description
of interacting particles with one wave function leads to Bell-non-locality, a profound
concept that can be used to characterize a quantum theory. The notion of Bell– or
EPR–locality is defined by Maudlin as follows [14]:

“A physical theory is EPR–local iff according to the theory procedures carried out
in one region do not immediately disturb the physical state of systems in sufficiently
distant regions in any significant way.”

This is deliberately a weak statement in order to make its opposite even stronger. It
was proven by the Bell-inequalities and their experimental violation that our world can
not be described accurately by a Bell-local theory [15]4. Therefore, a quantum theory
in our sense is a theory that describes in some appropriate sense “quanta” which behave
in such a way that the non-local Bell correlations occur.
And this is now the big tension mentioned in the introduction: Non-locality and relativity
seem to fit together rather badly5. No reason to give up! One should expend some effort
in the search for a theory of the world that is relativistic, but describes the violations of
Bell-locality.

3 Remarks on Quantum Field Theory

3.1 Questions and questionable aspects

If one asks a standard textbook, the answer to our question whether there is a rela-
tivistically interacting quantum theory will be affirmative in the sense: Yes, of course,
it is quantum field theory (QFT)! With the clarifications of section 2 at hand, let us

4We will not elucidate the different interpretations of the meaning of Bell’s inequality here. In
agreement with John Bell himself, it seems quite clear for the author that the only alternative to
accepting non-locality as consequence of Bell’s inequality is the renunciation of describing our world
at all.

5They are, however, not in logical contradiction, as claimed some times, which will become apparent
e.g.in section 4.4.
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investigate in which sense QFT may or may not be called a relativistically interacting
quantum theory that satisfies the requirements we impose on a fundamental theory. We
will confine ourselves to quantum electrodynamics (QED), probably the most important
QFT that describes basic phenomena such as radiation and electron scattering. Let us
pose some questions about QED, which can in most cases be answered in the same way
for a general quantum field theory6.

• Is QED relativistic? With the works of Tomonaga and Schwinger [16, 17], a Lorentz
invariant formulation of a quantum theory of fields was achieved on a formal level.
But the statistical analysis of their theories has never been done successfully. Prac-
tical calculations in QED mainly yield (in perturbation theory) elements of the
S-Matrix, which is the time evolution operator from −∞ to ∞. For such an op-
erator, Lorentz invariance is not a strict requirement because the notion of spatial
and temporal infinity is the same in all inertial frames. It is good that the ele-
ments of the S-matrix are relativistically invariant, but a relativistic analysis on
finite scales might require something different from the current framework.

• Is QED interacting? This is a hard question, since we would like to analyze the
dynamics of the theory in order to see if our criterion for interaction from sec. 2.2
applies. But there is no dynamics, no well-defined “Schrödinger equation” of QED.
The majority of the equations that are written down are ill-defined and there exist
no solutions of the full theory with both fermion and photon field quantized.

• Is QED quantum? Quantum electrodynamics is of course quantum, not only be-
cause it is contained in its name, but also because one took the classical theory
and then quantized it. This “quantization” may be a very formal procedure, but
it yields a formalism with the help of which one can calculate many empirically
well-established values. According to the above discussion, we require that a fully
satisfactory quantum theory be able to predict the violation of Bell’s inequalities.
QED is not able to do so because there exists no dynamics on finite scales. Be-
cause of this shortcoming, it is also difficult to say in which sense other theories
(non-relativistic QM or classical physics) are limiting cases of QED, compare [18].

Although QED provides a very powerful calculation scheme for making predictions of
measurement outcomes, we deduce from the answers given above that it does not qualify
as a fundamental quantum theory with relativistic interactions. The main point of
criticism is the non-existence of dynamics. QED does indeed give a number of insights
about the world and helps to understand experimental data especially in scattering
situations, but it can only be seen as an effective description. There are two main
reasons for this:

1. Logical and mathematical consistency: The elements of the S-matrix in QED can
only be computed with the help of a perturbation series which is expected to

6There are some well-defined quantum field theories in 1+1 dimensions, but we will not discuss them
here and focus on the standard model of particle physics and the quantum field theories that are indeed
used for the description of our world.
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diverge (compare [19]). Furthermore, the infinities that arise in calculations and
have to be renormalized show that the theory is not even mathematically well-
defined order by order. It is known that QED is renormalizable and one can get
rid of the infinities in every case, but still, as Landau and Lifschitz put it [20, p. 4]7,

“Nonetheless, these procedures have the character of half-empirical recipes,
and our conviction that the results obtained this way are correct is eventually
based on their outstanding agreement with experiment, but not on the inner
consistency and the logical clarity of the theory’s fundamental principles.”

2. Conceptual clarity: It is unproblematic to regard the S-matrix formalism as an
effective description. The distances of many measurements e.g. in scattering situ-
ations are really very large compared to scales of elementary particles, so the limit
x, t → ∞ is well motivated. Compare the thermodynamic limit N → ∞, which
is never truly fulfilled for a physical system, but the behaviour of systems with
very large N is very close to it. A fundamental theory, in contrast, must not be
restricted to giving an effective description; it ought to describe every phenomenon
(or at least a wide range of phenomena) in the world in a clear way, without in-
consistencies such as the measurement problem. QED is insufficient in this sense
also because its application to bound systems is questionable, as will be discussed
in more detail in sec. III, so every-day situations and the stability of tables or
elephants cannot be explained by QED.
Moreover – even if one is only interested in measurement outcomes – there are new
experiments in reach, for example those at the ELI (extreme light infrastructure),
where non-perturbative QED effects will become visible and the effective QED
formalism will presumably not be able to predict the outcomes [21].

The discussion above should make clear that QED, despite its virtues, cannot serve
as a fundamental theory or provide fundamental insight about nature. Because of the
unsolved problems it contains, it is in the author’s opinion not a good idea to try to build
something new by extending its formalism and ideas in some way – as it is done in most
approaches to quantum gravity. Instead, one should go back some steps and build a more
stable foundation on which entirely new physical theories can be based. Quantum field
theories should come out of these new theories as effective descriptions in several special
situations, exactly like thermodynamics is derived from classical Newtonian mechanics.

3.2 No-go theorems about relativistic quantum mechanics of
particles

Having expounded the problems of quantum field theories, one might now be tempted
to look for alternatives. The first idea is to take particles as the basic concept of the

7My translation from the German version: “Trotzdem haben diese Verfahren weitgehend den Charak-
ter halbempirischer Rezepte, und unsere Überzeugung von der Richtigkeit der auf diesem Wege erhalte-
nen Ergebnisse beruht letzten Endes auf ihrer hervorragenden Übereinstimmung mit dem Experiment,
aber nicht auf der inneren Konsistenz und der logischen Klarheit der Grundprinzipien der Theorie.”
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theory and not only view it in some vague way as an excitation of a field. Edwin Jaynes
explains in [22] why the quantization of both matter and electromagnetic field is the
source of many problems in QFT:

“One can hardly imagine a better way to generate infinities in physical predictions
than by having a mathematical formalism with (∞)2 more degrees of freedom than
are actually used by Nature.”

Therefore, a theory dealing only with particles could be worthwhile. This may entail both
models with a fixed number of particles and a variable number of particles. However,
there is a number of arguments that are supposed to show that a particle theory of
relativistic quantum mechanics is impossible. Therefore, before going on with our task,
we consider those no-go theorems and explain their implications. In the following, we
discuss

• a superficial argument found in a QFT textbook,

• the theorem against relativistic quantum theories of particles by Malament,

• the “no interaction”-theorem by Currie, Jordan and Sudarshan.

The popular textbook about QFT by Peskin and Schroeder starts out with a chapter on
“The necessity of the field viewpoint” [23, p. 13f.]. Their argument for this “necessity”
is a calculation of a propagator for one particle, which does not vanish outside the light-
cone. This is considered to be in disagreement with causality (as Maudlin points out
[24], this is also not necessarily true). However, their calculation uses the Hamiltonian
H =

√
p2 +m2 which is a pseudo-differential operator and not the right Hamiltonian

for relativistic quantum mechanics. If one uses the Dirac Hamiltonian, these problems
do not arise, because the propagator is indeed equal to zero outside the light-cone (as
proven in [25, p. 15] and [26]). Therefore, the whole argument of Peskin and Schroeder
only shows that one should use the Dirac equation for relativistic quantum mechanics
(of one particle, at least). A field viewpoint has nothing to do with this.
A well-known article featuring a no-go theorem is David Malament’s “In defense of
dogma: Why there cannot be a relativistic quantum mechanics of (localizable) parti-
cles” [27]. Malament claims that his theorem proves the impossibility of the concept
of localization in a relativistic quantum theory. It is, however, only a theorem about
operators that do not exist under certain conditions. As operators need not be consid-
ered the basic objects in a quantum theory, but can be derived as bookkeeping objects
in situations that resemble measurements, this theorem says nothing definite about the
possibilities to construct a relativistic quantum mechanical theory of particles. In Chris-
tian Beck’s PhD thesis [28], a generalized version of Malament’s theorem is proven and
it is explained that the real implications of the no-go theorem are not about ontological
or fundamental questions, but about the possibilities of certain measurements and de-
tectors in relativistic quantum mechanics. This is clear because all talk about operators
is talk about measurements in the end. Still, the theorem has striking consequences:
In a world with one particle, it is always possible with probability greater than zero
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that two spatially separated detectors click (i.e. detect a particle) at the same time [28].
Ideal measurements like in non-relativistic quantum mechanics are therefore impossible
in principle. Beck argues that this is due to unavoidable effects of pair creation (vacuum
fluctuations) induced by the presence of the detector. We are thus forced to acknowl-
edge that detectors are not (and have never been) able to measure something without
changing it, as they themselves are physical entities that interact with the rest of the
world (compare the philosophical treatment in [29]).
There is something else to discuss about Malament’s theorem that is a generic feature of
many no-go theorems: It needs quite restrictive assumptions that are sold as normal and
natural, but usually exactly hide the real problem. Malament needs the two important
assumptions that

• physical states are defined on some Hilbert space H ,

• there is a Hamiltonian operator H : H → H generating time evolution which is
bounded from below.

We have argued above that Hilbert spaces are rather unimportant and there is no reason
why one should take for granted that a new theory is formulated with the help of those
objects. The timelessness of H and the implementation of time evolution with a unitary
time operator fit perfectly to the non-relativistic case, but are highly asymmetric in their
treatment of space and time and should be replaced in a relativistic setting. Moreover,
the boundedness from below is not as innocent an assumption as it may seem: The usual
Dirac Hamiltonian is not bounded from below. If we move to the usual Fock space where
the negative energy states are reinterpreted as positive energy states of antiparticles, the
Hamiltonian becomes bounded from below, so the theorem holds. Its implication is then
that a localized measurement cannot ideally determine the particle number, but not
more.
Another example of an often-cited no-go result is the so-called “no interaction”-theorem
[30] which is supposed to show that relativistic theories of particles, both classical and
quantum, cannot be interacting (and therefore, another time, we have to consider fields).
Its assumptions contain again the generation of time evolution by a Hamiltonian oper-
ator on Hilbert space. Additionally, it is made use of a kind of relativistic position
operator whose existence and status is unclear in the quantum case. The authors come
to the misleading result that particles are the problem that make relativistic theories
necessarily non-interacting. But in fact, the real implication of their theorem is the
other way around: if one looks for interacting relativistic quantum theories of particles
(why not?), then one should probably overcome the Hamiltonian formalism, or consider
models with particle creation or annihilation, which are not covered by the theorem.
In general, the problem of no-go theorems is that they have to make some severe assump-
tions about the structure of the theory that are usually too restrictive. Consequently,
Federico Laudisa argues in his article “Against the ‘no-go’ philosophy of quantum me-
chanics” [31] that instead of proving quite generic results with little importance, one
should think about the actual alternatives to the present formulations of theories (or
invent new alternatives) and discuss to what extent they have the desired properties.
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4 Non-interacting relativistic quantum theories
“A great deal of my work is just playing with equations and seeing what they give.
[...] I think it’s a peculiarity of myself that I like to play about with equations, just
looking for beautiful mathematical relations which maybe don’t have any physical
meaning at all. Sometimes they do.” - Paul Dirac

4.1 The Dirac equation for one particle

When Dirac looked for a relativistic generalization of the Schrödinger equation, he rea-
lized that this could not be done without the introduction of a wave function with several
components, a spinor. In three spatial dimensions, the Dirac equation is a relativistic
wave equation for a 4-component spinor ψ and reads (x = (t,x))

(i/∂ −m)ψ(x) = 0, (4.1)

where /∂ := γµ∂µ and γµ are the famous Dirac matrices. In Hamiltonian form, to see the
connection to the Schrödinger equation more clearly, one can write

i∂tψ(x) = (−iγ0γj∂j + γ0m)ψ(x) =: HD(x)ψ(x) (4.2)

So far, this is a one-particle equation for a spin-1
2 particle. In contrast to the non-

relativistic equation, which can be formulated for N particles without any problems
as

i∂tϕ(t,x1, ...,xN ) =

 N∑
j=1

H free
j (xj) +

∑
j 6=k

V (xj ,xk)

ϕ(t,x1, ...,xN ), (4.3)

the Dirac equation has no obvious generalization to multi-particle situations. (In the
next subsection, we will see that it has to be generalized to a system of equations.)
Indeed, the equation has a number of problems even in the one-particle case so that
the even harder question of generalization to interaction between several particles is
normally not discussed in textbooks8. The spectrum of the free Dirac operator is given
by (see e.g. [25])

σ(HD) = (−∞,−m] ∪ [m,∞) , (4.4)

which has been puzzling physicists for nearly a century by now. The negative energy
solutions of the Dirac equation are a severe problem because one could obtain an infinite
amount of energy from a particle if it were coupled to a radiation field or something
similar, which goes under the name of radiation catastrophe. The ad-hoc solution for
this problem was the introduction of theDirac sea [32]. Dirac postulated that all negative
energy states are occupied and thus the Pauli exclusion principle forbids a particle to
fall down to the negative energy states. Holes in the Dirac sea can then be interpreted
as anti-particles: Dirac’s approach led to the prediction of the existence of the positron,

8It is often heard that one is forced to change to a field description in order to go beyond the one-
particle Dirac equation, but as QFT has, as stated above, numerous problems, this cannot be the be-all
and end-all in relativistic quantum theory.
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which was a great success for his formulation. But there are many open questions and
conceptual problems with this approach that remain unsolved. Beyond others there is
the problem of the infinite number of particles necessary to fill the Dirac sea9 and the
question of how their dynamics looks like and how it can become effectively negligible.
To date, one can say that the status of the Dirac equation is still not fully clear.
One should remark, however, that the free Dirac equation without external fields is still
physically reasonable without any reference to negative energies because an initial state
with positive energy stays forever in the positive energy sector.
For the one-particle Dirac equation, one can easily prove that the current

jµ(x) = ψ̄(x)γµψ(x), (4.5)

where ψ̄ := ψ†γ0, is conserved in the sense of

∂µj
µ = 0. (4.6)

This conserved current is closely related to the probabilistic interpretation of the wave
function, which will be discussed in detail in section 7.1. We only note here that the
zero-component is exactly given by j0 = ψ†ψ, the well-known probability density from
non-relativistic quantum mechanics.

4.2 Multi-time wave functions

When we consider a relativistic quantum theory with more than one particle, the first
question is how the idea of a wave function can be adopted. Dirac was the first one
to discuss this and proposed the idea of a multi-time wave function [33, 34]. A wave
function in non-relativistic QM for N particles in d spatial dimensions is a map

ϕ : R× (Rd)N → S, (t,x1, ...,xN ) 7→ ϕ(t,x1, ...,xN ), (4.7)

with the appropriate spin space, usually

S = C2s+1 ⊗ · · · ⊗ C2s+1︸ ︷︷ ︸
N times

≡ (C2s+1)⊗N , (4.8)

for N particles with spin s. So ϕ has arguments in configuration space for each fixed
t which is seen as an external time parameter. This is as non-relativistic as can be,
because time and space are treated very differently. A first step is to replace the
point (t, x1, ...,xN ) by the synonymous collection of space-time events ((t,x1), (t,x2) ,
. . . , (t,xN )). This makes it possible to think of the wave function as a function on
Galilean configuration space-time, which maps each configuration (t,x1, ..., t,xN ) with
equal time coordinates to a vector in S. From this viewpoint, it is rather easy to see
how to generalize the notion of a wave function to relativity. There, we have no absolute
notion of simultaneity at hand, there are only light-cones and the concepts of space-like

9This problem does not vanish just by changing to the mathematically equivalent picture of the
vacuum as is customary in QFT, because this vacuum has infinite energy.
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and time-like directions. Therefore, we should expect that a relativistic wave-function
is a map on configuration space-time,

ψ : Ω ⊂ (Rd+1)N → S, (t1,x1, ..., tN ,xN ) 7→ ψ(t1,x1, ..., tN ,xN ), (4.9)
that depends on N space-time points xj = (tj ,xj), and thereby on N time coordinates –
thus the name multi-time wave function. The subset Ω of configuration space-time that
should be considered is the set of space-like configurations

S :=
{

(x1, ..., xN ) ∈ (Rd+1)N
∣∣∣ (tj − tk)2 − |xj − xk|2 < 0 ∀j 6= k

}
, (4.10)

because space-likeness is the geometric relativistic generalization of simultaneity. Even
more basically speaking, the notion of an N -particle configuration does only make sense
on a space-like hypersurface, because the world-line of a particle will cross every space-
like hypersurface exactly once, but any other arbitrarily often. We can also expect that
the wave-function should be integrable over a space-like hypersurface, but not over a
time-like one, because this is also not possible in the non-relativistic case (

∫
R dt ψ(t,x)

typically diverges). Further evidence for this restriction to space-like configurations
being reasonable is provided by several multi-time models which are only consistent on
these configurations and not on the whole of configuration space-time, see [35], and by
the comparison with the Tomonaga-Schwinger formulation of QED, where the wave-
function is defined on space-like hypersurfaces.
As discussed by Bloch [36], one might conjecture that a natural statistical interpretation
of the multi-time wave function ψ(t1,x1, ..., tN ,xN ) on a space-like configuration is that
its square describes the probability of particle 1 being at place x1 at time t1 and particle
2 being at x2 at time t2 and so on. However, there is neither experimental evidence
for this nor a deeper theoretical understanding; which would require a definite theory of
relativistic quantum mechanics.
In a nutshell, the multi-time picture which uses a wave function ψ(x1, ..., xN ) constitutes
the Schrödinger picture of relativistic QM. In [37], where many basic ideas of multi-time
dynamics were explicated for the first time, it is also explained in which way one can
see its equivalence to the relativistic Heisenberg picture, given by field operators Φ̂(x)
acting on some Fock space. This equivalence only holds under certain conditions for
the dynamics of the multi-time wave function. The Schrödinger picture does not only
provide a more direct approach on what happens, it also has the decisive advantages of
not using the questionable operators as basic objects and of allowing for a more general
class of dynamics such as the one discussed in part III.

4.3 Free multi-time evolution

Because a multi-time wave function ψ(x1, ..., xN ) has to be evolved in N time coor-
dinates, one may now guess how to generalize the one-particle Dirac equation (4.2).
Adding up the N single-time Hamiltonians will not help at all because one has to evolve
N time arguments, so one should better impose a system of N equations:

i
∂

∂tj
ψ(x1, ..., xN ) =

(
−iγ0

j γ
a
j

∂

∂xaj
+ γ0

jmj

)
ψ(x1, ..., xN ), j = 1, ..., N. (4.11)
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The right hand side is defined as the partial Hamiltonian Hj . For comparison with the
familiar single-time models, one may set all times equal and use the chain rule to get

i
∂

∂t
ψ(t,x1, ..., t,xN ) =

N∑
j=1

i
∂

∂tj
ψ(t1,x1, ..., tN ,xN )

∣∣∣∣∣∣
t1=...=tN=t

=
N∑
j=1

Hj(xj)ψ(t,x1, ..., t,xN ). (4.12)

In case of the free Dirac Hamiltonians, the full system (4.11) admits unique solu-
tions for given initial values on a Cauchy surface (compare [38]), in the simplest case
ψ(0,x1, ..., 0,xN ). This is because the partial Hamiltonians Hj are all self-adjoint on a
common domain and commute with each other, which implies the existence of a unitary
N-parameter group U(t1, ...tN ) such that

ψ(t1,x1, ..., tN ,xN ) = U(t1, ...tN )ψ(0,x1, ..., 0,xN ) (4.13)

is a solution of (4.11). Details are found in [37, sec. 1.3].

4.4 Relativistic Collapse Theory

Before proceeding to the question of interaction, we present a way how the multi-time
wave functions can be used to build a quantum theory which may be called “fully rel-
ativistic” according to our criterion in sec. 2.1. This is the relativistic version of the
collapse model of Ghirardi, Rimini and Weber due to Roderich Tumulka [39]. The gene-
ral idea of these models is to modify of the Schrödinger equation by adding a stochastic
term that describes the collapse of the wave function as a real, objective process, not
only an unclear prescription connected with measurements. The relativistic GRW model
(rGRW) uses a multi-time wave function that satisfies the system of N Dirac equations
(4.11), only with the modification that at random times, there is a collapse of the wave-
function, modeled by multiplication with a Gaussian centered around a random place
(which is picked according to the |ψ|2-distribution). With this evolution of the wave-
function at hand, one can define a way matter behaves in order to obtain a connection
with our real world. There are two possibilities:

• The flash ontology (rGRWf), where the space-time points around which the col-
lapses are centered, so-called flashes, are taken to be the only thing there is [39].
An object as we see it would then be explained dynamically by our perception of
a galaxy of flashes.

• The matter density ontology (rGRWm), where primitive stuff (matter) is dis-
tributed according to the |ψ|2-distribution. In the relativistic case, one must of
course not take the distribution at equal times, but instead evaluate |ψ|2 at the
past light-cone of each event [40].
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Both rGRWf and rGRWm are relativistic quantum theories, but so far without interac-
tion. The models introduce two new parameters, the average time between two collapses,
τ , and the width of the Gaussian, a. Because the collapse is not complete (the tails of
the Gaussian extend up to infinity), there is a slight deviation from orthodox quantum
mechanics. But if one chooses the parameters of order a ∼ 10−7 m and τ ∼ 1015 s, no
present experiment can distinguish the GRW models from orthodox quantum mechanics
or Bohmian mechanics. Still, an improvement of experimental techniques can confine
the parameters further and could lead to an empirical decision between collapse models
and models that retain the Schrödinger equation [41].
Moreover, one can attack the relativistic GRW model from several directions by basic
arguments. The first obvious point is the fundamental randomness that is hard to grasp.
Second, one may criticize the two ontologies. The flash ontology is rather unintuitive
and leads to seemingly paradoxical statements like: there are some times, even small
time intervals, when there is nothing there of my chair. (Because the flashes are ran-
domly distributed discrete space-time events, this will happen some time.) Still, the
model reminds us that our perception of the world comes only from averaging over quite
large scales in space and time and all effects have to be explained dynamically, and the
dynamics is such that I do not have to fear falling to the ground when sitting on my
chair. The matter density ontology has the unpleasant feature that the stuff moving
around in our world does not do that in a continuous way, but “jumps around” when a
collapse of the wave function occurs [40]. Models with a continuous way of collapsing
the wave function like the CSL (continuous spontaneous localization) model exist, too,
but suffer from divergences if one tries to make them relativistic [42].
Although these are all valid points that deserve some attention, the relativistic GRW-
theory should not be discarded: it is the first quantum theory that is fully relativistic,
i.e. adds no external structure to Minkowski space-time.

5 Approaches to interaction in multi-time quantum
theories

In this section, several approaches to generate interaction in relativistic multi-time quan-
tum theories are discussed. In sec. 5.1, we show that the well-known mechanism of in-
teraction via potentials is not possible in this case. Consequently, we discuss a variety of
other conceivable mechanisms of interaction in sec. 5.2. Let us remark that the question
of interaction will only be treated on the level of the wave function. If one is able to
construct a suitable interacting (multi-time) wave function equation with a suitable con-
served current, one will also be able to construct a realistic relativistic quantum theory
out of it, e.g. a Hypersurface-Bohm-Dirac theory or a theory with objective collapse like
the one described in section 4.4. The problems with the construction of such theories
are independent of the question discussed here.
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5.1 Consistency conditions and no-go theorem for potentials

In non-relativistic quantum mechanics, interactions are usually modeled by addition of
an interaction potential

Ĥint =
∑
i 6=j

V (xi,xj) (5.1)

to the Hamiltonian, for example a Coulomb potential V (xi,xj) ∝ |xi − xj |−1. Doing
this for the Dirac equation leads to an explanation of the fine structure of hydrogen.
Evidently, one would first try doing something similar in the case of relativistic multi-
time equations, writing down a system of N equations similar to (4.11)

i
∂

∂tj
ψ(x1, ..., xN ) = Hjψ(x1, ..., xN ), j = 1, ..., N, (5.2)

where Hj could be the Dirac Hamiltonian plus a suitable interaction potential. But the
evolution in several time components does not work that easily. It should be assured
by the equations that the time evolution is not path-dependent, i.e. one arrives at the
same result if one evolves first in tj-direction and then in tk-direction or the other way
around. This leads to so-called consistency conditions which are in the simplest case
given by the following lemma.

Lemma 5.1 (Corollary 1.2.3 in [37]) Let Hj be self-adjoint operators with common
domain on a Hilbert space H for all j = 1, ..., N . For initial data ψ(x1, ...,xN ) ∈ H
given at t1 = · · · = tN = 0, there exists a unique H -valued solution of the system (5.2)
if and only if the Hamiltonians commute, i.e.

[Hj , Hk] = 0 ∀j, k. (5.3)

Idea of proof: The lemma is a corollary of theorem VIII.12 in [43]. The main idea is
that invoking

e−itjHje−itkHkψ(0,x1, ...0,xN ) != e−itkHke−itjHjψ(0,x1, ...0,xN ) (5.4)

for all ψ in the domain of the operators necessarily leads to [Hj , Hk] = 0. For more
details, we refer to [37].

The case treated in lemma 5.1 is simple because the Hamiltonians can be considered
operators on the time-less Hilbert space and do therefore themselves not depend on
time. An actual relativistic potential must of course also depend on time coordinates.
In such a setting, the consistency condition (5.3) generalizes to [26]:[

∂

∂tj
−Hj ,

∂

∂tk
−Hk

]
= 0 ∀j, k. (5.5)

It turns out that these consistency conditions are quite restrictive and do not allow in-
teraction potentials, as is proven by Petrat and Tumulka in [26]. Their theorem assumes
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that the Hamiltonians Hj are the sum of a free Dirac (or Schrödinger) Hamiltonian and
a smooth interaction potential Vj which is acting only on the spin component of the j-th
particle. Then it follows that the consistency conditions (5.5) are satisfied if and only if
the potential is equivalent (via a phase transformation) to a potential that only depends
on the coordinates of one particle, Ṽj(xj). Therefore, interactions between the particles
are excluded.
One should remark that the assumptions of Petrat’s and Tumulka’s theorem are too
restrictive, because the potentials one usually considers in relativistic QM (e.g. the Breit
potential) are neither smooth nor only dependent on the spin components of one par-
ticle. Nevertheless, the no-go theorem shows that interaction potentials are not well-fit
to relativistic quantum mechanics. There may be some residual possibilities to explore,
but it is much more promising to focus on new mechanisms of relativistic interaction.

5.2 Possible mechanisms of interaction

We are now ready to tackle the main question: Which mechanisms of relativistic inter-
action may exist in a quantum theory? Of course, we cannot give an exhaustive list (and
often, the solution to such a difficult problem is in the end something that no one has
ever thought of before). The following list, however, features a number of possibilities for
relativistic interactions in a quantum theory. We will stay in the context of multi-time
wave functions, of course noticing that there may also be other possibilities for RQM,
but none as natural and promising as the use of multi-time wave functions.

• Generalized potentials: The potentials excluded by the no-go theorem are as-
sumed to be multiplication operators, so a generalization to “potentials” which also
include differential operators might come into one’s mind. And indeed, this path
has been taken for the two-body Dirac equations of constraint theory (see [44] for a
treatment from the multi-time perspective). These are multi-time Dirac equations
for two particles with potential terms dependent not only on spatial coordinates,
but also on the total momentum operator. By the correspondence pµ → i∂µ, we see
that this means that differentials with respect to both time and space coordinates
are contained in the potential, usually up to infinite order. Indeed, it is possible
to create interaction in this way, but the equations suffer from other problems:
the free Dirac current is not conserved, hence one has to find modified conserved
currents. But these can be chosen with some arbitrariness and do often not allow
a probabilistic interpretation because they do not provide a positive density [44].
We will not further pursue this option here also because the approach seems to be
limited to a particle number of N = 2.

• Pair creation: In their paper [26], Petrat and Tumulka state that the exclusion
of interaction potentials in multi-time evolution equations “naturally leads us to
considering particle creation and annihilation”. The empirical success of QFT with
its picture of particles and anti-particles as non-conserved entities as well as the
possibility of obtaining effective potentials (e.g. Yukawa potentials) via particle
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exchange may well promote this thinking. But we note that, to our knowledge,
no one has succeeded in writing down a relativistic theory of particle creation and
annihilation in three dimensions that does not have ultraviolet divergences. We
agree with Tumulka’s view that the problem of divergences is best attacked in the
Schrödinger picture, which means by use of multi-time wave functions, but the
divergences lead us to focus on other approaches in this thesis.
For skeptics, we should mention that in order to explain empirical effects like
electron-positron-pair creation, a theory does not necessarily have to feature a
changing particle number. Pair creation can also be well understood with the help
of the Dirac sea picture, where a positron is only a hole in the “sea” of negative-
energy electrons, and therefore, the particle number is indeed conserved, there are
only N electrons10 which may change from negative to positive energies and back.

• Boundary conditions: In sec. 4.2, we saw that the multi-time wave function has
as natural domain the space-like configurations S . Since this is a set with non-
empty boundary, the question arises whether one should or could impose boundary
conditions on (parts of) its boundary and whether these boundary conditions have
any impact on the dynamics. A rigorous analysis of these questions will be done in
part II of this thesis, starting with a 1+1-dimensional model where interaction by
boundary conditions can indeed be achieved. Generalizations to higher dimensions
and the question whether the interaction can be retained are then discussed in sec.
10.
A combination of the two previous points is the approach of so-called interior
boundary conditions (IBC) by Teufel and Tumulka [45]. The idea is to write down
divergence-free Hamiltonians for pair creation by using boundary conditions on the
set of coincidence points (where the space-time coordinates of two particles agree).
Insofar, their method is in some sense a generalization of our model presented in
part II to pair creation. Up to now, their method was only applied to non- or
semi-relativistic situations and the question whether relativistic interactions can
be created by IBCs is open. We will further comment on this in 10.3.

• Integral equations: The issue of consistency only appears when we consider a
system ofN differential equations for the multi-time wave function. If the dynamics
is contained in only one equation, there is possibly more freedom to implement
interactions. This naturally leads to the concept of integral or integro-differential
equations. Let us consider a simple example, a system of two free Dirac equations,

i
∂

∂t1
ψ(x1, x2) = HD(x1)ψ(x1, x2)

i
∂

∂t2
ψ(x1, x2) = HD(x2)ψ(x1, x2), (5.6)

10To date, one really uses infinitely many particles to fill the Dirac sea, but one may hope to reduce
this number to a finite N .
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which can be rewritten as one integral equation quite easily because the particles
1 and 2 evolve independently. Using the free Dirac propagator defined by(

i
∂

∂tj
−HD(xj)

)
SD(xj , x′j) = δ(4)(xj − x′j), j = 1, 2, (5.7)

we can write (5.6) as [46, p. 333]

ψ(x1, x2) =
∫
S1×S2

dσ(y1)dσ(y2) iSD(y1, x1) iSD(y2, x2) /n1(y1)/n2(y2) ψ(y1, y2),
(5.8)

where the integration is over arbitrary surfaces Sj , j = 1, 2, enclosing xj , and nj
is the normal vector to the surface Sj .
It is now viable to write down equations similar to (5.8) that are not reducible
to a differential equation and thus behave completely differently from the systems
of multi-time differential equations discussed so far. Indeed, there exists one such
equation that is known since 1951, the Bethe-Salpeter equation. It is supposed
to describe bound states in QED and has a number of interesting physical and
mathematical properties that will be discussed in part III of this thesis. We will
see that it has problems we are not yet able to overcome, but it serves as a pro-
mising example of how integral equations may generate relativistic interactions in
a quantum theory.
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Part II

A simple interacting multi-time model
of N fermions in one dimension

In his paper “A relativistically interacting exactly solvable multi-time model for two
mass-less Dirac particles in 1 + 1 dimensions” [2], Matthias Lienert gave an example
for a multi-time model that has the desirable features: interaction, Lorentz-invariance,
probability conservation and compatibility with antisymmetry (i.e. identical particles).
The follow-up paper [1] by Lienert and the present author generalized these results to
N particles and also showed that a generalized domain is not helpful because it does
not allow for non-trivial solutions. For this, we refer also to Lienert’s PhD thesis [37].
This part is a slightly modified and more detailed version of the second paper, where
the relevant results from the first paper are stated and explained again. Only section
9.3 about self-adjoint extensions in the single-time model is exclusively found in this
thesis and the introduction is replaced by a shortened motivation. The main points that
motivate the model were already worked out in part I of this thesis.

6 General properties of the model

6.1 Motivation

In section 5.2, we discussed several mechanisms of interaction that are possible in the
multi-time formalism. One of those was the choice of certain boundary conditions for
the multi-time wave function ψ that will turn out to generate entanglement in the time
evolution. Even if we did not hope that interaction was possible this way, the question
of boundary conditions would naturally arise because we consider the wave function on
a domain with non-empty boundary, namely S (or possibly a subset of S ).
The model aims at understanding the interplay between boundary conditions, interac-
tion, Lorentz invariance and probability conservation. We focus on a strongly simplified
setting of mass-less particles in one spatial dimension, which allows us to solve the model
explicitly even in the case of N particles and thereby grasp the relation of the mentioned
concepts.
We need to briefly comment on the usual method of introducing boundary conditions
in quantum systems, common especially in the field of zero-range physics (see [47]).
There, the boundary conditions are prescribed via the domains of the respective Hamil-
tonians. It is addressed in depth in [2] that this method is not suitable here, since
the Hilbert spaces are time-less and the time coordinates come as external parameters
in that formalism. Relativistic boundary conditions may depend on multiple time and
space coordinates, so we have to impose them not in domains of operators, but in a more
direct way as supplementary conditions for the solutions of partial differential equations.
Therefore, we will encounter the methods of functional analysis only in section 9.3, where
an effective single-time model is constructed out of our fully relativistic model.
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This part is organized as follows: After defining the model, we specialize on identi-
cal particles (sec. 6.3) and give the general solution in sec. 6.4. A general discussion
about probability conservation in relativistic QM follows (sec. 7.1) and its implication,
the uniqueness of solutions, is proven (sec. 7.2). Then we investigate which boundary
conditions are compatible with both probability conservation (sec. 7.3) and Lorentz in-
variance (sec. 7.4). The main theorem providing the explicit unique solution of the model
is stated and proven in section 8. Afterwards, we demonstrate in sec. 9 that the model
is interacting and construct the corresponding single-time model, which shows that our
model is the fully relativistic version of an N -particle Dirac equation with δ-function
potential. This is done rigorously via self-adjoint extensions of the Dirac Hamiltonian.
Lastly, section 10 is dedicated to the question of whether generalizations of the model
are feasible.

6.2 Definition of the model

Our model is based on a multi-time wave function for N mass-less Dirac particles on the
set of space-like configurations

S := {(t1, z1, ..., tN , zN ) ∈ R2N : (tj − tk)2 − (zj − zk)2 < 0 ∀j 6= k} (6.1)

in 1 + 1-dimensional space-time, with metric g = diag(1,−1). The appropriate spin
space is (C2)⊗N . Thus, ψ has 2N spin components ψi, i = 1, ..., 2N .
As multi-time evolution equations we use a system of N mass-less Dirac equations

iγµk ∂k,µ ψ(x1, ..., xN ) = 0, k = 1, ..., N. (6.2)

Here, xk = (tk, zk), ∂k,µ = ∂
∂xµ
k
and γµk is an abbreviation for

1⊗ · · · ⊗ γµ ⊗︸ ︷︷ ︸
k−th place

· · · ⊗ 1. (6.3)

The familiar Gamma matrices from 3 + 1 dimensions are 4 × 4-matrices, but their size
depends on the dimension of space-time, as the relevant condition on the matrices is the
Clifford algebra relation (see e.g. [48, p. 85])

[γµ, γν ] = 2gµν1. (6.4)

In one spatial dimension, this can already be fulfilled by (2 × 2)-matrices. We choose
the representation

γ0 = σ1 =
(

0 1
1 0

)
, γ1 = σ1σ3 =

(
0 −1
1 0

)
, (6.5)

(σi, i = 1, 2, 3, denote the Pauli matrices), which is extremely practical because it
diagonalizes the multi-time Dirac equations without mass. If one multiplies eq. (6.2)
with γ0

k from the left, this results in(
∂

∂tk
+ σ3,k

∂

∂zk

)
ψ(t1, z1, ..., tN , zN ) = 0, k = 1, ..., N, (6.6)
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with the usual shorthand notation σ3,k standing for a tensor product of identity matrices
with a σ3 matrix at the k-th place. We will soon see that the general solution of this
system of equations is easily found because of its diagonal form.
Initial data are prescribed on the set

I := {(t1, z1, ..., tN , zN ) ∈ S : t1 = · · · = tN = 0}. (6.7)

Since S has a non-empty boundary ∂S , one should expect that boundary conditions
are needed to ensure the uniqueness of a solution. At this point, we leave open the exact
nature of the boundary conditions. It will be clarified by further considerations about
Lorentz invariance and probability conservation.
All in all, the model consists of the following three ingredients:

the system of equations (6.6) on S ,
initial conditions on I,
boundary conditions on ∂S .

(6.8)

6.3 Antisymmetry and reduction of the domain

We will see that antisymmetry of the wave function for identical particles opens up the
possibility to reduce the domain from N ! disconnected parts to a single connected one.
It is natural to consider identical particles as they are not dynamically distinguished by
eqs. (6.2) alone.
We will introduce a notation which is tailor-made for the multi-time equations (6.6).
Denote the spin components of ψ by ψs1...sN where each si can take the values ±1. We
write 

ψ1
ψ2
ψ3
...

ψ2N

 ≡

ψ−−···−−
ψ−−···−+
ψ−−···+−

...
ψ++···++

 . (6.9)

Indistinguishability implies the following antisymmetry condition for the wave function.
Let π ∈ SN be a permutation. Then

ψsπ(1)...sπ(N)(xπ(1), ..., xπ(N))
!= (−1)sgn(π)ψs1...sN (x1, ..., xN ). (6.10)

This condition can be used to relate a solution of (6.8) on the different parts of the
domain S . Note that in one spatial dimension, S separates into N ! disjoint parts
which can be classified according to the relation of the spatial coordinates zk, for example
z2 < z1 < z5 < z3 < · · · . Using the permutation group SN , we write S as the disjoint
union of open sets,

S =
⊔
π∈SN

Sπ,

where Sπ :=
{

(t1, z1, ..., tN , zN ) ∈ S : zπ(1) < · · · < zπ(N)
}
. (6.11)
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The crucial point is the following: given a solution of the model, as defined by (6.8) on
S1 (corresponding to z1 < · · · < zN ), antisymmetric continuation via eq. (6.10) yields a
solution on Sπ provided the boundary and initial conditions are chosen to be compatible
with antisymmetry. Note that this restricts the possible classes of initial boundary value
problems (IBVPs) (6.8) to an autonomous IBVP on S1. We shall employ this strategy
in the following. Our new model may be summarized according to (6.8) with S replaced
by S1.

6.4 Multi-time characteristics and general solution

Let us look at the diagonalized multi-time Dirac equations (6.6) for a fixed component
ψs1...sN . It contains nearly only 1s, so only the spin index of the k-th particle decides
whether there is a + or − sign in the equation. Using the notation (6.9), this can be
expressed as (

∂

∂tk
− sk

∂

∂zk

)
ψs1...sk...sN = 0, k = 1, ..., N. (6.12)

Note that (6.12) imposes N equations for each of the 2N spin components ψs1...sN . The
general solution is obtainable because the system of Dirac equations looks like a system
of coupled linear transport equations with constant prefactors. The transport equation
has the form

∂

∂x
u(x, y) + b · ∂

∂y
u(x, y) = 0 (6.13)

and one recognizes, using the coordinate transformation v = x + bt, w = x − bt, that it
becomes

∂

∂v
u (x(v, w), y(v, w)) = 0, (6.14)

so solutions may only depend on w, so we have u(x, y) = u(w) = u(x− bt). This is the
simplest case for the so-called method of characteristics [49, p. 96–99].

Lemma 6.1 The general solution of eqs. (6.12) is given by

ψs1...sN (t1, z1, ..., tN , zN ) = fs1...sN (z1 + s1t1, ..., zN + sN tN ) (6.15)

where fs1...sN : RN → C are C1-functions, s1 = ±1, ..., sN = ±1.

Proof: The result is a consequence of the simple method of characteristics, which be-
comes obvious if one is familiar with the notation. Simply write out eq. (6.12) for ψs1...sN
separately:

(
∂
∂t1
− s1

∂
∂z1

)
ψs1...sN = 0, · · · ,

(
∂
∂tN
− sN ∂

∂zN

)
ψs1...sN = 0. So the solution

may only depend on the combinations z1 + s1t1 and so on. This directly implies the
form (6.15). �

The form of the general solution motivates the following definition.
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Definition: Let p = (t1, z1, . . . tN , zN ) ∈ R2N . Then we call

ck := zk + sktk (6.16)

the characteristic values at p associated with the component ψs1...sN .
Furthermore, we define the multi-time characteristic of component ψs1...sN by

Ss1...sN (c1, ..., cN ) := {(t1, z1, ..., tN , zN ) ∈ R2N : zk + sktk = ck}. (6.17)

With these definitions, one can reformulate lemma 6.1 as follows: the components ψs1...sN
of solutions of (6.12) are constant on the respective multi-time characteristics (6.17).
Note that this implies existence and uniqueness on the domain R2N for an initial value
problem at t1 = ... = tN = 0, the functions fs1...sN being given by the initial values.
However, as known from [2], this is in general not true for a domain with boundary such
as S1.

7 Probability conservation and Lorentz invariance
This section is all about the hunt for the right boundary conditions. As a start, we state
an adequate notion of probability conservation on space-like hypersurfaces (sec. 7.1).
A general theorem which shows that probability conservation implies the uniqueness
of solutions is proven (sec. 7.2) and thereafter, a condition on the components of the
wave-function that leads to probability conservation is derived (sec. 7.3). Then we deal
with the question of Lorentz invariance of our model, especially with the constraints
this puts on the boundary conditions (sec. 7.4). The fruits of our labor will be reaped
in the following section 8 where it is shown that the Lorentz invariant and probability
conserving boundary conditions we construct also lead to the existence of a unique
solution.

7.1 A geometric formulation of probability conservation

It is clear that the non-relativistic notion of probability conservation,∫
ddx1 · · · ddxN |ψ|2(t,x1, ..., t,xN ) = 1 ∀t, (7.1)

which heavily draws on a notion of simultaneity, has to be generalized in a relativistic
theory. Following the usual path of accomplishing relativistic generalizations, we need
to identify a geometric quantity that reduces to it in some cases. The Dirac equation
provides a natural tensor current which generalizes the one-particle current of eq. (4.5),

jµ1...µN := ψγµ1
1 . . . γµNN ψ, (7.2)

which satisfies the conservation equation

∂k,µkj
µ1...µk...µN = 0 ∀k. (7.3)
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With the help of this current tensor, one can rewrite the above equation (7.1) as∫
ddx1 · · · ddxN j0...0(t,x1, ..., t,xN ) = 1 ∀t,

and one recognizes that this is the equal-time version of the more general formula∫
Σ
dσ1(x1)nµ1(x1) . . .

∫
Σ
dσN (xN )nµN (xN )jµ1...µN (x1, . . . , xN ) = 1 ∀Σ, (7.4)

where Σ is understood to be a (smooth) space-like hypersurface. This is now a purely
geometrical formulation of probability conservation that treats all space-like hypersur-
faces equally and reduces to (7.1) for equal-time hypersurfaces where the normal vector
is n = (1, 0, ..., 0). If the domain Ω is only a subset of configuration space-time, like S ,
we should confine the integration to ΣN ∩ Ω.
We will later apply Stokes’ theorem to obtain conditions for probability conservation,
thus it is useful to rewrite equation (7.4) with the help of differential forms.
One defines a current form as follows:

ωj :=
d∑

µ1,...,µN=0
(−1)µ1+···+µN jµ1...µN (dx0

1 ∧ . . . d̂x
µ1
1 · · · ∧ dx

d
1)

∧ · · · ∧ (dx0
N ∧ . . . d̂x

µN
N · · · ∧ dx

d
N )

=
d∑

µ1...µN=0
(−1)µ1+···+µN · jµ1µ2...µN

N∧
k=1

 d∧
νk=0
νk 6=µk

dxνkk

 (7.5)

where (̂·) denotes omission from the wedge product. The rank of this form is Nd. The
continuity equations (7.3) imply that its exterior derivative vanishes, i.e. dωj = 0. The
relativistic notion of probability conservation on a domain Ω then reads [2]∫

ΣN∩Ω
ωj =

∫
(Σ′)N∩Ω

ωj (7.6)

for all pairs of space-like hypersurfaces Σ,Σ′. Equation (7.6) reduces to the form in (7.4)
by use of the formula from analysis that expresses the surface element dσ as a differential
form [50, p. 435]:

dσ =
d∑

µ=0
nµ(−1)µdx0 ∧ . . . d̂xµ · · · ∧ dxd (7.7)

It is noteworthy that the form of the tensor current (7.2) strongly depends on the evolu-
tion equations that are used. It is known, for example, that for Klein-Gordon equations,
one has, using the abbreviation

↔
∂ :=

→
∂ −

←
∂ where the derivatives act to the direction

depicted by the arrow, the conserved current form

jµ1...µk...µN = φ∗
(
i
↔
∂ 1,µ1

)
. . .
(
i
↔
∂N,µN

)
φ. (7.8)
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This fact should be appreciated to not confuse the logical structure of building a new
quantum theory: First comes the evolution equation, then it dictates the conserved
current and the notion of probability conservation, which may then be used to define
Hilbert spaces.

7.2 Probability conservation implies uniqueness of solutions

The notion (7.6) of probability conservation is very powerful. In this section, we consider
a general domain Ω and work out in detail that

∫
(ΣN∩Ω) ωj is a so-called energy integral.

That is a functional that is conserved for solutions of the partial differential equation and
allows us to prove uniqueness of solutions. Similar methods are ubiquitous in the study
of PDEs (see [49]). In this case we do not need to go deeply into the theory because it
is rather obvious that uniqueness of generalized (weak) solutions directly implies that
there can also be at most one solution in the classical sense.

Definition: Let Σ be a space-like hypersurface. We define function spaces

H(N)
Σ := L2(ΣN ∩ Ω)⊗ (C2)⊗N . (7.9)

Furthermore, we call the solution of the IBVP (6.8) weakly unique iff for any two solutions
ψ,ϕ and any space-like hypersurface Σ the restrictions ψ|Σ , ϕ|Σ of ψ,ϕ to arguments in
ΣN ∩ Ω are equal as elements of H(N)

Σ .

Theorem 7.1 The solution of the IBVP (6.8) with boundary conditions ensuring prob-
ability conservation (7.6) and initial values on I = (Σ0)N ∩ Ω, i.e. ψ|I ≡ g ∈ H(N)

Σ0
is

weakly unique.

Proof: Consider the expression

‖ψ‖2Σ :=
∫

ΣN∩Ω
ωj(ψ), (7.10)

where ωj(ψ) is the current form constructed from ψ according to eqs. (7.2) and (7.5).
Because the Dirac tensor current j is positive-definite and sesquilinear in the wave func-
tion, ‖ · ‖Σ defines a norm on H(N)

Σ
11 .

Let ψ,ϕ be solutions of the IBVP. Then: ψ|Σ0
≡ ϕ|Σ0

≡ g ∈ H(N)
Σ0

and therefore
‖ψ|Σ0

− ϕ|Σ0
‖Σ0 = 0. Now let Σ be an arbitrary space-like hypersurface. Probability

conservation (7.6) yields:

‖ψ|Σ − ϕ|Σ‖Σ = ‖ψ|Σ0
− ϕ|Σ0

‖Σ0 = 0 (7.11)

and it follows that ψ|Σ ≡ ϕ|Σ as elements of H(N)
Σ . �

11One should recognize that this works exactly because we only consider space-like hypersurfaces. On
a time-like hypersurface, the expression (7.10) could even become negative.
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Remark: The proof of thm. 7.1 suggests that the map

UΣ→Σ′ : H(N)
Σ → H(N)

Σ′ , ψ|Σ 7→ ψ|Σ′ , (7.12)

sending the restriction of a solution ψ of the IBVP to ΣN∩Ω to its restriction to (Σ′)N∩Ω,
defines a unitary evolution from one space-like hypersurface to another (see also [51, sec.
3]). The analogous view in quantum field theory constitutes the Tomonaga-Schwinger
picture [16, 17].
Note that having in mind a functional-analytic view on time evolution, it might seem
natural to take the reverse way to define a multi-time evolution, i.e. first defining the
spaces H(N)

Σ and a unitary map UΣ→Σ′ . However, this is not convincing because then
there may exist Σ 6= Σ′ with Σ∩Σ′ 6= ∅ such that ψ|Σ(q) 6= ψ|Σ′ (q) even for q ∈ Σ∩Σ′ (see
[35]). Without additional conditions to enforce ψ|Σ(q) = ψ|Σ′ (q) for q ∈ Σ∩Σ′, this would
mean that one could not regard the multi-time wave functions and the tensor current
j as geometrical objects. This, however, may be necessary for a physical interpretation
(see e.g. [6]).

7.3 Boundary conditions from probability conservation

The formulation via the Nd-form ωj together with the property dωj = 0 makes it
possible to use Stokes’ theorem to extract conditions on ωj and thereby on j which
ensure probability conservation.

Lemma 7.2 Let the wave function ψ be compactly supported on all sets of the form
ΣN ∩S1. Then probability conservation on S1 in the sense of∫

ΣN∩S1
ωj =

∫
(Σ′)N∩S1

ωj (7.13)

for all space-like hypersurfaces Σ,Σ′ holds if

ωj |C1
= 0, (7.14)

where
C1 := {(t1, z1, . . . tN , zN ) ∈ ∂S1| ∃k : tk = tk+1 ∧ zk = zk+1} . (7.15)

Remark:

1. The assumption of compact support of the wave function with respect to spatial
directions is needed as a technical assumption in the proof. It is reasonable because
the multi-time Dirac equations have finite propagation speed (see eq. (6.15)). So
if the initial data are compactly supported, the wave function will be compactly
supported for all times. It would in fact be enough to demand that the wave
function vanishes fast enough for any zk →∞, but this would technically be more
complicated.
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2. Note that the wave function is, strictly speaking, not defined on ∂S1. When using
values of the wave function at the boundary (such as in eq. (7.14)), we mean the
corresponding limit in S1. In this way, jumps of the wave function across the
boundaries of different Sπ are admitted. In fact, singularities of this kind are
typical for zero-range interactions [47].

Proof: Let Σ,Σ′ be space-like hypersurfaces. We construct a suitable submanifold with
boundary in order to be able to use Stokes’ theorem.
Let tΣ(z) denote the time coordinate of the unique point p = (tΣ(z), z) ∈ Σ. Let R > 0
and consider the following set:

VR :=
{

(t1, z1, . . . , tN , zN ) ∈ S 1

∣∣∣∣∣ ∃τ ∈ [0, 1] : ∀k : tk = tΣ(zk) + τ (tΣ′(zk)− tΣ(zk))
and |zk| ≤ R

}
(7.16)

VR is a bounded and closed, thus compact, (N + 1)-dimensional submanifold of R2N

with boundary
∂VR = (ΣN ∩S1) ∪ ((Σ′)N ∩S1) ∪M1 ∪M2, (7.17)

where M2 is the subset of VR with |zk| = R for some k and

M1 = VR ∩ ∂S1. (7.18)

Because of the first condition in the definition of VR, a configuration in VR is always an
element of SN where S is a space-like hypersurface. Therefore, it can only be an element
of M1 ⊂ ∂S1 (i.e. light-like) if ∃k : tk = tk+1 and zk = zk+1. This implies M1 ⊂ C1.
In the limit R→∞, the integral

∫
M2

ωj vanishes because of the compact support of the
wave function. Thus, it follows from the theorem of Stokes, together with dωj = 0, that

0 = lim
R→∞

∫
VR

dωj = lim
R→∞

∫
∂VR

ωj = −
∫

ΣN∩S1
ωj +

∫
(Σ′)N∩S1

ωj +
∫
M1

ωj . (7.19)

The minus sign in front of the first integral on the r.h.s. is due to orientation conventions.
Thus, probability conservation in the sense of eq. (7.13) holds iff

∫
M1

ωj = 0. In order
to make this integral vanish for all possible choices of Σ,Σ′, the condition

ωj |C1

!= 0. (7.20)

has to be satisfied. �

We should study now what the condition (7.14) implies for the components of the wave
function. Since this condition is not so easy to analyze, we will simplify our lives by first
concentrating on the special case of equal-time hypersurfaces in a fixed (but otherwise
arbitrary) Lorentz frame.

Lemma 7.3 Let C1,t := {(t1, z1, ..., tN , zN ) ∈ C1 : t1 = · · · = tN}. Then the condition
for probability conservation on equal-time hypersurfaces Σt in a particular Lorentz frame,
i.e. (7.14) with C1 replaced by C1,t, holds if and only if

ψ†(p) (σ3,k − σ3,k+1)ψ(p) = 0 ∀p ∈ C
(k)
1,t ∀k = 1, ..., N − 1, (7.21)
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where C
(k)
1,t := {(t1, z1, ..., tN , zN ) ∈ C1,t : zk = zk+1}.

Furthermore, equation (7.21) can be rewritten as

∑
(s1,...,sN )∈{−,+}N

sk 6=sk+1

sk+1|ψs1...sN |
2(p) = 0 ∀p ∈ C

(k)
1,t . (7.22)

Proof: We have to evaluate the condition ωj |C1,t
= 0. Note that for p ∈ C1,t there

exists a k ∈ {1, ..., N − 1} such that p = (t, z1, ..., t, zk = z, t, zk+1 = z, ..., t, zN ).
Next, we calculate ωj |C1,t

according to eq. (7.5), recalling that in this case x0
k = t and

x1
j = zj as well as zk = zk+1 = z. All terms with more than one index µl = 1 in jµ1...µl...µN

vanish because they contain dt ∧ dt = 0. Moreover, the terms with µk = µk+1 = 0 do
not contribute, either, as they contain dz ∧ dz = 0. We are left with terms where all
indices µj are equal to zero apart from the k-th or the (k + 1)-th:

ωj(p) = −j0...(µk=0)(µk+1=1)...0(p) dz1 ∧ · · · ∧ dzk−1 ∧ dz ∧ dt ∧ dzk+2 ∧ · · · ∧ dzN
−j0...(µk=1)(µk+1=0)...0(p) dz1 ∧ · · · ∧ dzk−1 ∧ dt ∧ dz ∧ dzk+2 ∧ · · · ∧ dzN

=
(
j0...10...0 − j0...01...0

)
(p) dz1 ∧ · · · ∧ dzk−1 ∧ dz ∧ dt ∧ dzk+2 ∧ · · · ∧ dzN

(7.23)

This expression vanishes if and only if the bracket is zero. This gives condition (7.21):

0 = (j0...10...0 − j0...01...0)(p) = ψ†(p) (σ3,k − σ3,k+1)ψ(p). (7.24)

Written out in components, eq. (7.24) reads:

0 =
∑

(s1,...,sN )∈{−,+}N

(
−sk|ψs1...sN |

2(p) + sk+1|ψs1...sN |
2(p)

)
. (7.25)

Summands with sk = sk+1 cancel out. We are left with

0 =
∑

(s1,...,sN )∈{−,+}N
sk 6=sk+1

2sk+1|ψs1...sN |
2(p), (7.26)

which yields (7.22). �

Of course, we would like to find adequate boundary conditions that lead to probability
conservation on general space-like hypersurfaces. At the moment, we only have the
necessary conditions (7.22). The question of whether there is a subclass of them that
is Lorentz invariant and ensures the existence of a solution is attacked in the next
subsection.
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7.4 Lorentz invariance

Apart from the boundary conditions, the Lorentz invariance of our model (6.8) is already
manifest since the Dirac equations are known to transform covariantly and the domain
is a Lorentz-invariant set. In order to ascertain which of the boundary conditions have
the same functional form in all frames, we should evaluate the transformation behavior
of the spinor ψ. Under a Lorentz transformation Λ : x 7→ x′ in the proper Lorentz group
L↑+, it is

ψ′(x1, ..., xN ) = S(Λ)⊗ · · · ⊗ S(Λ)ψ(Λ−1x1, ...,Λ−1xN ), (7.27)

where
S(Λ) = exp

(
− i4ωµνσ

µν
)
, σµν = i

2 [γµ, γν ] . (7.28)

Here, ω is an antisymmetric (1 + d) × (1 + d) matrix which is the infinitesimal version
of Λ.
For d = 1, there is only one free parameter β ∈ R corresponding to a boost in z-direction.
One can calculate that

S(Λ) =
(

cosh β + sinh β 0
0 cosh β − sinh β

)
. (7.29)

As the matrix is diagonal due to our choice of γ-matrices, it is easy to calculate the
N -fold tensor product in eq. (7.27) – just take the respective powers of the diagonal
elements. We conclude that any component of ψ transforms as

ψ′s1...sN (x1, ..., xN ) =
N∏
k=1

(cosh β − sk sinh β)ψs1...sN (Λ−1x1, ...,Λ−1xN ). (7.30)

This means that one gets a factor of (cosh β − sinh β) for every plus and a factor of
(cosh β + sinh β) for every minus in the index (s1...sN ). Hence, components with an
equal number of + and − signs transform alike.

Example: We have a look at the easy case N = 3 in order to motivate the following
lemma. Let us consider for example a boundary point p = (t, z1, t, z, t, z) ∈ C1,t. We use
eq. (7.22) to compute explicitly what the condition of probability conservation amounts
to:

ωj(p) = 0 ⇔ |ψ−−+|2(p)− |ψ−+−|2(p) + |ψ+−+|2(p)− |ψ++−|2(p) = 0. (7.31)

Now what is the form of this equation in another frame? We Lorentz transform according
to eq. (7.30) using the identity (cosh β − sinh β) (cosh β + sinh β) = 1:

0 = (cosh β − sinh β)
(
|ψ−−+|2 − |ψ−+−|2

)
(p′)

+ (cosh β + sinh β)
(
|ψ+−+|2 − |ψ++−|2

)
(p′), (7.32)
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where p′ = (Λ−1(t, z1),Λ−1(t, z),Λ−1(t, z)). We see that (7.32) is not invariant as a
whole, but if we split it up into two separate conditions that relate only components
with the same number of plus and minus signs in their indices, i.e.

|ψ−+−|2(p)− |ψ−−+|2(p) = 0 and |ψ+−+|2(p)− |ψ++−|2(p) = 0, (7.33)

these equations are the same in all Lorentz frames. They can be rewritten as

ψ−−+(p) = eiϕ−ψ−+−(p), ψ++−(p) = eiϕ+ψ+−+(p). (7.34)

A priori, the phases ϕ± could be functions of all particle coordinates. But we demand
invariance under Poincaré transformations, not only Lorentz transformations, as physics
should not depend on the choice of the origin of coordinates. Then the phases ϕ± may
only depend on the Minkowski distances of pairs of particles, (xi − xj)µ(xi − xj)µ. In
the 3-particle case, there exists only one such variable, s2 := (t1 − t)2 − (z1 − z)2. The
Minkowski distance s2 changes along a multi-time characteristic although the solution
has to be constant along the characteristic (see lemma 6.1), so ϕ± must be constant
in order for solutions to exist. Further investigation of the existence and uniqueness
problem shows that even ϕ+ = ϕ− is necessary.
This yields the following general picture: let us define the sets

Ck,k+1 :=
{

(t1, z1, ..., tN , zN ) ∈ S 1| tk = tk+1 ∧ zk = zk+1
}
. (7.35)

so we can write C1 = ⋃N−1
k=1 Ck,k+1. Then it seems that Lorentz invariant boundary

conditions are such that exchanging sk ↔ sk+1 in ψs1...sksk+1...sN on Ck,k+1 only yields
a phase factor which must not depend on the other spin indices (but may depend on
k). These insights motivate the choice of boundary conditions (7.36). It will be retained
for the rest of this part. The following lemma shows that this choice is indeed Lorentz
invariant.

Lemma 7.4 Let ϕ(k) ∈ (−π, π] for k = 1, ..., N − 1. Then the boundary conditions

ψs1...sk−1+−sk+2...sN
!= eiϕ

(k)
ψs1...sk−1−+sk+2...sN on Ck,k+1, k = 1, ..., N − 1 (7.36)

are Lorentz invariant.

Proof: According to eq. (7.30), eq. (7.36) has the same form in every Lorentz frame.
Besides, the sets Ck,k+1 on which the condition is prescribed are Lorentz invariant. �

Remark: One might ask if there are other possible choices of boundary conditions which
lead to ωj = 0 at the boundary and are Lorentz invariant. The example shows that for
N = 3 we have already found the only one. For N ≥ 4 there may exist more complicated
boundary conditions with the desired properties, but our aim is a model that can be
used for any N ≥ 2, so we do not further pursue this question here.
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The boundary conditions (7.36) were constructed such that they should fulfill equation
(7.22), so probability conservation on equal-time hypersurfaces in one frame is ensured.
By Lorentz-invariance as proven in lemma 7.4, this follows for any Lorentz frame. In a
next step, probability conservation is proven in even greater generality, on every pair of
space-like hypersurfaces.

Lemma 7.5 The boundary conditions from lemma 7.4, i.e.

ψs1...sk−1+−sk+2...sN
!= eiϕ

(k)
ψs1...sk−1−+sk+2...sN on Ck,k+1 (7.37)

imply probability conservation on all space-like hypersurfaces in the sense of eq. (7.13).

Proof: It was shown in lemma 7.2 that equation (7.13) follows if

ωj |C1
= 0. (7.38)

We show that this equation indeed holds. Pick a point p ∈ C1. Then ∃! k : p ∈ Ck,k+1.
Condition (7.37) at this point yields

|ψs1...sk−1+−sk+2...sN |
2(p) = |ψs1...sk−1−+sk+2...sN |

2(p). (7.39)

It follows that
jµ1µ2...01...µN (p) = jµ1µ2...10...µN (p) (7.40)

because the expression for the current is diagonal in the components. In the formula for
ωj(p) (eq. (7.5)), we can first sum over the indices (µk, µk+1) and afterwards over the
rest. Then there are four possibilities in the summands:

• (µk, µk+1) = (0, 0) or (1, 1): These do not contribute because the coordinates of
the k-th and k + 1-th particles are equal, say to (t, z), so either dz ∧ dz = 0 or
dt ∧ dt = 0 appears as a factor in the wedge product.

• (µk, µk+1) = (0, 1) or (1, 0). One can see that these two factors cancel each other
because (abbreviating all other, irrelevant factors in the wedge product by A and
B)

jµ1...(µk=0)(µk+1=1)...µNA ∧ dt ∧ dz ∧B + jµ1...(µk=1)(µk+1=0)...µNA ∧ dz ∧ dt ∧B

=
(
jµ1...01...µN (p)− jµ1...10...µN (p)

)
A ∧ dt ∧ dz ∧B (7.40)= 0. (7.41)

Therefore, the probability conserving property ωj(p) = 0 holds. �
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8 Existence of solutions on the space-like
configurations

We come to the main result of this part: a theorem about existence and uniqueness of
solutions for the boundary conditions that make sense according to our reasoning above
(thm. 8.1). Uniqueness will be a direct consequence of theorem 7.1, but existence requires
more work and will be shown by providing an explicit formula for the solutions. A priori,
one might even think that the boundary conditions on the (d + 1)(N − 1)-dimensional
set C1 do not fit to the Nd dimensions of the initial data surface (the dimensions are
unequal for N 6= d + 1) and thus over-determine the solution, but purely dimensional
arguments are misleading in this case – the existence really depends on the way the
characteristics intersect with the boundary.
Let us recollect and state again clearly what we are considering.

• The multi-time system of equations (6.2) on the domain S1 ⊂ S .

• Initial conditions prescribed on the set

I1 :=
{

(t1, z1, . . . tN , zN ) ∈ S 1|t1 = t2 = · · · = tN = 0
}
. (8.1)

We require

ψs1s2...sN (0, z1, 0, z2, . . . , 0, zN ) = gs1s2...sN (z1, z2, ..., zN ) for z1 ≤ · · · ≤ zN . (8.2)

for all components of ψ.

• Boundary conditions on the sets defined by

Ck,k+1 :=
{

(t1, z1, . . . tN , zN ) ∈ S 1|tk = tk+1, zk = zk+1
}
. (8.3)

We impose that on a set where the k-th and (k + 1)-th particle are at the same
space-time point, the respective +− and −+ spin components are equal up to a
phase factor,12

ψs1s2...sk−1+−...sN = ψs1s2...sk−1−+...sN · e
iϕ(k) on Ck,k+1. (8.4)

We have remarked above that the phase factors ϕ(k) must be constant in space-time
in order for solutions to exist. They may be different for different k, though.

These three conditions together form our initial boundary value problem (IBVP). Before
stating the result and proving it, we should gain some intuition for the processes that
happen in our model. To achieve that, we provide a pictorial approach in a simple case.

12We remind that this equation does in fact mean that a limit approaching the sets Ck,k+1 6⊂ S1 from
the interior of S1 should satisfy the required property.
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Example: For N = 3 the wave function has 23 = 8 components. According to lemma
6.1, these are constant along their respective multi-time characteristics. We visualize
the multi-time characteristics as follows (see fig. 1). One can see from eq. (6.17) that
the multi-time characteristics are the Cartesian product of N = 3 lines. These lines are
plotted in the same space-time diagram. Any combination of three points on the differ-
ent lines constitutes an element of the respective multi-time characteristic. The slopes
of the various lines characterize the associated component ψs1...sN . More precisely, a line
to the left (right) for particle k is associated with the appearance of sk = +1 (sk = −1)
in the index of ψ.

z

t

0 (0,c1) (0,c2) (0,c3)

A=(t1,z1) C=(t3,z3)

B=(t2,z2)

Figure 1: A multi-time characteristic S+++(c1, c2, c3) for the component ψ+++. S+++(c1, c2, c3)
is the Cartesian product of three lines which are plotted in the same space-time diagram. Every
triple of points on different lines, e.g. (A,B,C), is contained in S1.

Fig. 1 shows a multi-time characteristic S+++(c1, c2, c3) for the component ψ+++ where
the ck are defined by a certain point p = (A,B,C) ∈ S1 (see eq. (6.16)). ψ+++ is
determined by initial data at p because the whole characteristic S+++(c1, c2, c3) is con-
tained in S1. This can be seen from the fact that any three points on different lines
are space-like related. Besides, the value ψ(p) is uniquely determined by initial data
as there exists a unique intersection point with the surface t1 = t2 = t3 = 0, given by
(0, c1, 0, c2, 0, c3). Thus, we obtain

ψ+++(t1, z1, t2, z2, t3, z3) = g+++(0, c1, 0, c2, 0, c3). (8.5)

For a component ψs1s2s3 containing plus as well as minus signs in the index, for example
ψ+−+, the situation is different (see fig. 2). One can see that intersections of the lines
defining a characteristic S+−+ appear in the diagram. When this happens, the multi-
time characteristic leaves S1. Therefore, a situation like in fig. 2 can occur: tracing back
the multi-time characteristic to the initial data surface, one leaves the domain. Thus,
ψ+−+ is not defined solely by initial values. It is the role of the boundary conditions
to provide a value for ψ+−+ at the boundary point (P, P,C) (and thus along the whole
characteristic). This works as follows: the component ψ−++ is defined at the boundary
point by initial values. Thus, relating ψ−++ with ψ+−+ via eq. (7.37), we obtain:

ψ+−+(t1, z1, t2, z2, t3, z3) = eiϕ
(1)
g−++(0, c2, 0, c1, 0, c3). (8.6)
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Pictorially speaking, this amounts to exchanging particle labels and picking up a phase
while leaving the domain on the way back to the initial data surface.

z

t

0 (0,c1)(0,c2) (0,c3)

A=(t1,z1) C=(t3,z3)

B=(t2,z2)

P

Figure 2: A multi-time characteristic S+−+ for ψ+−+, depicted for the same configuration as
in fig. 1. One cannot trace back the lines to the initial data surface I because one leaves
S1 at the point P . One only obtains a definite value for ψ+−+(A,B,C) by first realiz-
ing ψ+−+(A,B,C) = ψ+−+(P, P,C) and then employing the boundary conditions to obtain
ψ+−+(A,B,C) = ψ+−+(P, P,C) = eiϕ(1)

ψ−++(P, P,C). The component ψ−++ is now deter-
mined at (P, P,C) by initial data. It corresponds to the same lines but where the particle labels
1 and 2 are exchanged. Thus, we can trace the dotted lines below (P, P,C) back to t = 0, finding
ψ−++(P, P,C) = g−++(0, c2, 0, c1, 0, c3).

The considerations above hint at a general idea: it is possible to obtain an explicit for-
mula for the solutions of the IBVP (see eq. (8.8)) by a process of successively tracing back
components to collisions, using the boundary conditions to switch the component, trac-
ing back to the next collision and finally arriving at the initial data. In this way, one can
even determine values of components with multiple intersections of the lines constituting
the multi-time characteristic (see fig. 3). This motivates the following theorem.

z

t

0

A=(t1,z1)

C=(t3,z3)

B=(t2,z2)

Figure 3: A multi-time characteristic with several intersections for the component ψ+−−.

Theorem 8.1 Let m ∈ N and initial value functions gj ∈ Cm (I1,C) ∀j ∈
〈

1, ..., 2N
〉

such that they also satisfy the boundary conditions, i.e.

gs1...sk−1+−sk+2...sN = eiϕ
(k)
gs1...sk−1−+sk+2...sN on I ∩ Ck,k+1, k + 1, ..., N − 1, (8.7)

and let this transition be Cm.
Then there exists a unique solution ψ ∈ Cm

(
S1, (C2)⊗N

)
of the IBVP (6.8) with domain
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S1, boundary conditions (7.37) and initial values (8.2).
If all characteristic values ck = zk + sktk are different, the components of the solution
are explicitly given by

ψs1...sN (t1, z1, ..., tN , zN ) = eiφ
π
s1...sN gsπ(1)...sπ(N)

(
cπ(1), ..., cπ(N)

)
, (8.8)

where π is the permutation with

cπ(1) < · · · < cπ(N). (8.9)

φπs1...sN is the phase which is uniquely determined by the ϕ(k) via the definition below.
If the some of the ck are equal, ψs1...sN is given by the continuation of eq. (8.8).
In addition, the model ensures probability conservation on general space-like hypersur-
faces and is Lorentz invariant.

Definition: A pair (k, l) ∈ {1, ..., N}2 with k < l is said to be a collision of a transpo-
sition π ∈ SN iff π(k) > π(l).

Definition: The phases φπs1...sN appearing in theorem 8.1 are defined by the conditions:

1. φid
s1...sN = 0.

2. Let τk be the transposition of k and k + 1. If π can be decomposed as π = τk ◦ σ
where σ is a permutation with fewer collisions than π, then

φπs1...sN = φσs1...sk+1sk...sN + skϕ
(k). (8.10)

Lemma 8.2 The phases φπs1...sN exist and are uniquely determined.

Proof: We proceed via induction over the number of collisions.
Base case: If π has no collision, it follows that π = id. The phase φid

s1...sN is determined
by the first condition in the definition. If π has exactly one collision, then it is just a
transposition of neighboring elements, so there exists some k with π = τk = τk ◦ id and
the phase is uniquely determined by (8.10) as φπs1...sN = skϕ

(k).
Induction step: Assume that all phases φπ′s1...sN for permutations with n ≥ 1 collisions
are uniquely determined and let π have n + 1 collisions. It is known from the general
theory of permutations that there exists at least one permutation σ with n collisions
and a neighboring transposition τs such that π = τs ◦ σ. However, it may be possible to
decompose π in two different ways:

π = τs ◦ σ = τk ◦ κ, (8.11)

where s, k ∈ {1, . . . , N}, s 6= k and σ, κ are permutations with at least n collisions. In
order for these two permutations to have one collision less than π, we see that (k, k+ 1)
and (s, s+ 1) must be collisions of π.
In order to show that despite the different ways of decomposition, the corresponding
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phases are uniquely defined, we make use of the fact that the phases need only be de-
fined for a certain type of permutation. To characterize them, we prove an auxiliary
claim: in the above situation, τs commutes with τk because |s− k| 6= 1.

Claim: Let ψs1...sN and (t1, z1, . . . , tN , zN ) ∈ S1 such that there is a collision, i.e. a
pair (a, b) with a < b and ca > cb. Then one of the following two possibilities holds:{

either sa = +1 ∧ sb = −1 ∧ ta > 0 ∧ tb > 0
or sa = −1 ∧ sb = +1 ∧ ta < 0 ∧ tb < 0 (8.12)

Proof of the Claim: We know that a < b, ca > cb and za < zb. We show that sa = +1
implies sb = −1 ∧ ta > 0 ∧ tb > 0; the second case follows analogously.
If sa = +1, then

ca > cb

⇔ za + ta > zb + sbtb

⇔ ta − (sbtb) > zb − za = |zb − za|. (8.13)

If now sb = +1, this would be a contradiction to the points (ta, za) and (tb, zb) being
space-like separated. Hence sb = −1, so we have

|zb − za| < ta + tb = |ta + tb|. (8.14)

This implies that ta and tb cannot both be negative. So assume one of them is
negative, w.l.o.g. ta > 0, tb < 0. But then |ta − tb| > |ta + tb| and

|zk − za| < |ta + tb| < |ta − tb| (8.15)

is again a contradiction to the points being space-like. Thus, one must have ta >
0, tb > 0, which proves the claim.

Because of the specific sign combinations that allow for collisions, the claim shows that
if (s, s + 1) is a collision, neither (s − 1, s) nor (s + 1, s + 2) can be one. Therefore,
|k − s| ≥ 2.
We use the commutability of τk and τs to define a third permutation

ρ := τk ◦ τs ◦ π = τk ◦ σ = τs ◦ κ, (8.16)

which, by construction, has n− 1 collisions, i.e. one less than σ and κ. This means the
seemingly different representations of φπs1...sN ,

φπs1...sN = φσs1...ss+1ss...sN + ssϕ
(s) and

φπs1...sN = φκs1...sk+1sk...sN + skϕ
(k) (8.17)
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are in fact equal. This can be seen from the fact that the different ways of decomposing
ρ via eq. (8.10) yield

φσs1...ss+1ss...sN + ssϕ
(s) = φρs1...sk+1sk...ss+1ss...sN + skϕ

(k) + ssϕ
(s)

= φκs1...sk+1sk...sN + skϕ
(k). (8.18)

This finishes the proof of uniqueness of the phases because by the induction hypothesis,
the phases associated with ρ, σ and κ exist and are uniquely determined. �

Proof of the Theorem: Lorentz invariance and probability conservation are clear from
lemma 7.4 and lemma 7.5. We already know that uniqueness of solutions in a weak sense
follows from probability conservation by virtue of thm. 7.1. If the function defined by
eq. (8.8) is indeed m times continuously differentiable, it follows from continuity that it
is also unique as a Cm-function.
Thus, it remains to show that the function given by (8.8) is indeed a classical (or ‘strong’)
solution of the IBVP. In order to prove this, the following four points have to be verified:

1. Differentiability: We need to prove that ψ ∈ Cm
(
S1, (C2)⊗N

)
. As the initial

values satisfy gj ∈ Cm (I,C) ∀j = 1, ..., 2N , this property is inherited by ψj via
the characteristics. To see this, note that eq. (8.8) just makes use of a translation
of the initial values along straight lines in the (tk, zk) spaces.
However, we need to consider the points separately where the permutation π
changes. This exactly happens when at least two of the characteristic values cj
are equal. But then the Cm-property of ψ is just assured by the requirement that
the initial values must satisfy the boundary conditions (eq. (8.7)) and that the
transition shall be Cm.

2. The function defined by eq. (8.8) solves the system of Dirac equations in S1:
This follows from lemma 6.1 because the components of the solution are indeed
constant along the respective multi-time characteristics and do only depend on the
characteristic values ck.

3. The initial conditions (8.2) are satisfied: At a point (0, z1, 0, z2, ..., 0, zN ) ∈ I∩S1,
we have ck = zk ∀k and thus cπ(1) ≤ cπ(2) ≤ · · · ≤ cπ(N) is fulfilled for π = id.
Therefore, formula (8.8) reduces to

ψs1...sN (0, z1, ..., 0, zN ) = gs1...sN (c1, ..., cN ) (8.19)

which is equivalent to (8.2).

4. The boundary conditions (7.37) are satisfied: Let k ∈ {1, ..., N} and (t1, z1, ..., tk =
t, zk = z, tk+1 = t, zk+1 = z, ..., tN , zN ) ∈ Ck,k+1. We consider two components
of ψ where only the k-th and (k + 1)-th sign is exchanged, or more formally: Let
(s1, . . . sN ), (s̃1, . . . s̃N ) ∈ {+1,−1}N with sl = s̃l ∀l /∈ {k, k + 1} and (sk, sk+1) =
(+,−) = (s̃k+1, s̃k). the respective characteristic values are ck = zk + sktk and
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c̃k = zk + s̃ktk.
Then observe the property cl = c̃l ∀l /∈ {k, k + 1} and ck = c̃k+1, c̃k+1 = ck. Let π
be the permutation that leads to cπ(1) ≤ · · · ≤ cπ(N). The permutation σ needed
to achieve c̃σ(1) ≤ · · · ≤ c̃σ(N) is given by σ = τk ◦ π, and it has one collision less
than π w.r.t. the indices s̃k. Inserting this into equation (8.8) yields

ψs̃1...s̃N
(8.8)= e

iφσs̃1...s̃N gs̃σ(1)...s̃σ(N)

(
c̃σ(1), . . . , c̃σ(N)

)
(8.10)= eiφ

π
s1...sN e−iϕ

(k)
gsπ(1)...sπ(N)

(
cπ(1), . . . , cπ(N)

)
(8.8)= e−iϕ

(k)
ψs1...sN . (8.20)

This shows that (7.37) is valid.

These four points establish existence: the function given in (8.8) is indeed the solution
of the IBVP. �

Remark: Uniqueness of solutions can also be proven in a completely different way by
directly showing that every solution of the IVBP has to fulfill equation (8.8). The proof
is rather complicated, but still we present it here because it shows a more direct way
to assure oneself that (8.8) is the right formula for the solutions. It works by induction
over the number of colliding particles, which is a similar concept to the collisions defined
above, but not the same.

Definition: We define the set Col at a certain point (t1, z1 . . . , tN , zN ) for a component
ψ◦1◦2···◦N as

Col := {k ∈ {1, . . . , N − 1} |∃l > k with ck > cl} . (8.21)

A component of ψ is said to have n colliding particles at a certain point iff |Col| = n.

Remark: The number of collisions defined atop lemma 8.2 is larger than or equal to
the number of colliding particles. Figuratively speaking, a colliding particle can undergo
several collisions. Compare figure 3 where the left particle, at point A, is a colliding
particle with two collisions (as apparent from the intersections of characteristic lines).

Proof: In this alternative proof of uniqueness, we want to show that every solution of
the IVBP has to fulfill equation (8.8). For n ∈ {1, . . . , N − 1} we define I(n) to be the
statement:
“If a component of a solution ψ of the IVBP has at least n colliding particles at a certain
point in S1, then equation (8.8) must hold at this point.”
We prove that I(n) is true for all n by induction.

1. I(0) is true: If a component ψj of a solution of the IVBP satisfies ck ≤ ck+1 ∀k at a
point (t1, z1, . . . , tN , zN ) ∈ S1, then the value of ψj is uniquely determined by the
initial values: Notice that any multi-time characteristic S◦1◦2···◦N (c1, . . . , cN ) has
a unique intersection point with the initial values surface {t1 = t2 = · · · = tN = 0}
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given by (0, c1, 0, c2, . . . , 0, cN ). In the case we are considering here, the value of ψj
at this point is determined by the initial condition (8.2) because c1 ≤ c2 ≤ · · · ≤ cN ,
hence

ψj(t1, z1, . . . , tN , zN ) characteristics= ψj(0, c1, . . . , 0, cN ) (8.2)= gj(c1, . . . , cN ), (8.22)

which is exactly (8.8) (with π = 1 in this case implying the absence of the phase
factor eiφ).
Of course, the constancy along the characteristic surface can only be used provided
there is a path on that surface that stays in S1 and connects the two points. One
such path is given by ((1− τ)t1, z1 + s1τt1, . . . , (1− τ)tN , zN + sNτtN )), τ ∈ [0, 1].
This obviously lies on the relevant characteristic, and it stays in S1 because for
k < l,

zk < zl ∧ ck ≤ cl ⇒ sktk ≤ sltl ⇒ zk + skτtk < zl + slτtl, (8.23)

and the points are also space-like related since for k < l and all τ ∈ [0, 1],

((1− τ)tl − (1− τ)tk))2

< (1− τ)2 · (zl − zk)2 ≤ (zl − zk)2

≤ (zl − zk)2 + 2τ (zl − zk)(sltl − sktk)︸ ︷︷ ︸
≥0, see above

+τ2(sltl − sktk)2

= (zl + sl(τtl)− zk − sk(τtk))2 . (8.24)

2. I(n)⇒ I(n+1): Let ψs1...sN and (t1, z1, . . . , tN , zN ) ∈ S1 such that the component
has n+1 colliding particles at this point. By the definition of Col (8.21), this means
that we have (ck ≤ cl ∀l > k) ∀k ∈ {1, . . . , N − 1}\Col with |Col| = n+1. Let fur-
thermore a := max Col and b + 1 := min {k > a|(k ≤ N ∧ ca ≤ ck) ∨ k = N + 1}.
In plain words, a is the particle with the highest number that makes problems
because its characteristic line crosses others on the way back to the initial data
surface, and it crosses all lines from a + 1 to b. An obvious generalization of the
the auxiliary claim in the proof of lemma 8.2 is that in such a setting, we have

{
either sa = +1 ∧ sk = −1 ∧ ta > 0 ∧ tk > 0 ∀a < k ≤ b
or sa = −1 ∧ sk = +1 ∧ ta < 0 ∧ tk < 0 ∀a < k ≤ b (8.25)

Because both cases are analogous, the induction step will only be shown for the
first case, so let sa = +1, sk = −1, ta > 0, tk > 0 ∀a < k ≤ b.
The point (t̃, z̃) with z̃ = 1

2(ca + ca+1), t̃ = 1
2(ca − ca+1) satisfies z̃ + t̃ = ca and

z̃ − t̃ = ca+1, thus we stay on the same multi-time characteristic if we move along
a path on which only the coordinates of the a-th and a+ 1-th particle change to t̃
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and z̃. Then we can use the boundary conditions13

ψs1···+−...sN (t1, z1, . . . , tN , zN )
char.= ψs1···+−...sN

(
t1, z1, . . . , ta−1, za−1, t̃, z̃, t̃, z̃, ta+2, . . . , tN , zN

)
(8.4)= ψs1···−+...sN

(
t1, z1, . . . , t̃, z̃, t̃, z̃, . . . , tN , zN

)
· eiϕ

(a)
s1...sN (8.26)

If we have b = a+ 1, then we are done now. If not, we can iterate this procedure
b− a times and thereby switch from one component to another which determines
the former. After this iteration, we obtain a wave-function component that only
features n colliding particles, because ca to cN are now in ascending order, so we
can use I(n) to prove14

ψs1···+−−···−sb+1...sN (t1, z1, . . . tN , zN )

= ψs1···−−···−+sb+1...sN

(
t1, z1 . . . t̃, z̃,

˜̃t, ˜̃z, . . . tN , zN
)
· eiϕab

char.= ψ—"— (0, c1, . . . 0, ca−1, 0, ca+1, 0, ca+2, . . . 0, cb, 0, ca, 0, cb+1 . . . 0, cN ) · eiϕab

=: (∗) (8.27)
We now introduce three permutations: π is the permutation that orders cπ(1) ≤
· · · ≤ cπ(N), σ is the permutation that maps

(1, 2, . . . , N) 7→ (1, 2, . . . , a− 1, a+ 1, . . . , b, a, b+ 1, b+ 2, . . . , N) (8.28)
13As in the base case, one should assure oneself that there really exists a path connect-

ing the two points that does not leave S1. One can again use the standing to reason path(
. . . , ta + τ(t̃− ta), za + τ(z̃ − za), ta+1 + τ(t̃− ta+1), za+1 + τ(z̃ − za+1), . . .

)
, τ ∈ [0, 1], where all the

other components are left untouched. We only show how space-likeness of two points comes about on
this path for the example of two particles with labels k < a, it is then easy to convince oneself that
a similar reasoning is always possible, thus the path indeed stays in S1 for τ ∈ [0, 1). Noticing that
t̃− ta = −(z̃ − za) ≤ 0, we can calculate(

tk − ta − τ(t̃− ta)
)2

=(tk − ta)2 − 2τ(tk − ta)(t̃− ta) + τ2(t̃− ta)2

=(tk − ta)2 + 2τ(tk − ta)(z̃ − za) + τ2(z̃ − za)2

≤(tk − ta)2 + 2τ(|tk − ta|)(|z̃ − za|) + τ2(z̃ − za)2

<(zk − za)2 + 2τ(|zk − za|)(z̃ − za) + τ2(z̃ − za)2

=(zk − za)2 − 2τ(zk − za)(z̃ − za) + τ2(z̃ − za)2

= (zk − za − τ(z̃ − za))2 .

Additionally, one should check that
(
t1, z1, . . . ta−1, za−1, t̃, z̃, t̃, z̃, ta+2, . . . tN , zN

)
∈ Ck,k+1 is indeed true

so that using (8.4) is allowed. This can be seen by calculations like the one above; all particles stay
space-like to each other apart from the a-th and a+1-th which are moved to the same space-time point.

14We use a shorthand notation for the phases appearing here and leave away unimportant indices. ϕab
just indicates the phase that comes about when iterating the step that transports the + sign one place
to the right b− a times, i.e.

ϕab =
b−1∑
k=a

ϕ
(k)
s1...sa−1−−···−sb+1...sN

.
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and π′ is the permutation that is needed to order the constants one gets after
applying σ, i.e.

π = π′ ◦ σ. (8.29)
With these definitions, we proceed:

(∗) = ψsσ(1)...sσ(N)

(
0, cσ(1), . . . 0, cσ(N)

)
· eiϕab

I(n)= gsπ′(σ(1))...sπ′(σ(N))

(
cπ′(σ(1)), . . . cπ′(σ(N))

)
· ei(ϕπ

′+ϕab)

= gsπ(1)...sπ(N)

(
cπ(1), . . . cπ(N)

)
· eiϕπ (8.30)

The equality of the phases follows by repeated use of the condition (8.10), using
that σ can be written as a composition of b − a transpositions where always a +
sign is on the left, so ϕσ = ϕab. For such a composition transporting only pluses
to the right, condition (8.10) really implies that the phases add up, as used in
ϕπ = ϕπ

′ +ϕab. Thus, by reducing the number of colliding particles by 1 with the
help of the boundary conditions, we have used the induction hypothesis to show
that I(n+ 1) must hold, too.

Thus, every solution of the IVBP fulfills equation (8.8), and the proof is complete. �

9 Interaction and effective potential
In addition to the mathematical and physical features already established, it remains
to show that our model is interacting. Moreover, we demonstrate that the interaction
can, at equal times, be described effectively using potentials involving δ-functions of the
particle distances.

9.1 The model is interacting

In sec. 2.2, we have discussed the general criterion from [2] that states that a physical
model is called interacting if it generates entanglement, i.e. if there are wave functions
that are initially product states and become entangled under time evolution. Note that
for the antisymmetrized wave functions we are considering, a product state means “wedge
product”. We present a simple argument why our model is interacting in this sense, by
effectively reducing the general case to the two-particle-case.

Lemma 9.1 The model defined by (6.8) with Ω = S1 and boundary conditions (7.37)
is interacting if there exists k ∈ {1, . . . , N − 1} with ϕ(k) 6= π.

Proof: W.l.o.g. k = 1. Let the initial conditions be such that ψ|I is a product wave
function. In particular, this means that there exist functions α, β, γ, δ ∈ Cm(R,C) and
ζ ∈ Cm(RN−2,C) with

g+−+···+(z1, ..., zN ) = α(z1)β(z2)ζ(z3, ..., zN )
g−++···+(z1, ..., zN ) = γ(z1)δ(z2)ζ(z3, ..., zN ) (9.1)
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for z1 ≤ · · · ≤ zN .
Antisymmetry (6.10) implies

α(z1)β(z2) = −γ(z2)δ(z1). (9.2)

Consider the solution at a point p = (t, z1, ..., t, zN ) ∈ S1 with common time t > 0. The
auxiliary claim in the proof of lemma 8.2 implies that the characteristic values at p with
respect to the component ψ+−+···+ are in ascending order iff z1 + t ≤ z2 − t. Thus we
can use formula (8.8) to obtain ψ+−+···+(p), with the permutation π being the identity if
z1 ≤ z2 − 2t and the transposition τ1 if z1 > z2 − 2t. Written via the Heaviside function
Θ, this yields

ψ+−+···+(p) = g+−+···+(c1, ...cN ) Θ (z2 − z1 − 2t) +

+ eiϕ
(1)
g−++···+(c2, c1, c3, ..., cN ) Θ (2t+ z1 − z2)

= α(c1)β(c2)ζ(c3, ..., cN ) Θ (z2 − z1 − 2t) +

+ eiϕ
(1)
γ(c2)δ(c1)ζ(c3, ..., cN ) Θ (2t+ z1 − z2) . (9.3)

Using (9.2), this simplifies to

ψ+−+···+(p) = α(c1)β(c2)ζ(c3, . . . , cN ) ·
(
Θ(c2 − c1)− eiϕ(1)Θ(c1 − c2)

)
. (9.4)

This function contains the Heaviside function of a combination of t, z1 and z2 in a
non-factorizable form. The Θ-function cannot be left away for general initial values
(as might be the case if they were zero in some regions). Furthermore, because of the
nontrivial prefactor eiϕ(1) of the second summand, we cannot write it as a product as
long as ϕ(1) 6= π. �

9.2 Effective single-time model, Potentials

A single-time model can be obtained from the multi-time model by setting t1 = t2 = t.
Of course, the main virtue of our model, the manifest Lorentz invariance, is lost by
such a restriction. We just consider this helpful because it connects the formalism of
multi-time wave functions with a more familiar setting.
Let for simplicity N = 2. The single-time wave function is denoted by χ(z1, z2, t) =
ψ(t, z1, t, z2). Then the single-time model is given by the domain {(z1, z2, t) ∈ R3 : z1 6=
z2}, initial data at t = 0, boundary conditions (7.37) (with t1, t2 replaced by t in all the
constructions) and the wave equation

i
∂χ

∂t
= −i

(
σ3 ⊗ 1

∂

∂z1
+ 1⊗ σ3

∂

∂z2

)
χ ≡ Ĥχ. (9.5)

Note that eq. (9.5) is obtained from the multi-time equations (6.2) by the chain rule.
We introduce new coordinates u = 1

2(z1 − z2) and v = 1
2(z1 + z2), so the Hamiltonian

becomes
Ĥ0 = −i diag (∂v, ∂u,−∂u,−∂v) . (9.6)
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Then the boundary conditions (7.37) can be reformulated by antisymmetry ψ2(u, v) =
−ψ3(−u, v) as

lim
u↗0

χ2(u, v) = lim
u↘0
−e−iϕχ2(u, v),

lim
u↗0

χ3(u, v) = lim
u↘0
−eiϕχ3(u, v). (9.7)

The components χ1 and χ4 evolve freely and have to be continuous and zero at u = 0
because of antisymmetry. For ϕ = π, eq. (9.7) also reduces to the condition of continuity.
In that case, the model becomes free – in agreement with lemma 9.1.
If one wants to implement the interaction by a potential added to the Hamiltonian, this
should be done in the manner

Ĥ0 + diag (0, V (u),−V (u), 0) , (9.8)

because the components χ1 and χ4 do not participate in the interaction, and the relative
minus sign is dictated by antisymmetry. Seen this way, one can forget about the com-
ponents 1 and 4. Then the reduced spinor χ̃ = (χ2, χ3) satisfies a single-particle Dirac
equation, i.e.

i∂tχ̃(u, v) = [−iσ3∂u + σ3V (u)] χ̃(u, v). (9.9)

In the physics literature, one does not hesitate to write δ-distributions in the Hamiltonian
and calculate the boundary conditions this would give. The main result of [52, 53] is –
translated to our case – that the boundary conditions (9.7) correspond to a potential
term

V (u) = (π − ϕ) δ(u). (9.10)

Just writing a δ-function in a Hamiltonian is a risky business, though. Ambiguities like
those stated in [54] may occur. Mathematically, it is clear that a distribution like δ(u)
is not an operator on Hilbert space. Of course, one can approximate the δ-function by
appropriate smooth potentials that provide us with well-defined Hamiltonians, which
is the strategy in [52, 53]. However, the mathematically rigorous way to implement a
δ-potential is by self-adjoint extensions of Ĥ0 on a suitable domain (compare [47]), which
is done in the following subsection. There we also rederive the approximation by smooth
potentials in a, hopefully, more understandable way.

9.3 Self-adjoint extensions of the two-particle Dirac
Hamiltonian

Let us collect a number of mathematical facts that are important for the treatment of
self-adjoint extensions. In order not to digress too much from our main topic, we will
present the functional analytical material very tersely. We are interested in operators
on the Hilbert space H with scalar product 〈·, ·〉. At the base of this discussion lies the
insight that a symmetric operator Â : H →H , which fulfills〈

α, Âβ
〉

=
〈
Âα, β

〉
∀α, β ∈ dom(Â) (9.11)
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need not be a self-adjoint operator (defined by Â∗ = Â) because one might have
dom(Â) ( dom(Â∗). Consequently, the general strategy to obtain a self-adjoint op-
erator from a symmetric one is by enlargement of its domain. In other words, one looks
for self-adjoint extensions. There are possibly many self-adjoint extensions of a given
symmetric operator which correspond to different physical situations, e.g. boundary con-
ditions [43, p. 255–259]. An operator is called essentially self-adjoint on its domain if it
possesses a unique self-adjoint extension given by its closure.
A handy mathematical tool for studying self-adjoint extensions are the von Neumann
deficiency subspaces (compare [55]). We will give their definition and state the central
theorem [56, p. 138–140] in the form needed here.

Definition: Let Â be a symmetric operator. The deficiency subspaces of Â are

K+ := ker(Â∗ − i1)
K− := ker(Â∗ + i1). (9.12)

The numbers (n+, n−) given by n+ := dim(K+), n− := dim(K−) are called the defi-
ciency indices of Â.

Theorem 9.2 Let Â be a closed symmetric operator with deficiency indices n+ = n−
(possibly both infinite). Then there is a n2

+-parameter family of self-adjoint extensions
and every self-adjoint extension Ã of Â corresponds to an isometric surjective map f̃ :
K+ → K− where

dom(Ã) =
{
ψ̃ = ψ + φ+ + f̃φ+

∣∣∣ψ ∈ dom(Â), φ+ ∈ K+
}

(9.13)

and
Ãψ̃ = Âψ + iφ+ − if̃φ+. (9.14)

Now we apply this machinery to the free Dirac Hamiltonian for two particles, that can
be written in our choice of basis and coordinates as

Ĥ0 = −i


∂v

∂u
−∂u

−∂v

 . (9.15)

As already alluded to, the specification of the domain is of high importance. It is known
[25, thm. 1.1] that the free Dirac Hamiltonian Ĥ1 for one particle is essentially self-adjoint
on the domain C∞c (R) ⊗ C2 and self-adjoint on the Sobolev space H1(R) ⊗ C2. By a
standard theorem of functional analysis [43, p. 301], it follows that Ĥ0 = Ĥ1⊗1+1⊗Ĥ1
is essentially self-adjoint on the domain dom(Ĥ0) =

(
C∞c (R)⊗ C2)⊗2. But this does not

hold for the domain of self-adjointness, because notorious features of tensor products
of Hilbert spaces prevent a naive approach. It was observed in [57] that the domain
of self-adjointness of Ĥ0 is larger than (H1(R) ⊗ C2)⊗2. Nevertheless, the essential
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self-adjointness secures that there is no freedom of choice, there is only one self-adjoint
extension and this of course describes the case of two non-interacting Dirac particles.
The Hamiltonian of interest here, which will be called Ĥ, acts on another Hilbert space
H = L2(M)⊗ C4 and has a smaller domain

dom(Ĥ) = C∞c (M)⊗ C4, M :=
{

(u, v) ∈ R2
∣∣∣u 6= 0

}
, (9.16)

but its action on functions is the same as the action of Ĥ0 defined in eq. (9.15). The
setM appears because we consider only the space-like configurations, where the relative
coordinate u must not be zero.

Lemma 9.3 The operator Ĥ defined above is symmetric on its domain and has defi-
ciency indices n+ = n− =∞, and thus infinitely many self-adjoint extensions.

Remark:

• Theorem 9.2 only applies for closed operators, but this is not an obstacle because
every densely defined symmetric operator has a closure, for which we can apply
the theorem.

• Even an operator with smaller deficiency indices, e.g. n+ = n− = 1, has infinitely
many self-adjoint extensions, because it has a one-parameter family of self-adjoint
extensions and this parameter can of course take on infinitely many different values.
But in the case of Ĥ, there are even infinitely many parameters, so the set of self-
adjoint extensions is tremendously larger.

Proof: For symmetry, we need to check condition (9.11). Let α, β ∈ dom(Ĥ), then

〈
α, Ĥβ

〉
= −i

∫
M


α∗1
α∗2
α∗3
α∗4

 ·


∂vβ1
∂uβ2
−∂uβ3
−∂vβ4

 = i

∫
M


∂vα

∗
1

∂uα
∗
2

−∂uα∗3
−∂vα∗4

 ·

β1
β2
β3
β4

 =
〈
Ĥα, β

〉
,

(9.17)
and there are no boundary terms appearing when we integrate by parts because the
functions are compactly supported in M .
Next, we determine the deficiency indices n±. Because of the symmetry of Ĥ, the action
of its adjoint Ĥ∗ is the same as of the operator itself (see also [55, thm. 4.9]). Therefore,
the elements of K± are exactly the functions ψ ∈H satisfying

ψ1(u, v) = ∓ ∂vψ1(u, v), (9.18)
ψ2(u, v) = ∓ ∂uψ2(u, v), (9.19)
ψ3(u, v) = ± ∂uψ3(u, v), (9.20)
ψ4(u, v) = ± ∂vψ4(u, v). (9.21)

The equations (9.18) and (9.21) imply that ψ1, ψ4 have to be weakly differentiable with
respect to v, so they are in fact continuous for almost every fixed u (because every
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function in H1(R) has a continuous representative [58, thm. 8.2]). As the functions ce±v
(which are the only solutions for the ordinary differential equation ∂vf(v) = ±f(v)) are
not integrable for any c ∈ R \ {0}, these two equations have no solutions in H apart
from ψ1 = ψ4 = 0.
A similar argument works for eqs. (9.19) and (9.20), so the functions ψ2 and ψ3 have to
be continuous for a.e. fixed v, but with the difference that u ∈ R \ {0}. This allows to
define the functions piece-wise for u > 0 and u < 0 and set them equal to zero on the
part that would spoil integrability. Therefore, there are non-trivial solutions given by

ψ2(u, v) = f(v)e∓uΘ (±u) ,
ψ3(u, v) = g(v)e±uΘ (∓u) (9.22)

for arbitrary f, g ∈ L2(R). This proves that the deficiency subspaces are

K± =

ψ =


0

f(v)e∓uΘ (±u)
g(v)e±uΘ (∓u)

0


∣∣∣∣∣∣∣∣∣ f, g ∈ L

2(R)

 , (9.23)

so n+ = n− =∞, so the operator Ĥ has infinitely many self-adjoint extensions. �

Most of the self-adjoint extensions are not relevant for us because they yield boundary
conditions depending on v, which could be spoken of as δ-functions with strength de-
pending on the absolute coordinate z1 + z2. It seems that there is only one family of
self-adjoint extensions that is compatible with both antisymmetry of the wave function
and Poincaré invariance. Define for some ϕ ∈ (−π, π] the onto, isometric map

f̃ : K+ → K−
0

f(v)e−uΘ (+u)
g(v)e+uΘ (−u)

0

 7→


0
ei(π−ϕ)f(v)e+uΘ (−u)
ei(π−ϕ)g(v)e−uΘ (+u)

0

 . (9.24)

This map corresponds to a self-adjoint extension H̃ of Ĥ with the same action and with
domain (according to eq. (9.13))

dom(H̃) =

ψ +


0

f(v)
[
e−uΘ (+u)− e−iϕe+uΘ (−u)

]
g(v)

[
e+uΘ (−u)− e−iϕe−uΘ (+u)

]
0


∣∣∣∣∣∣∣∣∣ψ ∈ dom(H̄), f, g ∈ L2(R)


(9.25)

where we write H̄ for the closure of Ĥ. The boundary conditions corresponding to
this extension can be readily determined from this equation by convincing oneself that
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functions in dom(H̄) vanish in the limit u→ 0, thus for ψ̃ ∈ dom(H̃) it follows that

lim
u↗0

ψ̃2(u, v) = lim
u↘0
−e−iϕψ̃2(u, v),

lim
u↗0

ψ̃3(u, v) = lim
u↘0
−eiϕψ̃3(u, v). (9.26)

This is the same boundary condition as in equation (9.7), which means that the self-
adjoint Hamiltonian H̃ is indeed the one corresponding to our effective single-time model.
Having constructed the Hamiltonian of the single-time model in a rigorous way, we can
now investigate how to approximate the dynamics it generates by continuous potentials.
This can be achieved in a physicist’s way by adapting the results of [52, 53], but it will
be derived rigorously here.
We define the sequence of Hamiltonians (Hn)n∈N by

Hn := H̄ + diag(0,−Vn(u), Vn(u), 0), dom(Hn) = dom(H̄) ⊂ L2(M), (9.27)

where for every n, the potential Vn is a step function15 with supp (Vn) ⊆ [−an, an] and
therefore, we add a bounded operator to H̄, which allows to keep the same domain. We
require ∫

R
Vn(u)du = π − ϕ =: λ and lim

n→∞
an = 0. (9.28)

These two conditions imply that in the sense of distributions,

Vn(u) n→∞−→ λ · δ(u). (9.29)

Now the question is in which sense we can prove that the Hamiltonians Hn approximate
our Hamiltonian H̃ with contact interaction. Because of the different domains, the usual
convergence of operators is not appropriate here. What we are interested in at the end of
the day is really the convergence of the time evolution operators, because they determine
the dynamics. This is easier to handle because these operators are unitary and can be
defined on the whole Hilbert space. There is an extended notion of convergence of
operators due to Kurtz [59]. We will state Kurtz’s results in a slightly simplified form16

and then use them to prove convergence of the unitary groups with a method heavily
inspired by [60, sec. 1.2].

Definition: Let (An)n∈N be a sequence of operators on a Hilbert space H .
Let dom(ex limn→∞An) be the set of all ψ ∈ H for which there is a sequence (ψn)n∈N
with ψn ∈ dom(An) and an η ∈H such that

lim
n→∞

ψn = ψ,

lim
n→∞

Anψn = η. (9.30)

15Here, a step function on I ⊂ R is understood to be a function such that there is m ∈ N and a
partition of the interval I in m half-open intervals such that the function is constant on each of those
intervals. We conjecture that all constructions below are also possible for continuous Vn that satisfy all
other properties, but this would give rise to technicalities.

16Since only one Hilbert space appears here, we omit his operators Pn.
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The extended limit operator of the sequence, abbreviated by ex limn→∞An, is then
defined on the domain dom(ex limn→∞An) by

(ex lim
n→∞

An)ψ := lim
n→∞

Anψn = η. (9.31)

Theorem 9.4 (Kurtz.) For each n, let Un(t) be a strongly continuous contraction semi-
group defined on H with infinitesimal operator An. Let A = ex limn→∞An. Then there
exists a strongly continuous contraction semigroup U(t) on H such that

lim
n→∞

Un(t)ψ = U(t)ψ ∀ψ ∈H , ∀t ∈ [0,∞) (9.32)

if and only if the domain dom(A) is dense in H and for some λ0 > 0, the range
ran(λ0 −A) is dense in H .
If the domain of the extended limit of infinitesimal operators An contains a set D such
that Ã := ex limn→∞An|D is an infinitesimal operator, then the sequence of semigroups
Un(t) converges strongly to the semigroup corresponding to Ã.

The proof is found in [59], the second statement is a (weakened) adaptation of the remark
following thm. 2.1 ibid. and is most helpful for us here. We will now state the theorem
about the approximation of H̃ by our general step function potentials, and then first
prove a technical lemma necessary for the proof of the theorem.

Theorem 9.5 The sequence of time evolution operators generated by the Hamiltonians
Hn defined in eq. (9.27) with the conditions (9.28) converges strongly to the time evolution
operator generated by H̃, i.e.

lim
n→∞

eitHnψ = eitH̃ψ ∀ψ ∈H . (9.33)

Lemma 9.6 For a given c(v) = (0, c2(v), c3(v), 0) ∈ L2(R) ⊗ C4, there is a zero-
energy eigenfunction of Hn in the interval [−an, an], i.e. a function ϕn ∈ dom(Hn)
with ϕn(−an, v) = c(v) for all v and

Hnϕn(u, v) = 0 for u ∈ [−an, an]. (9.34)

This function has the further property that

ϕn(an, v) = diag
(
0, e−iλ, eiλ, 0

)
ϕn(−an, v) ∀v ∈ R. (9.35)

Furthermore, there is a constant C such that for all n, |ϕn|2 ≤ C|c|2.

Proof: Let c(v) = (0, c2(v), c3(v), 0) ∈ L2(R)⊗C4. The value of n stays fixed throughout
the proof, so we will henceforth omit the index n. The first and fourth component of
the function we look for can be set equal to zero everywhere. We will therefore now
treat the second component of the functions. By induction over m, we want to prove
the following statement:
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A(m): For every bm > a and every step function Sm withm steps and suppSm = [−a, bm]
and the property ∫

R
Sm(x)dx = λ, (9.36)

there is a zero-energy eigenfunction ϕ2
m (the second component of ϕm) with the properties

ϕ2
m(−a, v) = c2(v) for all v,

(−i∂u − Sm(u))ϕ2
m(u, v) = 0 for u ∈ [−a, bm], (9.37)

and also ϕ2
m(bm, v) = e−iλϕ2

m(−a, v) and for all u, |ϕ2
m(u, v)| ≤ |c2(v)|.

Base case A(1): By (9.36), it follows that S1 = λ
b1+a · 1[−a,b1]. The differential equation

for ϕ2
1 (considering only values of u ∈ [−a, bm]) reads

∂uϕ
2
1(u, v) = − iλ

b1 + a
ϕ2

1(u, v), (9.38)

which has with boundary value ϕ2
1(−a, v) = c2(v) the unique solution

ϕ2
1(u, v) = c2(v) · exp

(
− iλ

b1 + a
(u+ a)

)
. (9.39)

This function obviously satisfies

ϕ2
1(b1, v) = e−iλc2(v) = e−iλϕ2

1(−a, v) and |ϕ2
1(u, v)| = |c2(v)| ∀u ∈ R \ {0}. (9.40)

Induction step A(m)⇒ A(m+ 1): Let Sm+1 with support [−a, bm+1] be a step function
with m + 1 steps. Such a function can naturally be decomposed as Sm+1 = S̃m + S̃1
with supp S̃m = [−a, b] and supp S̃1 = (b, bm+1] for some b ∈ (−a, bm+1), that means S̃m
stands for the first m steps and S̃1 for the last step. One can obtain two functions ϕ̃2

m

and ϕ̃2
1 using the induction hypothesis and the statement A(1) (with a replaced by b and

boundary value such that ϕ̃2
m(b, v) = ϕ̃2

1(b, v)), which have the properties(
−i∂u − S̃m(u)

)
ϕ̃2
m(u, v) = 0 for u ∈ [−a, b],

ϕ̃2
m(b, v) = exp

(∫ b

−a
S̃m(x)dx

)
ϕ̃2
m(−a, v),(

−i∂u − S̃1(u)
)
ϕ̃2

1(u, v) = 0 for u ∈ [b, bm+1],

ϕ̃2
1(bm+1, v) = exp

(∫ b+1

b
S̃1(x)dx

)
ϕ̃2

1(b, v),

|ϕ̃2
m(u, v)| ≤ |c2(v)|, |ϕ̃2

1(u, v)| ≤ |ϕ̃2
m(b, v)|. (9.41)

By just plugging everything in, it becomes clear now that the function defined by

ϕ2
m+1(u, v) =

{
ϕ̃2
m(u, v) for u ∈ [−a, b]
ϕ̃2

1(u, v) for u ∈ [b, bm+1] (9.42)
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satisfies all required properties. This finishes the induction.
Now we have shown the statement of the lemma for the second component. The third
component is dealt with in an analogous way because only the sign of the derivative
changes. The uniform boundedness of all functions ϕn follows with C = 1. �

Proof of the Theorem: As main ingredient for the proof, we first show that H̃ ⊆
ex limn→∞Hn, i.e.

dom(H̃) ⊆ dom(ex lim
n→∞

Hn) and (ex lim
n→∞

Hn)ψ = H̃ψ ∀ψ ∈ dom(H̃). (9.43)

In the first and fourth component, the action of Hn and H̃ is identical (compare eq.
(9.27)) and also the domain is unchanged, implying that our statement is trivial in these
components. Therefore, all objects in this proof will be considered in their reduced form
by replacing every vector or operator

ψ1
ψ2
ψ3
ψ4

 −→
(
ψ2
ψ3

)
. (9.44)

Abusing, but also simplifying the notation, we nevertheless denote everything with the
same symbols as before. So let ψ ∈ dom(H̃) be a reduced vector. Define

ψn(u, v) :=


ψ(u+ an, v) for u ∈ (−∞,−an)
ϕn(u, v) for u ∈ [−an, an]

ψ(u− an, v) for u ∈ (an,∞)
, (9.45)

where ϕn is a zero-energy eigenfunction of Hn in the interval [−an, an] with

ϕn(−an, v) = lim
u↗0

ψ(u, v), (9.46)

which exists by lemma 9.6. Eq. (9.35) also ensures the further property

ϕn(an, v) =
(
e−iλ

eiλ

)
lim
u↗0

ψ(u, v) = lim
u↘0

ψ(u, v), (9.47)

where the second equality follows by inspection from eq. (9.26) using λ = π−ϕ. Hence,
the defined functions ψn are continuous and elements of dom(Hn). Now we show the
two properties:

1. ψn → ψ: We calculate

‖ψn − ψ‖2 =
∫
R
dv

[∫ −an
−∞

du |ψ(u+ an, v)− ψ(u, v)|2+

+
∫ an

−an
du |ϕn(u, v)− ψ(u, v)|2 +

∫ ∞
an

du |ψ(u− an, v)− ψ(u, v)|2
]

≤
∫
M
dvdu|ψ(u+ an, v)− ψ(u, v)|2 +

∫
R
dv

∫ an

−an
du |ϕn(u, v)− ψ(u, v)|2,

(9.48)
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where we used a change of variables to combine the first and third integral. With
the shift operator defined for a ∈ R as (Taψ)(u, v) := ψ(u + a, v), we can rewrite
the first integral as∫

M
dvdu|(Tan − 1)ψ(u, v)|2 ≤ ‖Tan − 1‖2op‖ψ‖22 → 0 (9.49)

because the shift operator Tan converges in norm to the identity operator 1 as
an → 0 [60]. The second term also vanishes because the integrand goes to zero
while on the set [−an, an], |Ψ|2 is bounded and |Φn|2 is uniformly bounded (see
lemma 9.6).

2. Hnψn → H̃ψ: Using that Hn and H̃ differ only in the interval [−an, an], we obtain

‖Hnψn − H̃ψ‖2 =
∫
dv

∫ an

−∞
du |H̃ψ(u+ an, v)− H̃ψ(u, v)|2+

+
∫
dv

∫ an

−an
du |Hnϕn(u, v)︸ ︷︷ ︸

=0

−H̃ψ(u, v)|2

+
∫
dv

∫ ∞
an

du |H̃ψ(u− an, v)− H̃ψ(u, v)|2 (9.50)

We continue by combining the first and third integral with the same change of
variables as before and again use the shift operator Ta:

‖Hnψn − H̃ψ‖2 ≤
∫
M
dvdu|H̃(ψ(u+ an, v)− ψ(u, v))|2

+
∫
R
dv

∫ an

−an
du |H̃ψ(u, v)|2

=‖H̃(Tan − 1)ψ‖22 +
∫
R
dv

∫ an

−an
du |H̃ψ(u, v)|2 (9.51)

Because the shift operator Tan which acts on the u-coordinate commutes with the
operator H̃ that contains only derivatives with respect to v in the second and
third components, the first integral vanishes by the same reasoning as above. The
function in the second integral is square-integrable and the domain of integration
vanishes for n→∞, therefore the integral converges to zero.

Now let us recall what we have proven so far, returning to 4-component vectors and
operators from now on:

dom(H̃) ⊆ dom(ex lim
n→∞

Hn) and (ex lim
n→∞

Hn)ψ = H̃ψ ∀ψ ∈ dom(H̃). (9.52)

This obviously also holds if we put an i in front of every operator. In addition, we
know that Hn is self-adjoint for every n, so it generates a strongly continuous unitary
group Un(t) = eiHnt, and the same for H̃ which generates Ũ(t) = eiH̃t. These groups
are special cases of strongly continuous contraction semigroups (see [56, p. 235]). The
infinitesimal operators of these groups are given by iHn and iH̃ respectively. And now
this is exactly the setting of the second part of thm. 9.4. Application of the theorem
directly yields that the unitary group eiHnt converges strongly to the group eiH̃t. �
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Theorem 9.5 tells us the precise mathematical content of the intuitive statement that our
single-time model corresponds to a two-particle Dirac Hamiltonian with a spin-dependent
potential term V (u) = (π−ϕ)δ(u). The multi-time model describes a contact interaction
of N particles in one dimension in a fully relativistic way.

10 Possible extensions of the model

10.1 Higher dimensions

The one-dimensional model has the advantage that the multi-time system of Dirac equa-
tions (6.2) is simultaneously diagonalizable (impossible for d > 1), which enables us to
give the explicit solution. This strengthens the power of our model as a toy model with
the help of which one can understand certain mechanisms of relativistic interaction and
probability conservation. Aiming at a description of realistic physics, the obvious ques-
tion that arises now is: Can we generalize the model to higher dimensions, especially to
d = 3?
Our geometric analysis of probability conservation is possible in general dimensions. The
derivation with the help of Stokes’ theorem in the proof of lemma 7.2 can be repeated in
a similar way, but we come across two differences. First, the set S is connected in d > 1
dimensions, so the dissection in N ! parts is not possible. This makes the treatment of
antisymmetry much more intricate. Second, if one defines in analogy to eq. (7.16) a set

WR :=
{

(t1,x1, . . . , tN ,xN ) ∈ S

∣∣∣∣∣ ∃τ ∈ [0, 1] : ∀k : tk = tΣ(xk) + τ (tΣ′(xk)− tΣ(xk))
and |xk| ≤ R

}
(10.1)

then its boundary in the sense of manifolds with boundary is given by

∂WR = Σ ∪ Σ′ ∪MR, (10.2)

where MR is the set of points where there is some k with |xk| = R. The striking point
is that the set M1 = ∂S ∩WR cannot appear here because it is of dimension Nd+ 1− d
which is smaller than Nd. It is only a zero measure set, so in any case, the integral
vanishes, ∫

M1
ωj = 0, (10.3)

as ωj is an Nd-form. This shows directly that no boundary conditions at all are necessary
to ensure probability conservation. Even more, we can apply theorem 7.1 and see that
there is a unique solution in d > 1 which must of course be the free solution. Boundary
conditions would either fit to this free solution (and then have no impact) or they would
lead to contradictions. Therefore, a direct generalization to higher dimensions only gives
us a free model. This can also be seen by the functional analytical treatment in [61],
which is applicable only to the effective single-time model, but shows that relativistic
point interactions in dimensions d > 1 have no effect on the dynamics.
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10.2 Non-existence of solutions for configurations with a
minimal space-like distance

In this section, we leave the setting of the model (6.8), just retaining the multi-time Dirac
equation (6.2), and focus on a different aspect: the question if a consistent Lorentz-
invariant and probability-conserving dynamics exists on the domain Sα of space-like
configurations with a minimum space-like distance α.
The relevance of the question is clear from the previous subsection, where it was ex-
plained that for d > 1, the set of coincidence points in space-time is too low-dimensional
to have impact on the dynamics. Therefore, it suggests itself to ask if a change in the
domain (and thereby its boundary) can be made such that the dimension of the set
across which the probability flux could leave the boundary is increased. The first idea
one might have is the set of α-space-like configurations (here for N = 2):

Sα =
{

(t1,x1, t2,x2) ∈ R1+d × R1+d : (t1 − t2)2 − (x1 − x2)2 < −α2
}
. (10.4)

∂Sα has dimension 2d+1 and its intersection with Σ×Σ, the set appearing in the proof
for probability conservation [2], has dimension 2d which is sufficient to have impact on
the dynamics (the reason being that ωj is a 2d-form). Compare with the dimension
1 + d of the set of coincidence points. However, because ∂Sα itself has a dimension
greater than 2d, the dimension of the initial data surface, the question arises if there is
a consistent dynamics on it at all. In the following, we approach this question for the
simplest case, d = 1 for which the necessary mathematical tools are available, and show
that the answer is negative.
First we show that there can only be one kind of boundary conditions with the desired
properties. In a second step we then prove that the corresponding IBVP on Sα does
not possess any non-trivial solutions. We make use of the following definitions:

S +
α = {(t1, z1, t2, z2) ∈ Sα : z1 − z2 > 0} ,

S −
α = {(t1, z1, t2, z2) ∈ Sα : z1 − z2 < 0} . (10.5)

We have Sα = S +
α ∪S −

α .

Lemma 10.1 Let α > 0. For the multi-time Dirac equations (6.2) on the domain Sα,
there exist no other Poincaré invariant boundary conditions which can lead to probability
conservation on every space-like hypersurface and which are compatible with antisymme-
try besides the ones given by:

ψ+−(p) = e±iϕψ−+(p) ∀p ∈ ∂S ±
α (10.6)

with a fixed ϕ ∈ (−π, π].

Proof: Let p = (t1, z1, t2, z2) ∈ ∂Sα. Because the two points (t1, z1) and (t2, z2) are
space-like to each other, there is a Lorentz frame with t1 = t2. We work in this frame,
so we can write either p = (tp, z, tp, z + α) or p = (tp, z, tp, z − α). The idea is to use
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Stokes’ theorem in a similar way as in the proof of lemma 7.2 to obtain a condition for
probability conservation on equal-time hypersurfaces Στ1 ,Στ2 (τ1 < τ2) in the considered
Lorentz frame. Using the set

V :=
{

(t, z1, t, z2) ∈ S α|τ1 ≤ t ≤ τ2
}
, (10.7)

(which may replace a VR like in eq. (7.16) for R large enough because of compactly
supported wave functions), one deduces

0 =
∫
V
dωj =

∫
∂V
ωj . (10.8)

Note, however, that like in [2, proof of thm. 4.4], there are two connected components
of the domain Sα, so probability conservation in the form∫

(Στ1×Στ1 )∩Sα

ωj =
∫

(Στ2×Στ2 )∩Sα

ωj (10.9)

is equivalent to ∫
M(1)

ωj =
∫
M(2)

ωj , (10.10)

where M (j) = {(t, z1, t, z2) ∈ ∂Sα : max{z1, z2} = zj ∧ τ1 < t < τ2} for j = 1, 2. Ob-
serve that from (t, z1, t, z2) ∈M (j) it follows that zj = z3−j + α. Furthermore, antisym-
metry implies:

ωj(t, z1, t, z1 + α) = −ωj(t, z1 + α, t, z1). (10.11)

We insert this relation into eq. (10.10) which allows us conclude that∫
M(1)

ωj = −
∫
M(1)

ωj = 0. (10.12)

As this relation must hold for every τ1, τ2, we must have ωj(p) = 0. In components:

|ψ+−(p)|2 − |ψ−+(p)|2 = 0 ⇔ ψ+−(p) = eiϕ(p)ψ−+(p), (10.13)

where ϕ : ∂Sα → (−π, π] could in principle be a function that is not constant.
Because p was an arbitrary boundary point, this equation must hold on the whole of
∂Sα. Moreover, the requirement of Poincaré invariance has the consequence that ϕ(p)
has to be locally constant (see the example preceding lemma (7.5)). The domain Sα

has the two connected components S ±
α and by antisymmetry one obtains:

ϕ|S +
α

= − ϕ|S−α . (10.14)

Thus, indeed no other boundary conditions than (10.6) are permitted. �
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Remark:

1. A similar proof for distinguishable particles shows that in this case another pos-
sibility appears: the two contributions in eq. (10.10) could also cancel instead of
vanishing individually. However, this cancelling is not physically sensible because
it would imply a non-vanishing current from S +

α to S −
α and vice versa. Provided

the Born rule holds, the particles could then swap place instantaneously.

2. The boundary conditions (10.6) do indeed imply Poincaré invariance and proba-
bility conservation. However, this was not shown explicitly as they do not lead to
the existence of dynamics (see the following lemma).

Lemma 10.2 Let α > 0 and consider the IBVP given by
iγµk ∂k,µψ(t1, z1, t2, z2) = 0 for k = 1, 2,

ψ(0, z1, 0, z2) = g(z1, z2),
ψ+− = eiϕ ψ−+ on ∂Sα

(10.15)

on the domain Sα. Here, ϕ ∈ (−π, π] and g : {(z1, z2) ∈ R2 : |z1 − z2| > α} → C4 is
supposed to be a C1-function.
Then, if there exist real numbers a1 < b1 < a2 < b2 with g+−(a1, a2) 6= g+−(b1, b2) or
g−+(a1, a2) 6= g−+(b1, b2) the IBVP (10.15) does not have any C1-solution.

Proof: Assume that there exist real numbers a1 < b1 < a2 < b2 with g−+(a1, a2) 6=
g−+(b1, b2). The case for g+− is similar and will not be shown explicitly. Suppose that ψ
is a solution of (10.15). We obtain a contradiction by constructing points (t1, y1, t2, y2)
and (s1, x1, s2, x2) ∈ Sα which lie on the same multi-time characteristic with respect to
the component ψ+− (see fig. 4). The construction proceeds as follows:

1. Choose a point (t1, y1, t2, y2) on the same multi-time characteristic as (0, a1, 0, a2)
and on the boundary of Sα, i.e.

a1 = y1 − t1
a2 = y2 + t2

(t1 − t2)2 = (y1 − y2)2 − α2
(10.16)

This especially implies that

ψ−+(t1, y1, t2, y2) = g−+(a1, a2). (10.17)

2. Consider the set of points (s1, x1, s2, x2) on the same multi-time characteristic as
(0, b1, 0, b2) and on the boundary of Sα, i.e.

b1 = x1 − s1
b2 = x2 + s2

(s1 − s2)2 = (x1 − x2)2 − α2
(10.18)

This means
ψ−+(s1, x1, s2, x2) = g−+(b1, b2). (10.19)
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3. Then select a point (s1, x1, s2, x2) on the same multi-time characteristic with re-
spect to the component ψ+−, i.e.

{
x1 + s1 = y1 + t1
x2 − s2 = y2 − t2

(10.20)

This implies that the value at (t1, y1, t2, y2) can be obtained in two different ways:
firstly by using the boundary condition at that point and secondly by going along
the characteristic surface17 to (s1, x1, s2, x2) and using the value from there. In
formulas:

ψ+−(t1, y1, t2, y2) b.c.= eiϕ ψ−+(t1, y1, t2, y2)
(10.17)= eiϕ g−+(a1, a2). (10.21)

ψ+−(t1, y1, t2, y2) char.= ψ+−(s1, x1, s2, x2)
b.c.= eiϕ ψ−+(s1, x1, s2, x2)
(10.19)= eiϕ g−+(b1, b2). (10.22)

Thus

g−+(b1, b2) = g−+(a1, a2), (10.23)

in contradiction to the assumption.

This proves the claim, provided the points we use do exist. Indeed, the combination
of the eight equations (10.16), (10.18) and (10.20) with eight unknowns leads to rather

17One may wonder how it is possible to have a path connecting the two points which neither leaves
the characteristic nor the domain. This is achieved as follows. Concatenate the two linear paths from
(t1, y1, t2, y2) to (t1, y1, s2, x2) and from (t1, y1, s2, x2) to (s1, x1, s2, x2), so first move the right point
from Y2 to X2 and afterwards the left from Y1 to X1. One can see from the hyperbolas in figure 4 that
this path only leaves Sα at its endpoints.
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Figure 4: Construction in the proof for values a1 = 1, b1 = 2, a2 = 5, b2 = 6 and α =
√

6. The
points are Aj = (aj , 0), Bj = (bj , 0), and Yj = (yj , tj), Xj = (xj , sj) for j = 1, 2. The black
hyperbola consists of points that have a space-like distance α to Y1 and the grey one of thoses
which have a space-like distance of α to X1. The configurations (X1, X2) and (Y1, Y2) lie on the
same multi-time-characteristic, comprised of the two solid black lines.

lengthy quadratic equations, whose general solution is given by

y1 = a1 + 1
2

(
−a1 + b1 + 1

2(a2 − 2b1 + b2)− 1
2ξ
)
,

2t1 = −a1 + b1 + 1
2(a2 − 2b1 + b2)− 1

2ξ,

y2 = a1 + 1
2

(
−a1 + b1 + 1

2(a2 − 2b1 + b2) + 1
2ξ
)
,

t2 =
a2 − b2 + 2

(
α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
))

(4b1 − 4b2 + 2(a2 − 2b1 + b2)− 2ξ) ,

x1 = b1 + 1
4(a2 − 2b1 + b2) + 1

4ξ,

s1 = 1
4(a2 − 2b1 + b2) + 1

4ξ,

x2 =
b2 − α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
)

(2b1 − 2b2 + (a2 − 2b1 + b2) + ξ) ,

s2 =
α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
)

(2b1 − 2b2 + (a2 − 2b1 + b2) + ξ) , (10.24)

where

ξ =
√

(b2 − a2)2(b1 − a1) + 4α2(b2 − a2)
b1 − a1

. (10.25)

The radicand is positive since a1 < b1 and a2 < b2. �

Remark: The lemma demonstrates that the most general Lorentz invariant and pro-
bability-conserving IBVP (10.15) on Sα leads to over-determination. Eq. (10.23) shows
that the only admissible initial data are those for which g−+ is constant (and thus also
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g+−). Due to normalization, this constant has to be zero. The two other components are
exactly those which are not affected by boundary conditions. Moreover, it becomes clear
from the proof that the problem originates from the too high dimension of ∂Sα which
implies (regardless of initial conditions) that certain components of the wave function
have to be constant sets like the initial data surface. One cannot avoid this problem
by simply prescribing boundary conditions only on a part of the boundary due to the
requirement of Lorentz invariance.

10.3 Outlook

The result of the two previous sections is negative in the sense that a direct generalization
of our model to the physically most relevant case of three dimensions is not feasible. In
higher dimensions, the boundary would have to be “fattened” in order to have any
impact on the dynamics, but the natural way of achieving this, using the only Poincaré
invariant restriction of S , namely Sα, leads to a contradiction.
We remark that the assumption of mass-less particles is, in contrast to d = 1, only due
to technical simplicity and we conjecture that it can be dropped and we can obtain an
interacting model also form 6= 0. The only detriment of this case is that the system (6.6)
with an additional +mkσ1,k in each Dirac equation is not simultaneously diagonalizable
and therefore our method of finding an explicit solution is not applicable. However, we
can suspect already from our treatment of the effective single-time model in sec. 9.3 that
an interacting dynamics still exists. Since the addition of a bounded operator like the
mass-term in the Hamiltonian does not change any of the self-adjointness properties, we
would obtain the same form of the interaction potential.
In the end, must we bury the idea of relativistic interactions by boundary conditions?
As mentioned in sec. 5.2, there is a new concept called interior boundary conditions
by Teufel and Tumulka [45] which connects pair creation with boundary conditions.
So far, they have been successfully applied to non-relativistic and single-time models
of pair creation, where the construction of Hamiltonians without UV-divergences was
achieved. But the reasoning in sec. 10.1 about uniqueness of solutions even without
boundary conditions also applies to models with IBCs, hence no direct generalization of
the non-relativistic models to the Dirac case in three dimensions is feasible. However,
tricky alterations of the models that save the promising idea might be possible. Not
yet should we who enter the realm of interaction in relativistic quantum theories by
boundary conditions abandon all hope.
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Part III

The Bethe-Salpeter equation
In this part, integral equations for multi-time wave functions are studied at the example
of the Bethe-Salpeter equation, which is a two-particle equation first presented in 1951
[62] and intended for the description of bound states in QED. Since a rigorous treatment
of the problems in this part is not possible, we focus on pointing out physically important
observations and possible starting points for further research. In section 11, we show
how the Bethe-Salpeter equation is treated normally, how it can in some sense be derived
from QED and how it is tried to obtain explicit solutions of a simplified equation without
spin, the Wick-Cutkosky model. We then place the Bethe-Salpeter equation in a more
general context of multi-time integral equations (sec. 12) and discuss the appropriate
domain of integration. Subsequently, in sec. 13, several problems of the Bethe-Salpeter
equation are exemplified. Before concluding this thesis, we also present in sec. 14 how
the non-relativistic limit of the Bethe-Salpeter equation may be taken in position space.

11 Standard treatment

11.1 Different forms of the Bethe-Salpeter equation

In this section, we follow Greiner [46, ch. 6]. We will not repeat all details of the
derivation of the Bethe-Salpeter equation here, but just rephrase the essential ideas.
If one wishes to describe two-particle bound states in QED, one is led to use a two-
time wave function ψab(x1, x2), where a, b ∈ {1, ..., 4} are Dirac spinor indices (that are
occasionally omitted). The connection to the Heisenberg field operators Φ̂(x) of QED is
given by [7]

ψ(x1, x2) = 1√
2
〈0| Φ̂(x1)Φ̂(x2) |Ψ〉 . (11.1)

Here, |Ψ〉 is the Heisenberg state, i.e. a fixed vector in the Fock space.
The starting point for the derivation is the observation that for free Dirac particles, there
exists a two-particle propagator which is just the product of two one-particle propagators.
The Feynman propagator of the free one-particle Dirac equation is known to be

SF (x, y) =
∫

d4p

(2π)4 e
−ip·(x−y) /p+m

p2 −m2 + iε
(11.2)

and as usual, the limit ε → 0 is implied. If we integrate over a three-dimensional
hypersurface that includes the points x1 and x2 with normal vector field n, the free
solution ϕab(x1, x2) can be expressed as (see [46])

ϕab(x1, x2) =
∫
dσ(x3)dσ(x4)iSaF (x1, x3)iSaF (x2, x4)/n(x1)/n(x2)ϕab(x3, x4). (11.3)

Interaction now leads to corrections to this formula, which are computed with the help
of Feynman diagrams in a perturbation series. But the usual expansion in orders of the
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fine structure constant α is not appropriate for bound state situations – a bound state is
supposed to exist forever, so there might be infinitely many photon exchanges between
the particles. One may still use a perturbation series by recognizing that the probability
of N photons being present at the same time shrinks with growing N . One usually
rearranges the Feynman diagrams in a clever way and writes down a self-consistent
equation for the propagator to account for this. The Bethe-Salpeter equation therefore
features an interaction kernel Kab(x5, x6;x3, x4) which stands for the sum of all two-
particle irreducible diagrams. These are all Feynman diagrams which cannot be cut into
two non-connected diagrams by splitting two fermion lines. One should not overlook
that this step is not only performed on a very formal level, one even rearranges terms in
an infinite sum that does not converge.
With these ingredients at hand, we can state the Bethe-Salpeter equation in position
space:

ψab(x1, x2) = ϕab(x1, x2)+∫
d4x3d

4x4d
4x5d

4x6 iS
a
F (x1, x5) iSbF (x2, x6)Kab(x5, x6;x3, x4)ψab(x3, x4)

(11.4)

As an exception from our usual convention, summation over the indices a, b is never
implied in these equations. We can reformulate the equation (11.4) by acting with the
free Dirac operator from the left, using that the propagator SF is a Green’s Function,
i.e.

(i/∂1 −m1)SF (x′1, x1) = δ(4)(x′1 − x1). (11.5)

It follows that

(i/∂1 −m1)ψab(x1, x2) = i

∫
d4x3d

4x4d
4x6 iS

b
F (x2, x6)Kab(x1, x6;x3, x4)ψab(x3, x4).

(11.6)
The form one will find nearly all the time in applications and physics papers is the
Fourier transformed equation. In momentum space, one writes

(/p1 −m1)(/p2 −m2)ψab(p1, p2) = −
∫
d4p′1d

4p′2K
ab(p1, p2; p′1, p′2)ψab(p′1, p′2). (11.7)

We will comment on this Fourier transform, which has a dubious mathematical status,
in section 12.2, and use the position space equation for our considerations.

Ladder approximation
In many applications, the Bethe-Salpeter equation is only used up to first order, where
the interaction kernel becomes [46, p. 392]

Kab(x5, x6;x3, x4) = δ(4)(x5 − x3)δ(4)(x6 − x4) (−ie1)γaµ iDµν(x3, x4) (−ie2)γbν , (11.8)
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with the free photon propagator being denoted as Dµν and the charge of particle j as
ej . In this ladder approximation, the Bethe-Salpeter equation reads

ψab(x1, x2) = ϕab(x1, x2)+

ie1e2

∫
d4x′1d

4x′2 S
a
F (x1, x

′
1) SbF (x2, x

′
2)γa1,µDµν(x′1, x′2)γb2,νψab(x′1, x′2).

(11.9)

Now, the most pressing question if we want to take it seriously as a fundamental equation
is: What does the object ψ(x1, x2) in the Bethe-Salpeter equation mean? To call it a
wave function and use the usual letter ψ suggests that, as always, |ψ|2 should describe
a probability density. This question, however, has to be postponed until section 13
where we discuss the problems of such a straightforward understanding of the function
appearing in the Bethe-Salpeter equation. We first focus on the question if there are
even solutions to eq. (11.9).

11.2 The spin-less model and its solutions

Since the Bethe-Salpeter equation, even in ladder approximation (11.9), is highly com-
plicated, a further simplification which comes about when all spin effects are neglected
might be beneficial. This leads to the so-called Wick-Cutkosky model which is the ana-
log of the Bethe-Salpeter equation for two spin-less particles that interact via exchange
of a spin-less mass-less boson. We will only consider it in ladder approximation:

ψ(x1, x2) = ϕ(x1, x2)+

ie1e2

∫
d4x′1d

4x′2 Gm1(x1, x
′
1) Gm2(x2, x

′
2) Gm=0(x′1, x′2)ψ(x′1, x′2) (11.10)

Here, Gm denotes the propagator (Green’s function) of the Klein-Gordon equation

(� +m2)ψ = 0. (11.11)

Interestingly, the model was mainly introduced because Wick and Cutkosky recognized
that “explicit solutions” could be obtained by intricate and complicated methods [63,
64, 65, 66]. We now explain their way of solving eq. (11.10) in order to elucidate why
“explicit solutions” is put in quotation marks. The equation is always considered in
momentum space where it is supposed to read

φ(p) =
[
m1 −

(
P

2 + p

)2
− iε

]−1 [
m2 −

(
P

2 + p

)2
− iε

]−1
λ

π2

∫
d4p′

φ(p′)
−(p− p′)2 − iε

.

(11.12)
This is the first formula in the review of the Wick-Cutkosky model by Nakanishi [66]
although the steps leading here include a dubious Fourier transform, which will be dis-
cussed in more detail in 12.2. Here, P is the total and p the relative momentum, φ(p) is
the wave function in momentum space and λ := e1e2

4π2 the coupling constant. Momentum
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conservation implies that P cannot change in a physical process, so this quantity is not
considered an argument of φ(p), but a fixed parameter. The idea is that eq. (11.12) can
have solutions only for a discrete set of values of P which determine the spectrum of
bound state energies for the system [46, p. 335]. One may read the equation as

φ(p) = λ · IP [φ(p)], (11.13)

where IP abbreviates the whole operator on the right hand side of (11.12), which obvi-
ously depends on the total momentum P . The idea that was explicated in [67] is now
to consider (11.13) as an eigenvalue equation: for every P , one looks for values of λ(P )
such that it can be fulfilled. This is not very helpful of course, because there is only one
true value of the coupling constant. Therefore, one inverts the relation between P and λ
afterwards, and should thereby in principle be able to obtain the values of P (λ) for the
given λ for which the Bethe-Salpeter equation is solvable. This method combined with
a number of other tricks allows to find equations for the eigenvalues and eigenfunctions
of IP as in (11.12), which are ordinary differential equations. The solutions cannot be
given analytically, but one can prove that they exist and that there is a discrete set of
eigenvalues λ(P ).
At this point, one would have to first invert the function λ(P ) and then give all the
eigenfunctions for the true λ and investigate whether they are orthogonal and span a
suitable space of functions. None of this is done in the literature, so the solutions are ev-
erything but “explicit”. And one might ask: is it even justified to call them “solutions”?
This also needs further clarification because the functions one obtains are, in Nakanishi’s
words, “badly infrared divergent on the mass shell” [66]. As long as these basic questions
remain unsolved, the solvability of the Wick-Cutkosky model cannot give many hints on
how to understand existence and uniqueness of solutions to the Bethe-Salpeter equation.
Further unpleasant properties of some of the model’s solutions will be discussed in section
13.

12 Alternative approach to the Bethe-Salpeter
equation as multi-time evolution equation

12.1 Motivation of generalized integral equations

We have discussed in part I that integral equations may be a general possibility to
obtain interaction in relativistic QM. The direct way of generalizing the differential
equations from non-relativistic QM leads to consistency problems (see sec. 5.1), so we
try to generalize an integral version of those equations. As in [68], the non-relativistic
stationary Schödinger equation for one particle,

Eψ(x) =
(
− 1

2m4+ V (x)
)
ψ(x), (12.1)

can be rewritten as

ψ(x) = ϕ(x) +
∫
d3x′ GS(x− x′)V (x′)ψ(x′) (12.2)
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with the propagator of the Schrödinger equation

GS(x− x′) := −2m
4π

exp(i
√

2mE|x− x′|)
|x− x′| . (12.3)

Again, ϕ is the free solution, i.e. the solution of eq. (12.1) with V ≡ 0. When we
generalize this to a relativistic theory of two interacting particles, a multi-time wave
function is needed and the potential V is replaced by some “interaction kernel”K(x1, x2).
This leads to the following general form of the integral equation:

ψ(x1, x2) = ϕ(x1, x2) +
∫
d4x′1d

4x′2 G(x1 − x′1)G(x2 − x′2)K(x′1, x′2)ψ(x′1, x′2) (12.4)

If one considers a more general form of interaction kernels K that even depend on four
space-time points, one arrives at the form of eq. (11.4). The ladder approximation of the
Bethe-Salpeter equation is recovered by choosing K as in (11.8). This approach shows
several interesting points:

1. From the comparison with the eigenvalue equation (12.1), one may already expect
that a multi-time integral equation is only solvable for a discrete set of values for
the energy (in bound state situations). This expectation is known to be fulfilled in
the case of the Wick-Cutkosky model [66]. Therefore, we have replaced the issue
of consistency that arises for systems of differential equations by the question for
which energies the one integral equation can be solved.

2. The propagators G only have to be Green’s functions of the relevant single-particle
equation, here the Dirac equation. It is not clear a priori which boundary condi-
tions shall be imposed, so they need not necessarily be the Feynman propagators,
but could also be retarded propagators or others. If one wants to find a quantum
version of Wheeler-Feynman electrodynamics, one could also think of taking the
time-symmetric propagators in an equation resembling the Bethe-Salpeter equa-
tion.

3. The interaction kernel of the Bethe-Salpeter equation, which is problematic be-
cause it consists of a series of divergent diagrams, might be replaced by a more
suitable interaction term in a general multi-time equation of the form (12.4) in or-
der to describe relativistic interactions. This promising idea, however, lies beyond
the scope of this thesis.

12.2 Domain of integration and Fourier transform

If the function ψ(x1, x2) really is a multi-time wave function for a two-particle system,
we have observed several times that its domain should only be the set of space-like con-
figurations S . But in the usual formulation like in eq. (11.9), the range of integration
is R4×R4, so also time-like configurations appear as arguments of ψ. In our alternative
approach, it seems natural to impose from the beginning that an integral as in eq. (12.4)
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be restricted to S . This, however, has striking consequences for the momentum space
description.
Let us see how the standard derivation of the Fourier transformed Bethe-Salpeter equa-
tion from the position space equation (11.9) is performed in Greiner’s book [46]. First,
he defines the wave function in momentum space, which we will also call ψ in slight
abuse of notation, by

ψab(p1, p2) = 1
(2π)4

∫
d4x1 d

4x2 e
i(p1·x1+p2·x2)ψab(x1, x2). (12.5)

A mathematician will shake his head at this point, and he will be quite right: There is
no reason for this expression to be well-defined. While a mere spatial Fourier transform
of the wave function is reasonable because one expects that ψ(t1, ·, t2, ·) ∈ L2(R3 ×R3),
it is clear that the integration along the time direction in (12.5) need not be well-defined.
One can possibly make mathematical sense of this Fourier transform in some way, but
that needs to be clarified. When transforming the Bethe-Salpeter equation (11.4) to
momentum space, Greiner obtains the formula∫

d4x1 d
4x2 e

i(p1·x1+p2·x2)(i/∂1 −m1)(i/∂2 −m2)ψab(x1, x2)

=
∫
d4x1 d

4x2 d
4x3 d

4x4 e
i(p1·x1+p2·x2)Kab(x1, x2;x3, x4)ψab(x3, x4). (12.6)

At this point, Greiner integrates by parts on the left hand side in order to move the
derivatives to the exponential function. In this step, boundary terms do not appear.
This makes sense for the spatial directions where the wave function can be assumed
to drop off when |x| → ∞, but this is unreasonable for |t| → ∞ if some probability
conserving property like ∫

d3x1d
3x2 |ψ(t,x1, t,x2)|2 = 1 ∀t (12.7)

is assumed to hold. Therefore, the steps which lead to the momentum space version of
the Bethe-Salpeter equation (11.7) at least need further justification.
In order to Fourier transform the Bethe-Salpeter equation while taking seriously the
restriction of the domain to S , one possible method is to restrict the integral e.g. by
using the indicator function. The result is denoted as χ to distinguish it from the
ψ(p1, p2) from eq. (12.5):

χab(p1, p2) = 1
(2π)4

∫
d4x1 d

4x2 e
i(p1·x1+p2·x2)ψab(x1, x2) · 1S . (12.8)

One can rewrite
1S = Θ(|x1 − x2|2 − (t1 − t2)2), (12.9)

so it is evident that in the general case, we have

χab(p1, p2) 6= ψab(p1, p2). (12.10)
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We cannot derive a simple equation in momentum space that χ fulfills. The integration
by parts will surely give boundary terms at ∂S , apart from the problems mentioned
so far. Indeed, we see that the restriction to S leads to a severe consequence: The
equivalence between the description in momentum and position space-time does not
persist.
Since we do not really know what the function ψ(x1, x2) should mean, it is also not so
obvious whether we really need to restrict it to space-like configurations. We only see
that if we do, the usual way of treating the equation does not work anymore.

13 Issues with the Bethe-Salpeter equation

13.1 Gauge invariance

The Bethe-Salpeter equation in ladder approximation (11.9) contains the photon propa-
gator Dµν . As this object is connected to the evolution equation of the electromagnetic
4-potential Aµ, it depends on the chosen gauge. It is well-known that this gauge depen-
dence drops out in any physical amplitude that one computes in QED, so the formalism
is gauge invariant in the end. But is this also true for the Bethe-Salpeter equation? The
surprising answer is: No.
We will see this clearly when we derive the non-relativistic limit of the Bethe-Salpeter
equation in section 14. If this is done in the Feynman gauge that is mostly used in
QED, another effective potential comes out than in Coulomb gauge. Therefore, gauge
invariance does not hold for the Bethe-Salpeter equation in ladder approximation. There
is an article by Barbieri et. al. [69] where it is derived that the gauge invariance becomes
restored up to order v

c if one considers one order more than the ladder approximation.
Therefore, we can expect that the gauge invariance is lost due to the approximation of
considering only finitely many Feynman diagrams.

13.2 Current conservation

It was exemplified in sec. 7.1 how the meaning of a wave function relates to a conserved
tensor current providing a probability density. So it is a natural question to ask if
there is a conserved current for the Bethe-Salpeter equation (11.4). In a paper by
Böhm [70], current conservation for the Bethe-Salpeter equation is considered to be
synonymous to a certain kind of Ward identity. This is a well-known equation in QED
which connects the vertex function to the Feynman propagator, compare [23, ch. 7.4].
While this identity is the translation of gauge invariance and current conservation to
Feynman diagrams and amplitudes, it is not so clear how the wave function ψ(x1, x2)
can gain probabilistic meaning if only a Ward identity holds. Furthermore, there is no
real answer to the question whether current conservation holds for equations (11.9) or
(11.4) in [70]. Therefore, we will investigate now if a conserved current jαβ exists. The
first guess is, of course, the tensor current of the free Dirac equation,

jαβ = ψ̄γα1 γ
β
2ψ. (13.1)
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Let us compute its 4-divergence. Recall eq. (11.6) which comes about by acting with
the free Dirac operator on the Bethe-Salpeter equation,

(i/∂1 −m1)ψab(x1, x2) = i

∫
d4x′1d

4x′2d
4x′′2 iS

b
F (x2, x

′′
2)Kab(x1, x

′′
2;x′1, x′2)ψab(x′1, x′2).

(13.2)
We also need the adjoint equation, which reads

ψ̄ab(x1, x2)(i
←−
/∂ 1 +m1) =

∫
d4x′1d

4x′2d
4x′′2 ψ̄ab(x′1, x′2)K̄ab(x1, x

′′
2;x′1, x′2)S̄bF (x2, x

′′
2),
(13.3)

where the barred objects are defined in analogy to ψ̄ = ψ†γ0
1γ

0
2 as S̄ = γ0

1γ
0
2S

†γ0
1γ

0
2 and

K̄ = γ0
1γ

0
2K

†γ0
1γ

0
2 . Now we add up the equations multiplied by some factors:

(∗) := ψ̄γβ2 · (13.2) + (13.3) · γβ2ψ

The left hand side of (∗) is then, omitting the indices ab and the argument (x1, x2) in
all functions,

ψ̄γβ2 (i
−→
/∂ 1 −m1)ψ + ψ̄(i

←−
/∂ 1 −m1)γβ2ψ

= i
(
ψ̄γβ2 (/∂1ψ) + (/∂1ψ̄)γβ2ψ

)
= i∂αj

αβ. (13.4)

The right hand side of (∗) gives

−ψ̄(x1, x2)γβ2
∫
d4x′1d

4x′2d
4x′′2 SF (x2, x

′′
2)K(x1, x

′′
2;x′1x′2)ψ(x′1, x′2)

+
∫
d4x′1d

4x′2d
4x′′2ψ̄(x′1, x′2)K̄(x1, x

′′
2;x′1, x′2)S̄F (x2, x

′′
2)γβ2ψ(x1, x2). (13.5)

Defining a function

ζβ(x1, x2, x
′
1, x
′
2, x
′′
2) := ψ̄(x1, x2)γβ2 SF (x2, x

′′
2)K(x1, x

′′
2;x′1x′2)ψ(x′1, x′2), (13.6)

we can combine (13.4) and (13.5) to obtain the following expression:

∂αj
αβ(x1, x2) = −2 ·

∫
d4x′1d

4x′2d
4x′′2 Im ζβ(x1, x2, x

′
1, x
′
2, x
′′
2). (13.7)

Although we cannot prove it rigorously, this equation strongly suggests that the free
Dirac current is not conserved in the Bethe-Salpeter equation. The imaginary part of ζβ
contains very different combinations of the components of ψ for different β, but current
conservation would mean that ∂αjαβ = 0 for all β. It is very unlikely that this holds.
In the ladder approximation, the divergence of the current simplifies to

∂αj
αβ(x1, x2) = −2 ·

∫
d4x′2 Im ξβ(x1, x2, x

′
2), (13.8)
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where

ξβ(x1, x2, x
′
2) := −ie1e2ψ̄(x1, x2)γβ2 SF (x2, x

′
2)γµ1Dµν(x1 − x′2)γν2ψ(x1, x

′
2). (13.9)

Since we conjecture that the free Dirac current is neither conserved in the full Bethe
Salpeter equation nor in the ladder approximation, the meaning of the wave function
ψ(x1, x2) is very unclear. One could now try to identify other tensor currents that are
conserved, similarly to the treatment of the two-body Dirac equations, see [44]. But it is
likely that such a modified current jmod(x1, x2) will not be of a simple form, in particular
that it will not be a local object but depend also on the values of ψ at other points than
(x1, x2). In the normal Schrödinger equation, this is exactly what happens if one adds
“non-local potentials”, i.e. integral operators: the usual current j is not conserved and a
non-local modification is necessary [71]. It is disputable how much sense such a non-local
probability density would make.

13.3 Problematic solutions of the spin-less model

It was described in sec. 11.2 how some proclaimed explicit solutions to the Wick-
Cutkosky model can be obtained. There was a long-standing discussion about these
solutions in physics publications of the 1960s and 70s summarized by Nakanishi [66]
which ended without a real conclusion. The discussion was mainly about three unpleas-
ant features of the solutions: divergences, negative-norm states and so-called abnormal
solutions. We will comment on all three problems from our multi-time perspective now,
where their fundamental meaning is more apparent.

1. Divergences: It is not too surprising that an equation that is closely related to
QED, an agglomeration of divergent expressions, features divergent solutions. We
have already remarked that a divergent expression can not directly be considered
to be a solution of an equation and some mathematical work has to be done to see
in which weakened sense, if in any, one can consider such functions as solutions.
We can not solve the problem of divergences in the Bethe-Salpeter equation here
but just say that the “right” multi-time integral equation that might describe
relativistic interaction of quantum particles would be one without such problems.

2. Negative norm states: It is reported in [65] and [66] that “the norm” of every
second eigenfunction of the Wick-Cutkosky model is negative. The reader might
wonder now: Which norm? Since there is no known conserved current for the equa-
tion which could provide a norm by its zero-component, it is not clear how to obtain
a norm whatsoever. The usual normalization condition for the wave function in
the Bethe-Salpeter equation is obtained either by a formal calculation using poles
of Green’s functions [65] or by comparison with amplitudes in QED [72]. But these
normalization conditions yield no positive definite density in the Wick Cutkosky
model. This, at first sight, would not be too problematic because the model corre-
spond to spin-less particles that in the free case satisfy the Klein-Gordon equation.
It is well-known that the Klein-Gordon equation has the conserved current given
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in (7.8) whose zero-component can become negative. However, the problems of
negative norm states are expected to remain in the usual Bethe-Salpeter equation
(as can be seen by calculations in simplified models with spin) [65], so the problem
lies deeper 18 and cannot be overcome as easily as changing from the Klein-Gordon
to the Dirac equation.

3. Abnormal solutions: The third issue with the Wick-Cutkosky model is the
occurrence of solutions that “have no counterparts in the non-relativistic potential
theory” [65, p. 48]. This means, when we take the non-relativistic limit of the
Wick-Cutkosky equation, some of the eigenfunctions do not correspond to any
familiar physical states. Therefore, they are called abnormal solutions, whose
physical status is unclear. It is believed that this problem can neither be cured
by considering higher orders in the approximation nor by including spin. But it
is reported by Nakanishi [65] that “abnormal solutions seem to come out mainly
from the large values of the relative time”. Now we recall that in sec. 12 it was
explained why the Bethe-Salpeter should most likely be limited to the space-like
configurations S . Doing this would exclude very large values of the relative time
compared to the spatial distance, so it seems possible that the problem of abnormal
solutions arises only because one considers an inappropriate domain for the multi-
time wave function. Unfortunately, we cannot give a definite account of this since
the lost symmetry when confining the equations to S makes an explicit solution
more difficult than in the original Wick-Cutkosky model.

Although we cannot obtain a final answer to the question how the problematic solutions
of the spin-less model arise, we see that the widened perspective, obtained by putting
the Bethe-Salpeter equation into the multi-time framework and by really asking what
the objects it contains mean physically, helps us to better understand how some of the
issues come about and might be resolved. Further research should start from this point.

14 Non-relativistic limit of the Bethe-Salpeter
equation

Since the Bethe-Salpeter equation is too complicated for direct application and most
situations in which bound states occur can be approximated non-relativistically, the
problems we discussed do rarely appear in practical calculations. One mostly uses non-
relativistic limiting cases of the equation such as the Breit equation [73]. We will now
derive this equation in position space and thereby show an example of how a multi-time
integral equation which cannot directly be reduced to differential equations with inter-
action potentials can nevertheless yield such equations in a non-relativistic limit. The
position space calculation is also shorter than the usual momentum space derivation
given e.g. in [74, ex. 6.4].

18I thank Matthias Lienert for pointing this out to me.
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This derivation is based on an idea by Matthias Lienert. It needs the following assump-
tions, which we will motivate and remark on below.

1. Instantaneous limit: The wave function behaves such that one may replace the
photon propagator by

Dµν(t,x)→ D̃µν(x) · δ(t) (14.1)

2. Replacing the propagator: One may replace the Feynman propagators SF by re-
tarded propagators SR.

With these assumptions, we want to obtain a single-time equation from the multi-time
equation (11.9) in ladder approximation. We first note that

∂

∂t
ψ(t,x1, t,x2) =

(
∂

∂t1
ψ(t1,x1, t2,x2) + ∂

∂t2
ψ(t1,x1, t2,x2)

)∣∣∣∣
t1=t2=t

. (14.2)

Now we consider eq. (11.9) at equal times and apply the sum of the two free Dirac
operators (times the respective γ0) from the left, which makes ϕ vanish because it is a
solution of the free Dirac equation:(

iγ0
1 /∂1 − γ0

1m1 + iγ0
2 /∂2 − γ0

2m2
)
ψab(t, ~x1, t, ~x2) = ie1e2 ·

(
γ0

1I1 + γ0
2I2
)
,

I1 :=
∫
d4x′2 S

b
F (x2, x

′
2)γa1,µDµν(x1 − x′2)γb2,νψab(x1, x

′
2),

I2 :=
∫
d4x′1 S

a
F (x1, x

′
1)γa1,µDµν(x′1 − x2)γb2,νψab(x′1, x2). (14.3)

Here, we directly used eq. (11.5) on the right hand side to reduce the number of integra-
tions. Now we use assumption 1, the instantaneous approximation, and obtain for the
first integral

I1 =
∫
d3x′2 SbF (t,x2, t,x′2)γa1,µγb2,νD̃µν(x1 − x′2)ψab(t,x1, t,x′2). (14.4)

In order to proceed from eq. (14.4), we have to evaluate the Dirac propagator SF at
equal times. The standard formulas for propagators found in textbooks are only valid
for different time arguments, and at equal times, the propagator behaves discontinuously.
By integrating eq. (11.5) over a small time interval, one can derive that [75, p. 267]

lim
ε↘0

(SF (ε,x)− SF (−ε,x)) = iγ0δ(3)(x), (14.5)

which stays true, interestingly, if one uses another propagator instead of the Feynman
propagator, for example the retarded one SR. But in contrast to the Feynman propa-
gator, one can assign a sensible value to SR(0,x) because SR becomes zero for negative
time arguments. Therefore, with assumption 2, we may set

SF (t,x2, t,x′2)→ iγ0δ(3)(x2 − x′2). (14.6)
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Inserting this in eq. (14.4), one obtains

I1 = iγ0
2γ

a
1,µγ

b
2,νD̃

µν(x1 − x2)ψab(t,x1, t,x2). (14.7)

We now have to insert the photon propagator. In Feynman gauge and in momentum
space, it is given by [75]

Dµν(k) = −igµν

k2 + iε
. (14.8)

Because of assumption 1, we only have to take the spatial Fourier transform and set k0

to 0, which automatically gives a δ(t). The Fourier transform gives us [46]

D̃µν(x) =
∫

d3k
(2π)3 e

ik·x−igµν

|k|2 = −C2|x|g
µν , (14.9)

with some constant prefactor C, which leads to

I1 = −iCγ0
2γ

a
1,µγ

µ,b
2

1
2|x1 − x2|

ψab(t,x1, t,x2). (14.10)

Doing the same steps for I2 and adding up, we obtain

(
iγ0

1 /∂1 − γ0
1m1 + iγ0

2 /∂2 − γ0
2m2

)
ψab(t,x1, t,x2) = Ce1e2γ

0
1γ

0
2
γa1,µγ

µ,b
2

|x1 − x2|
ψab(t,x1, t,x2).

(14.11)
Using that (γ0)2 = 1 and γ0γj =: αj as well as (14.2), we can rewrite this as

i∂tψ(t,x1, t,x2) = (H1(x1) +H2(x2) + V (x1 − x2))ψ(t,x1, t,x2), (14.12)

where Hj denotes the free Dirac Hamiltonian for particle j and the potential term is
given by

V (x) = g

(
1
|x| + αj1αj,2

|x|

)
, (14.13)

with the coupling constant g = Ce1e2. Thus, we have derived a single-time Dirac
equation for two particles with an effective potential that features a Coulomb term and
a relativistic correction term that is well-known from the Breit equation. We now briefly
comment on our result and assumptions.

Remark:

• The full potential in the Breit equation is given by [73, 46]

V (x) = g

(
1
|x| + αj1αj,2

|x| + αi1xiα
j
2xj

|x|2

)
. (14.14)

So why did we not obtain the third term in our derivation? This comes from the
gauge dependence of the Bethe-Salpeter equation. We have used the Feynman
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gauge for the photon propagator. In Greiner’s book, there is a hand-waving ar-
gument why one should rather use the Coulomb gauge, in which the propagator
(14.9) becomes

D̃ij(x) = −C2|x|

(
xixj
|x|2 − δij

)
(14.15)

and the other components do not change. But with this propagator, one indeed
obtains the potential (14.14), in agreement with the statement in [69] that the lack-
ing gauge invariance of the Bethe-Salpeter equation is less severe in the Coulomb
gauge. We expect that the missing term may be restored also in the Feynman gauge
by considering higher order irreducible Feynman diagrams, but this calculation is
very difficult and needs renormalization procedures.

• Assumption 1 is motivated by the connection between the instantaneous and the
non-relativistic case. To give a simple example, a propagator might contain a δ-
function of the type δ(|x| − t). Since we set c = 1, a non-relativistic limit would
mean |x| � |t|, hence replacing

δ(|x| − t)→ δ(t) (14.16)

might be justified (see also [37]). The seemingly ad hoc procedure of leaving
away the spatial parts in the delta functions should be motivated more rigorously
by an assumption about the wave function and its behavior. We expect that in
a non-relativistic limit, the wave function should behave such that retardation
effects become negligible (so it should change slowly with time) and the above
approximation is valid.

• In Greiner’s derivation in momentum space, the assumption of instantaneous in-
teraction is implemented by saying that the propagator should not be frequency
dependent, i.e. Dµν(k0,k)→ Dµν(0,k). This is in fact equivalent to our approxi-
mation of the position space-time propagator because the Fourier transform gives

Dµν(t,x) = 1
(2π)4

∫
dk0

∫
dk e−ik

0t · eikxDµν(k0,k)

= δ(t) ·
∫
dk · 1

(2π)3 e
ikxDµν(0,k). (14.17)

• Assumption 2 may be motivated in two different ways. Greiner considers only
positive energy solutions for the derivation of the Breit equation. Although it is
not explicitly stated, the significance of this assumption is that it allows him to
replace the Feynman propagator SF by the retarded propagator SR. This works
because it is known that they agree on positive energy solutions, compare [75].
From our more general perspective as explained in sec. 12, we could impose right
from the start that the Bethe-Salpeter equation contains retarded propagators,
which would make assumption 2 unnecessary.
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15 Conclusion

In the end, what have we learned? The most obvious lesson is: It is a very difficult task
to construct a relativistically interacting quantum theory.
In the first part of this thesis, we clarified the relevant concepts and recognized that an
interacting theory must at least possess some dynamics. Therefore, usual quantum field
theories cannot be considered as interacting theories, as explained in section 3. They
only provide a good effective description and we need to look for alternatives in order
to construct a fundamental theory. The most promising object for building relativistic
quantum mechanics ofN particles is the multi-time wave function ψ(x1, ..., xN ), the most
natural generalization of the non-relativistic wave function from quantum mechanics.
There are several possibilities how to formulate a conceptually clear quantum theory
with the help of such an object, for example with a Hypersurface-Bohm-Dirac model or
a relativistic collapse model. There are numerous open problems on this fundamental
level as well, but we expect that the introduction of interaction has to be done on the
level of the wave function. So how should the dynamical equations for ψ(x1, ..., xN ) look
like? In the non-interacting case, a system of free Dirac equations

(i/∂k −mk)ψ(x1, ..., xN ) = 0, k = 1, ..., N (15.1)

is appropriate. But one must not add potential terms V (xj − xk) to these equations
because they violate the consistency condition that is necessary for solutions to exist.
The second insight: Relativistically interacting quantum theories can be constructed;
there are several methods to do so. In section 5.2, four promising possibilities were dis-
cussed. One can think of using generalized potentials that depend on the momentum,
or one can try to get around the divergences that normally occur in models with pair
creation. Two important mechanisms of interaction were then discussed extensively.
The model presented in part II implements interaction by boundary conditions. Since
the multi-time wave function ψ(x1, ..., xN ) is naturally defined only on the set of space-
like configurations S , one can impose boundary conditions on ∂S . This was done in
such a way that our model of N mass-less particles in one dimension is interacting. The
interaction is such that in an effective single-time picture, we obtain a δ-function poten-
tial of the particle distances. Alas, a generalization of the model to higher dimensions
is not feasible, one only obtains the free model there. Nevertheless, there is a lot to be
learned from the model. One can see how probability conservation is connected with a
conserved tensor current jµ1...µN in a geometric way and how the boundary conditions
are able to ensure that no probability “flows out” of the domain. Furthermore, we recog-
nized that functional analytic methods are of limited utility in multi-time theories and
general methods from the theory of partial differential equations such as the (general-
ized) method of characteristics used in sec. 6.4 may help more.
A different type of equations that might be the right choice for relativistic quantum
dynamics are integral or integro-differential equations. In part III, we discussed the
Bethe-Salpeter equation as a prominent example of multi-time integral equations. Al-
though very promising at first glance because it is an equation that is thought to describe
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interacting systems and bound states in QED, the Bethe-Salpeter equation has multi-
ple problems that are yet unsolved, or even unsolvable. Some of the properties of the
Bethe-Salpeter equation can be understood better from the multi-time perspective, but
many remain unclear. We discussed that the meaning of the wave function it contains
is unclear due to the lack of a conserved current with positive density. Furthermore,
solutions of the equation have divergences, it is unknown how to define a (positive)
norm and gauge invariance cannot be fully restored. It is typical for the current state of
affairs in relativistic quantum physics that despite all those issues, physicists repeatedly
succeed in extracting meaningful predictions like energy levels from the Bethe-Salpeter
equation.
But a stable basis for all the effective theories is still missing, which is the reason for
our search. We only treated one example of multi-time integral equations, so it might
be rewarding to consider alternatives to the Bethe-Salpeter equation which have less
problems and investigate whether they can be the foundation of a new relativistic quan-
tum theory. It may well be that this forces us to abandon familiar methods of dealing
with physics equations – similar to the situation in the divergence-free theory of classical
electromagnetism by Wheeler and Feynman [76] where there is no simple initial value
problem.
After all, this thesis shows several possible ways one can pursue to finally come up with
a theory of relativistic quantum mechanics that is a consistent, understandable theory
and has all the formalisms one knows so far as effective descriptions. Considering the
amount of possibilities that were not discussed thoroughly in the research so far, we are
led to believe that there is still lots of space for such a theory to be developed, although,
as Maudlin writes in [24, p. 222], the way will not be easy:

One way or another, God has played us a nasty trick. The voice of Nature has always
been faint, but in this case it speaks in riddles and mumbles as well. Quantum theory
and Relativity seem not to directly contradict one another, but neither can they be
easily reconciled. – Tim Maudlin
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